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Newton Polytopes of Cluster Variables of
Type An

Adam Kalman∗

Department of Mathematics, University of California, Berkeley, CA 94720, USA

Abstract. We study Newton polytopes of cluster variables in type An cluster algebras, whose cluster and coefficient
variables are indexed by the diagonals and boundary segments of a polygon. Our main results include an explicit
description of the affine hull and facets of the Newton polytope of the Laurent expansion of any cluster variable, with
respect to any cluster. In particular, we show that every Laurent monomial in a Laurent expansion of a type A cluster
variable corresponds to a vertex of the Newton polytope. We also describe the face lattice of each Newton polytope
via an isomorphism with the lattice of elementary subgraphs of the associated snake graph.

Résumé. Nous étudions polytopes de Newton des variables amassées dans les algèbres amassées de type A, dont
variables sont indexés par les diagonales et les côtés d’un polygone. Nos principaux résultats comprennent une
description explicite de l’enveloppe affine et facettes du polytope de Newton du développement de Laurent de toutes
variables amassées. En particulier, nous montrons que tout monôme Laurent dans un développement de Laurent de
variable amassée de type A correspond à un sommet du polytope de Newton. Nous décrivons aussi le treillis des faces
de chaque polytope de Newton via un isomorphisme avec le treillis des sous-graphes élémentaires du “snake graph”
qui est associé.
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1 Introduction
Cluster algebras, introduced by Fomin and Zelevinsky in the early 2000’s [10], are a class of commutative
rings equipped with a distinguished set of generators (cluster variables) that are grouped into sets of
constant cardinality n (the clusters). A cluster algebra may be defined from an initial cluster (x1, ..., xm)

and a quiver, which contains combinatorial data for the process of mutation, in which new clusters and
quivers are created recursively from old ones. There may also be coefficients involved in the construction.
The cluster algebra is the algebra generated by all cluster variables, after mutation is repeated ad infinitum.

Perhaps the most fundamental example of a cluster algebra is the cluster algebra associated with tri-
angulations of a polygon. Cluster algebras of finite type (i.e. those with finitely many cluster variables)
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are classified by Dynkin diagrams, and the cluster algebras coming from triangulations of a polygon are
precisely those of type A. In this model, diagonals correspond to cluster variables, triangulations (i.e.
maximal collections of non-intersecting diagonals) correspond to clusters, boundary segments correspond
to coefficient variables, and mutation corresponds to a local move called a flip of the triangulation, in
which one diagonal is replaced with another one.

A consequence of the definition of cluster algebra is that every cluster variable is a rational function
in the initial cluster variables, but more strongly, the remarkable Laurent Phenomenon [10] states that
every cluster variable is in fact a Laurent polynomial in those variables. In the last ten years, much work
has been done on Laurent expansion formulas for cluster algebras. Carroll and Price (in unpublished
results [2]) were the first to discover formulas for Laurent expansions of cluster variables in the case of
a triangulated polygon, writing one formula in terms of paths on the triangulation, and another in terms
of perfect matchings of so-called snake graphs [20]. Schiffler rediscovered these paths, calling them “T-
paths,” and the path and snake graph formulas were subsequently reworked and generalized by Schiffler
and others in a series of works [22], [24], [17], [18], with [18] providing Laurent expansions of cluster
variables associated to cluster algebras from arbitrary surfaces.

In this paper, we study the Newton polytope of the Laurent expansion of a type A cluster variable with
respect to an arbitrary cluster. The study of Newton polytopes of Laurent expansions of cluster variables
was initiated by Sherman and Zelevinsky in their study of rank 2 cluster algebras, in which it was shown
that the Newton polygon of any cluster variable in a rank 2 cluster algebra of finite or affine type is a
triangle [25]. We will extend these results in type A by considering cluster algebras of arbitrary rank.
Another motivation for this study is that understanding Newton polytopes of cluster variables has been
useful for understanding positivity properties of certain bases of cluster algebras [3, 25].

Our first main result in this paper is Theorem 3.12, a description of the face lattice of the Newton
polytope of a Laurent expansion of any cluster variable of type An via an isomorphism with the lattice of
elementary subgraphs of the associated snake graph. Our second main result is Theorem 3.17, which gives
an explicit description of the affine hull and facets of such a polytope that can be read off the triangulation
directly. We also show in Corollary 3.13 that every Laurent monomial in a Laurent expansion of a type A
cluster variable corresponds to a vertex of the Newton polytope.

The structure of this paper is as follows. Section 2 contains a summary of the formula that gives cluster
expansions using perfect matchings. Section 3 establishes necessary definitions and notation, then states
our main results and other more peripheral results along the way. In Section 4, we discuss progress toward
more general results. For full proofs of all results in this paper, see [15].

2 Cluster Expansions from Matchings
The cluster algebra we are considering in this paper is constructed from a triangulation T of an (n + 3)-
gon as follows. Let τ1, τ2, . . . , τn be the n diagonals of T , and let τn+1, τn+2, . . . , τ2n+3 be the n + 3

boundary segments.
The quiverQT is defined as follows: place a frozen vertex at the midpoint of each boundary segment of

the polygon, and place a mutable vertex at the midpoint of each diagonal (see Figure 1). These midpoint
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vertices form the vertices of QT . Label these vertices according to the labeling of the polygon. To form
the arrows of QT , go to each triangle of T and inscribe a new triangle connecting the midpoint vertices,
orienting the arrows clockwise within this new triangle. For example, here is a triangulation T of a
hexagon, along with the corresponding quiver QT . The diagonals and boundary segments of T are shown
as thin solid lines. Mutable vertices of the quiver are indicated by filled-in circles, frozen vertices are
indicated by unfilled circles, and the arrows of the quiver are dashed lines. 
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Fig. 1: The quiver QT

Let A(QT ) be the cluster algebra with initial cluster variables (x1, ..., xn), coefficient variables
(xn+1, ..., x2n+3), and initial quiver QT . Each cluster variable in A(QT ) corresponds to a diagonal. Let
xγ be the cluster variable corresponding to the diagonal γ.

The cluster expansion of xγ with respect to T , or the T -expansion of xγ , means the Laurent polynomial
(equal to xγ) in the variables which each correspond to a diagonal or boundary segment of T . The formula
for the T -expansion of xγ in [17] for the cluster variables is given in terms of perfect matchings of a graph
GT,γ that is constructed using recursive gluing of tiles. We now recount the construction of this graph
GT,γ , as described in [17] and [18]. The reader may wish to refer to Figure 2 as an example.

Let γ be a diagonal which is not in T . Choose an orientation on γ, and let the points of intersection of
γ and T , in order, be p0, p1, . . . , pd+1. Let τi1 , τi2 , . . . , τid be the diagonals of T that are crossed by γ, in
order. For k from 0 to d, let γk denote the segment of the path γ from pk to pk+1. Note that each γk lies
in exactly one triangle in T , and for 1 ≤ k ≤ d − 1, the sides of this triangle are τik , τik+1

, and a third
edge denoted by τ[γk].

A tile Sk is a 4-vertex graph consisting of a square along with one of its diagonals. Any diagonal
τk ∈ T is the diagonal of a unique quadrilateralQτk in T whose sides we will call τa, τb, τc, τd. Associate
to this quadrilateral a tile Sk by assigning weights to the diagonal and sides of Sk such that there is a
homeomorphism Qτk → Sk mapping the diagonal τi to the edge with weight xi, for i = a, b, c, d, k.

For each tile Si1 , Si2 , . . . , Sid , we choose a planar embedding in the following way: For Si1 , the
homeomorphism Qτi1 → Si1 must be orientation-preserving, and the vertex of Si1 which corresponds to
p0 is placed in the southwest corner. Then, for 2 ≤ k ≤ d, choose a planar embedding for Sik which has
the opposite orientation of the previous tile Sik−1

, and orient the tile Sik so that the diagonal goes from
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northwest to southeast.
We then create the graph GT,γ by gluing together tiles Si1 , Si2 , . . . , Sid , in order, attaching Sik+1

to
Sik along the edge on each tile that is labeled x[γk]. Note that the edge weighted x[γk] is either the northern
or the eastern edge of the tile Sik , and hence GT,γ is constructed from the bottom left (the first tile) to the
upper right (the last tile).

Definition 2.1. The snake graphGT,γ is the graph obtained fromGT,γ after the diagonal is removed from
each tile.

See Figure 2 for an example of a triangulation T (along with distinguished diagonal γ) and the corre-
sponding snake graph.
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Fig. 2: A triangulation and corresponding snake graph

Definition 2.2. A perfect matching of a graph is a subset of the edges so that each vertex is covered
exactly once. The weight w(M) of a perfect matching M is the product of the weights of all edges in M .

With this setup, Laurent expansions of cluster variables can be expressed in terms of perfect matchings
as follows (see [17]).

Proposition 2.3. With the above notation,

xγ =
∑
M

w(M)

xi1xi2 . . . xid
,

where the sum is over all perfect matchings M of GT,γ .

3 Main Results
Before we can state our results, we need a few more definitions and some new notation.
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Definition 3.1. The Newton polytope of a Laurent polynomial is the convex hull of all the exponent vectors
of the monomials, i.e. the convex hull of all points (c1, c2, ...) such that the monomial xc11 x

c2
2 ... appears

with a nonzero coefficient in the Laurent polynomial.

For ease of notation, we may sometimes say a diagonal or boundary segment of the polygon is labeled
k rather than τk.

Notation 3.2. • LetD(γ) be the set of diagonals of the triangulation that γ crosses, i.e. {τi1 , . . . , τid}.

• Let T ′ be the subset of T that includes all vertices incident to a diagonal in γ ∪ D(γ), and all
diagonals and boundary segments connecting these vertices to each other.

• For any point w ∈ T , let diagonals(w) := {e ∈ (γ ∪ D(γ)) : e 3 w}, the set of diagonals in
γ ∪D(γ) incident to w.

• Let the set of distinct labels of edges incident to a vertex v ∈ GT,γ be Ev . If V is a collection of
vertices, let EV :=

⋃
w∈V Ew

• Let N(T, γ) be the Newton polytope (in R2n+3) of the T -expansion of the cluster variable xγ .

• Let P (GT,γ) be the polytope in R2n+3 that is the convex hull of the characteristic vectors of all
perfect matchings of GT,γ .

Remark 3.3. By Proposition 2.3, the two polytopes N(T, γ) and P (GT,γ) are isomorphic, differing
only by a translation by the vector 1D(γ) (i.e. the vector whose ith coordinate is 1 if i ∈ D(γ), 0
otherwise). So P (GT,γ) can be thought of as the “Newton polytope of the numerator” of the cluster
variable corresponding to γ.

Definition 3.4. Define an equivalence relation ∼ on the set of vertices of GT,γ as follows: Vertices of
GT,γ are equivalent if they correspond to the same marked point on the original polygon T ′, based on
how quadrilaterals from the polygon become tiles in GT,γ . Let the equivalence class of a vertex v be [v].

The location of equivalent vertices follows this specific pattern: v ∼ v′ if one can start at v and reach
v′ by a sequence of northwest-southeast knight’s moves (i.e. we are allowed to make the “knight’s move”
in only 4 directions (not 8): left 1 and up 2, left 2 and up 1, right 1 and down 2, or right 2 and down 1).

Remark 3.5. Note that in GT,γ , any number of vertices can be in an equivalence class, but at most two
edges have the same label (because any edge in the triangulation is an edge of either 1 or 2 quadrilaterals,
and γ cannot cross the same diagonal more than once).

Definition 3.6. A tile S in GT,γ will be called a corner if it is incident to two other tiles, one of which is
left or right of S, and one of which is above or below S.

Definition 3.7. A diagonal e in D(γ) will be called balanced if a pair of opposite sides of quadrilateral
Qτe consists of boundary segments of T ′, and will be called imbalanced otherwise.

Definition 3.8. A subgraphH of a bipartite graphG will be called an elementary subgraph ifH contains
every vertex of G, and every edge of H is used in some perfect matching of H . Equivalently, H is an
elementary subgraph if it is the union of some set of perfect matchings of G.
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Example 3.9. To illustrate this vocabulary, we will use the triangulation and snake graph from Figure 2
as an example. The set D(γ) = {2, 3, 4, 5, 6}, and T ′ is the graph shown in Figure 3. The vertices of
GT,γ in Figure 2 are labeled with lowercase letters to naturally correspond to the vertices of T ′, labeled
in uppercase.
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Fig. 3: T ′ for the example in Figure 2

The equivalence class [a′] is {a, a′, a′′}. Observe the northwest-southeast knight’s moves between these
vertices of GT,γ , and notice that this equivalence class corresponds to vertex A of T ′.

Also, E[a′] = {1, 2, 3, 4, 7}, and diagonals(A) = {2, 3, 4}.
Note that in T ′, the diagonal connecting vertices B and E is labeled “5”. Correspondingly, in GT,γ ,

the edges {b, e} and {b′, e′} are both labeled “5”. Moreover, Qτ5 = (7, 4, 10, 6). The diagonal “5” is
balanced, and the diagonal “3” is imbalanced. Note that GT,γ has 1 corner - the second tile.

To construct P (GT,γ), we associate a characteristic vector in R15 to every perfect matching of GT,γ ,
and find the convex hull of all these vectors. For example, the matching below gives the vector
(1, 1, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0).
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Our first proposition describes the affine hull of P (GT,γ), the “Newton polytope of the numerator” of
a cluster variable. It follows from carefully examining how features of the triangulation correspond to
features of the snake graph, along with a classical result (see [5, 16]) on bipartite graphs and associated
polytopes, along with the formula from Proposition 2.3 and some linear algebra.
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Proposition 3.10. For any diagonal γ, the affine hull of the polytope P (GT,γ) can be found from the
snake graph GT,γ by writing the following equations:

(i) xe = 0 for each edge e ∈ T that does not appear in GT,γ

(ii)
∑
e∈E[v]

xe = |[v]| for each vertex equivalence class [v] of GT,γ

Using the triangulation T directly, the equivalent equations are

(iii) xe = 0 for each edge e of T\T ′

(iv)
∑
e3w

xe = |diagonals(w)| for each vertex w of T ′

The equations defining the affine hull here (either (i)-(ii) or (iii)-(iv)) are linearly independent, and thus
are a minimal description of the affine hull. There are 2n+ 3− |D(γ)| equations in this description.

Corollary 3.11. dim N(T, γ) = dim P (GT,γ) = |D(γ)|.
We use a classical result from the literature on bipartite graphs and associated polytopes [1] to obtain

our first main result: a description of the face lattice of N(T, γ).

Theorem 3.12. The face lattice ofN(T, γ) (and of P (GT,γ)) is isomorphic to the lattice of all elementary
subgraphs of GT,γ , ordered by inclusion.

Corollary 3.13. The following are in one-to-one correspondence:

(i) Laurent monomials in the T -expansion of xγ
(ii) perfect matchings of GT,γ
(iii) vertices of N(T, γ)

Example 3.14. We will illustrate Theorem 3.12 using a small example. Let T be a triangulation of a
pentagon, with γ a diagonal that crosses both diagonals of T . Then GT,γ consists of two boxes, and the
face lattice of N(T, γ) is isomorphic to the lattice of elementary subgraphs of GT,γ shown in Figure 4.

In this example, the dimension of N(T, γ) is |D(γ)| = 2, and N(T, γ) is a triangle. Also note that the
length of every maximal chain in this lattice is 3.

The lattices described in Theorem 3.12 are graded: the rank of a face is 1 more than its dimension,
and the rank of an elementary subgraph is 1 more than the number of chordless cycles it contains. So the
d-faces of N(T, γ) are in bijection with elementary subgraphs of GT,γ with exactly d chordless cycles.

In particular, let P (i) be the perfect matching of GT,γ that corresponds to vertex i of the polytope.
Given a set of vertices (i1, . . . , ir) that make up a face, the corresponding elementary subgraph is obtained
by superimposing P (i1), . . . , P (ir). Conversely, given an elementary subgraph H , if the set of all perfect
matchings ofGT,γ that lie entirely onH is P (i1), . . . , P (ir), then (i1, . . . , ir) is the set of vertices making
up the corresponding face. Also, the facets of N(T, γ) are the (n − 1)-faces, so they can be found by
finding the elementary subgraphs of GT,γ containing n − 1 chordless cycles. Doing this, we obtain the
following proposition that relates the facets of P (GT,γ) to the snake graph.
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Fig. 4: Lattice of Elementary Subgraphs of GT,γ

Proposition 3.15. For any diagonal γ, the facets of the polytope P (GT,γ) can be found from the snake
graph GT,γ by writing the following inequalities:

(i) xe ≥ 0 for each e ∈ GT,γ such that e is an interior edge of GT,γ .

(ii) xe ≥ 0 for each pair of opposite exterior edges {e, f} of GT,γ such that at least one

of the two edges has a label e that is unique in GT,γ . (see figure below)

(iii) xa + xb + xc ≤ 2 for each pair of opposite exterior edges {e, f} of GT,γ that includes

no unique labels, where a, b and c are the labels of edges shown in the figure below.
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Corollary 3.16. If |D(γ)| ≥ 2, the number of facets of N(T, γ) (or P (GT,γ)) is 2d − 1 − t, where t is
the number of corners in the snake graph, or equivalently, the number of imbalanced diagonals in T ′.
(If |D(γ)| = 1, the polytope is a line segment, so it has 2 facets that are the endpoints.)

Combining Proposition 3.10, Proposition 3.15, and Remark 3.3, we obtain our second main result: a
description of the affine hull and facets of N(T, γ) that can be read directly from the triangulation.

Theorem 3.17. For any diagonal γ, the polytope N(T, γ) can be found directly from T as follows:
Affine hull equations:

(i) For each edge e of T\T ′, write xe = 0.

(ii) For each vertex w ∈ T ′, write
∑
e3w

xe = 1 if w ∈ γ, or write
∑
e3w

xe = 0 if w /∈ γ.
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Facet-defining inequalities:

(iii) For every boundary segment e ∈ T ′ not incident to γ, write xe ≥ 0.

(iv) For every pair of boundary segments {b, c} of T ′ that are opposite sides

of Qτa , where a ∈ D(γ) is a balanced diagonal, let the other pair of opposite sides

of Qτa be {e, f}. Exactly one of these three cases will hold for each pair {e, f}:
- If {e, f} ⊂ {τi2 , . . . , τid−1

}, write the inequality xa + xb + xc ≤ 1.

- If one of {e, f} (say e) is a boundary segment of T ′, write xe ≥ 0.

- Otherwise, write xe ≥ −1, where e is diagonal τi1 or τid .

Example 3.18. Using the same example as in section 1, we will illustrate Theorem 3.17.

• (i): Since edges 14 and 15 of T do not appear in T ′, we get x14 = 0 and x15 = 0.

• (ii): The other equations defining the affine hull of N(T, γ) come from each vertex of T ′ and
whether they are incident to γ. For example, the edges incident to vertex A are {1, 2, 3, 4, 7}, and
A is not incident to γ, so we get the equation x1 + x2 + x3 + x4 + x7 = 0.

• (iii): Edges 7, 10, 11, and 12 are boundary segments of the triangulated polygon T ′ that are not
incident to γ, so we get x7 ≥ 0, x10 ≥ 0, x11 ≥ 0, x12 ≥ 0.

• (iv): The pairs of boundary segments of T ′ that are opposite sides of Qτa , where a is a balanced di-
agonal in D(γ), are {1, 12}, {7, 11}, {7, 10}, and {8, 10}. The other pairs of opposite sides of each
quadrilateral are, respectively, {3, 13}, {3, 5}, {4, 6}, and {5, 9}. Since {τi1 , τi2 , . . . , τid−1

, τid} =
{2, 3, 4, 5, 6}, these pairs fall into the following cases:

– Both of {3, 5} are in {τi2 , . . . , τid−1
} = {3, 4, 5}. They are sides of Qτ4 , whose other two

sides are 7 and 11. This gives x4 + x7 + x11 ≤ 1.

– Edge 13 is a boundary segment, so {3, 13} gives x13 ≥ 0. Similarly, {5, 9} gives x9 ≥ 0.

– Edges {4, 6} are not both in {3, 4, 5}, nor is either a boundary segment, so we get x6 ≥ −1.

Putting this all together, the affine hull and facets of N(T, γ) are given by

affine hull: x14 = 0, x15 = 0

A : x1 + x2 + x3 + x4 + x7 = 0 B : x5 + x6 + x7 + x8 = 0

C : x8 + x9 = 1 D : x6 + x9 + x10 = 0

E : x4 + x5 + x10 + x11 = 0 F : x3 + x11 + x12 = 0

G : x2 + x12 + x13 = 0 H : x1 + x13 = 1

facets: x7 ≥ 0, x10 ≥ 0, x11 ≥ 0, x12 ≥ 0,

x13 ≥ 0, x9 ≥ 0, x6 ≥ −1, x4 + x7 + x11 ≤ 1

Note that Corollary 3.16 confirms that we have found all the facets (2d−1− t = 2(5)−1−1 = 8 facets).
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4 Other Remarks and Conjectures
Empirical evidence suggests that the polytope N(T, γ) contains no lattice points in its relative interior.
The author hopes to prove this in a future paper.

If all the frozen variables {xn+1, ..., x2n+3} (i.e. boundary segments of the polygon) are set equal to 1,
the Newton polytope N(T, γ) is less elegant - there is a collapsing of monomials in the cluster expansion,
and not every monomial corresponds to a vertex.

The construction of cluster algebras from triangulations of a polygon may be generalized to construct
cluster algebras from triangulations of an arbitrary surface with marked points ([6, 7, 8, 13, 9]). In this
setting, there is a generalization of the Laurent expansion formula using perfect matchings of snake graphs
([17, 18, 19]). Many of the results of this paper do not seem easily generalized to the case of a surface
more general than a polygon. For example, our result on the isomorphism of lattices does not hold for
an annulus with marked points on the boundaries. For many surfaces other than a polygon, our results
concerning the facets are not valid, and our affine hull description in Theorem 3.17(i)-(ii) seems only
partially complete, in that the theorem seems to give some of the affine hull equations, but not necessarily
all of them. Soon, we hope to have a complete affine hull and facet description for cluster variables from
more general surfaces.
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Basel, 2000.

[15] A. Kalman, Newton polytopes of cluster variables of type An, arXiv:1310.0555

[16] L. Lovasz, M. Plummer, Matching theory. North-Holland Mathematics Studies, 121. Annals of Dis-
crete Math., 29. North-Holland Publishing Co., Amsterdam; Akadémiai Kiadó (Publishing House
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