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An elementary introduction to the classical version of gauge theories is made. The shoggoithe usual gauge

fixing process are pointed out. They justify the need to replace it by a global symmetry: BiE 8fRmetry and

its associated BRST charge. The main mathematical steps required to construct it are described. The algebra of
constraints is, in general, a nonlinear Poisson algebra. In the nonlinear case the computation of tich&BSHy

hand is hard. It is explained how this computation can be made algorithmic. The main featmmesently created

BRST computer algebra program are described. It can handéeaficalgebras very easily. Its capability to compute

the BRST charge as a formal power series in the generic case of a culticeailg#lustrated.
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1 Introduction

Gauge invariance plays a key role in the formulation of all basic physical theoriess tiige both at

the classical and quantum levels. General relativity as well as all fieldetieonodels which describe

the electromagnetic, the weak and the strong interactions are basedme ifeature of gauge invariant
theories is that they contain what physicists call ‘non-observable’ quantities. These are objectgevhich a
not in one-to-one correspondance with physical measurements. This means that thereare/agsdo
express them as functions of the phase space variables. A way to eliminate thisiadss is to introduce
constraints among the phase space variables themselves. One says that onedixagehélowever, it
turns out that this procedure almost always destroys both locality aradianee of the theory. On the
other hand, this choice of gauge is a local operation, and one would like, of course, such a fixing of
gauge to be global. Therefore, one needs to find something else to express the gaugeesbitmad to
single out physical quantities. IneBchiet al. [1] and Tyutin [2] and many subsequent works (see, for
instance, Henneaux and Teitelboim [3] and the references thereimy tiden shown that, if one works

in a properly defined extended phase space, all gauge theories posgassyanmetry called the BRST
symmetry. Its generator is the BRST charge. This symmetry is globditsnse is sufficient to express
gauge invariance in a proper way. It allows us to properly identify the space of phytsited.sSBRST
symmetry turns out to be essential in the quantization of Yang—Mills theory and in the theory of strings.
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The work presented here is relevant to the classical formulatiomeoBRST symmetry. Considering
classical gauge theories for which the (first class) constraints obagar las well as monlinearPoisson
algebra, itis shown that the computation of the BRST charge can be made algorithmipléimentation
in Reduce is discussed, and its capabilities illustrated. This work has been done in collaboration with
Burnel and Dresse, and is described in Buetdll. [4].

In Sect. 2, an elementary (and grossly oversimplified) introduction to gauge thisariade. The need
to introduce the BRST symmetry is explained. In Sect. 3, the main mathematpal which lead to
BRST symmetry are reviewed. These use homological algebra extensively. In Senet.afgorithm to
compute the BRST charge is described. Finally, in Sect. 5, a few caractenéits implementation in
Reduce are considered. Its capabilities are illustrated through the consideration of the case where the
constraints are characterized by a cubic Poisson algebra.

2 Introduction to Gauge Theories

2.1 Lagrangian Formulation

In classical mechanics, one describes a physical system from the action principle:

t2 . .
Szz/)aﬁfwr )
t1
0

5SS = ()

S is the actiont, t» are the initial and final times; is the Lagrangiang’ (i = 1...n) are the coordi-
nates ang’ are their time derivatives.
The corresponding dynamical equations are:

d (0L oL
E(%J‘aw )

Once the initial conditiong’ (0), ¢*(0) are given, they allow to determiné(t), ¢'(¢) for anyt so that the
physical state of the system is uniquely determined. However, the conversdrgenah general.
A given physical state may be described by several (generalized) coordinat#egrkor instance let:

L=L>"—q%q" —d?) (4)
All functions¢®(t), i = 1,2
¢'(t) = g5 (t) + (1) (5)

where~(¢) is an arbitrary function of such thaty(0) = 0 describe thesamephysical state. So, an
intuitive way to see gauge theories is to think of thermaslels which describe a physical system through
a set of generalized coordinate variables which are not uniquely determined by the dynamicaregjuat
and the initial conditions.
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2.2 Hamiltonian Formulation
Momenta are defined by

o
Pi=Ga

= flq'. ") (6)

Together with the coordinates they form the phase space of the system. If we expresslthiené
derivative in (3) in terms of the partial derivatives, one sees that the aatielesi’® are uniquely defined
only if

9*L

Here one is interested to the case where this determinant is equal torzthat ¢ase, the functions given
by (6) cannot be inverted. The momenta are not all independent, i.e. thereléxistations among the
q''s, p;’s. Let them be

Conlg',pi) =0, m=1,...K (8)

These relations mean that the motion of the system develops insidespasetof the phase space. One
can give a hamiltonian formulation of the action principle. When such rekatarst, the hamiltonian
(H) is not uniquely determined. Indeed, one can always replace it by

H— H = H+u"(p,q)Cn 9)

The eqations of motion can be rewritten

4 0H m OCm
7= Op; T Op; (10)
OH oC,,
hy = —— — U —— 11
p o o (11)
Cm(g,p) =0 (12)
The constraints should be conserved in time. This means
Con = {Coy HY + 0™ {Con, C, 0} = 0 (13)
where, by definition, the Poisson brackets are
(4, py= 0408 0408 (14)

dq' Op;  Op; 0¢°

New constraints are generated by (13). Some of them depend aristh&hey are such that some of
their Poisson brackets with tlig,,’s are different from zero. When this is encountered, one can eliminate
some of the Lagrange parameters in (9). They are cakkednd class constrainthey can be treated
properly by replacing the Poisson brackets by the Dirac brackets [5]. So as nottoebw discussion,
one makes the simplifying assumption that all new constraints are independent.tHehere are/
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new constraints, they must be added to the previous one. They arefaallethss constraintsAll these
new constraints are first class functions. This means that they satisfy

{F,Ci} = ol (p,q)C; (15)

One groups them together with the primary constraint®ir= K + J constraints. They form a Poisson
algebra, i.e. they satisfy the equation

{Ca, Co} = fus(d' pi)Ce (16)

Each first class constraint is also the generator of a gauge transformataimaets on any functioff
of the phase space variables in the following way:

8. F = ¢“{F,Cy} (17)
These transformations determine the gauge orbits.

2.3 The Algebraic Structures on Phase Space

Let C°(P) be the set of regular functions on phase space such that
() multiplication is associative;
(i) Poisson brackets of any two functions exists and have the derivatigrepty.

The geometry of phase space is sympletic.
Let X be the surface in phase space defined by all first class functions. One defines:

N(P)={F|F=X(q,p)Ca} (18)

This set is invariant under the gauge transformations (17). Moreover, it is an idé&l @). One is led
to define the set of regular functions Bnwhich is named”> (X), as the quotient

C=(X) = C=(P)/N(P) (19)

Two functionsF andF" are said equivalent, i.e.

iff

A quantity® is physicaliff
e it belongs toC™ (%);

e itisinvariant under all transformations (17).
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2.4 Gauge Fixing

The gauge freedom indicates that there are several sets of canonical variablesrésgtond to a given
physical state. Each physical state is characterized by an equivalessergl' > (X). One would like to

recover the one-to-one correspondance between it and its expression in terms of the caanadabky
This is only possible if onéixes the gaugeThis can be done if one imposes additional relations

{folg,p) = 0 b=1,... N} (20)
chosen in such a way that
S fp,Cul 0= de* =0 (21)
This obviously implies that
(i) N=M.

(i) dtm({fp,Ca}) #0.

The surface generated by (20) (with = M) should intersect gauge orbitsate point only. If this is

always possible locally, it turns out that it is a requirement impossible to salisbally. In particular, this

is always so for non-abelian gauge theories. There are also other problems with this procedure: locality
and (or) covariance of the theory are lost. A celebrated example of this is the Coulugﬂn@fasz =0)

in electrodynamics. All this justifies the need to replace gauge fixing by sometlsgigthis is BRST
symmetry. Its nice properties are:

¢ itis aglobalsymmetry,
¢ it avoids the construction of the reduced phase space, and
e it preserves locality and covariance.

The price one has to pay is the necessitgntargethe original phase space. Let us mention that a very
good account of the history of its discovery can be found in Hooft [6].

3 Construction of the BRST Charge

The most direct way to introduce BRST symmetry is to use homological algebra. A detailering
of its deduction can be found in Henneaux and Teitelboim [3]. In this short introduction, orentan
review the main mathematical steps.

3.1 Phase Space Extension

To each first class constraifit, one associates additional ‘fermionic variablg$’andP,. They are odd
parity Grassmann variables? has ghost numbérwhile P, has ghost number1 (these last variables are
called antighosts). Poisson brackets are generalized to these variables adti#jgtie new contribution

G 7 & 7
AT B A9 33). 22)

{A;B}gh = — (ana %'1’ apa ana
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In particular, one gets:
{77&, Ub} = {Paapb} = Oa {77&,7?6} = _61(71'
Phase space is therefore enlarged:
(¢.p;) = (¢',pjn" Pa)

Once this is done, one can extend the hamiltonian formulation to systems involving Grassmann variables
and constraints involving them.

3.2 Mathematical Ingredients
One has to use several aspects of graded differential algebrasni@rduces the graded algebta

AiAj C Ay (24)

which contains all polynomials one can build on the enlarged phasmsp is the grading — it is not
necessarily positive. There are several ways to define it, as we shdll see.A; then the degree aof is

dege =1 (25)
In this frame, one introduces the notiondifferential D is a differential if
o D(zy) = xD(y) + (-1) P (D(x))y, Yo,y € A,
o D =deg D(x) — deg x = £1,
e D=0,
e ¢(D)=1.

¢ inthe last equation means tharity of D. Itis 0 or 1 for any object. This is thé&g of D with respect to
aZ, grading applied oni. In concrete terms, on can say that it distinguises between quantities of ‘Bose’
and ‘Fermi’ types. Thé&erneland themageof D are defined by

KerD = {z|Dx =0} (26)
ImD = {z|q3ye€e A:Dy=ua} (27)

Then for all elements aft of degreek one can define the cohomology (homology):

H*(D) = % ifd=1 28)
/’ k
Hy(D) = % ifd= —1 (29)

since/mD is an ideal ofKerD.
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Finally, one uses the concept afntracting homotopy. Suppose that for a certain grading.éfan
operatorA exists, such that

A= @ Ay (30)
Al‘A = /\l‘)\ (31)
oD+ Do = A (we supposé® = 1) (32)
then
H(D) # 0 (33)
HMD) = 0VYA#0 (34)

The reason why*( D) is 0 comes from the fact that for # 0 one gets, successively,

1 1 1
Ty = XAxA = X(UD + Do)y =D (XU@\) (35)

which shows that any element which belongs to the kernBl afso belongs to its image (heye= %0'13\).

3.3 BRST Symmetry

First, taking for the grading the degree in fhgs of the phase space polynomials, one defines the Koszul-
Tate derivatived by

5¢¢ =0= 6pf =0= on? (36)
Py = —C, (37)
degéd = -1 (38)
then
Hy(8) = C=(%) (39)
Hy(d) = 0VYk#0 (40)

It selects all phase space functions regular on the constraiatsurf
Second, taking for the grading the degree inifis of the phase space polynomials, one defines the
longitudinal derivativel by

dF = {F,Cy" (41)
1

dn* = 577"7761';6@ (42)

degd = +1 (43)

then

H(d) = {functionsinvarianton ¥} (44)
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The last step is to show that there exists a differentd@fined by

when the grading equals the difference between the ghost number and the antighost Henetbre . .
mean contributions from operators of higher degrees. This differential acts on an arbitraeygplage
function in the following way:

sF ={F Qg (46)

The indexe stresses the fact that the Poisson bracket is the one generalizedstdehded phase space.
Hy(s) containsall gauge invariant functions(2 is the BRST charge. It is the generator of the BRST
symmetry. Since? = 0, one gets

{Q,Q1=0 (47)

Itis a nilpotent operator. This property allows us to compute it.

4 Computation of the BRST Charge

In this section, it is shown that the computation of the BRST charge can be madedoltittainic. Again,
for a more detailed explanation the reader is referred elsewhere [4, 7].

4.1 The Generalized Poisson Algebra

To be able to build the algorithm, a restriction must be made on the algebratafifiss constraints: it is
that the ‘structure constants’ may only depend on phase spaxegh the constraints themselyes.

{CG’ Cb} = fabc(c)

For practical reasons, the,c are required to be polynomials in thiés so that the previous equation may
be rewritten

q 1
{C(Ia Cb} = Z fia;é..az H C’aj (48)
i=1 j=1

where thef;’s are constants angis an integer.

4.2 The Algorithm
The BRST charge can be developed as a sequence over the dedPgiss in

N-1
Q = > o
n=0
N-1 ) ) '
= AP Py, Py, (49)

=3
I
=)
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with A = A(C, f). © has parity equal to 1, as it must be. On the left-hand side, the infégemot
explicitly written as an index since it is not knovanpriori, whether the right-hand side is a polynomial
or not. In case it is a polynomial, the expression (49) furnishes a closed form expresg€ioh isfeasily
seen, then, that

QY =yec, (50)

This is a gauge transformation in which the parametéfsave been replaced by . If O is any operator
in the graded differential algebra, the differentias such that

5(0) = {0,0} (51)
From this and the nilpotent property 9f(47), one can deduce
sQn+l) — _ pn) (52)
where
n n—1
1
D) = 5 (Z{QW, QU e + ) k), Q<"—k>}gh) (53)
k=0 k=0

The indexc means that the Poisson bracket is the ordinary bracket taken with respiet(t’, p;)

while the index;» means that the bracket is given by (22). From (52) one sees that at each stiage of
recursive calculatiof”) is determined only up to &iexact expression, sindé = 0. Therefore, there is

a large degree of indeterminency on the expressidn dhis is a problem for the algorithmization of the
calculation. Therefore, one is to introduce some additional input in order to select a given solution. Two
types of restrictions have been tried. The first requires that the number of tettmessixpression@ (™) for

eachn be minimized. Apart from its practical interest for the calculation itself, & tha other motivation.

How to do that in an algorithmic way is explained in Bureéll. [4]. The second is more theoretically
grounded. Suppose there exists a grading such that a contracting homaxigts. It verifies

(00 + d0) A = N Ay (54)
With respect to that grading, one can write (52)
sV = _p) (55)
for all k. This equation can be rewritten as

50 = § (Z NikaD,g"‘”) (56)

k

if we one takes (54) into account. The particular solution is obtained if one dropsoth sides. One
can show that such a exists for all Poisson algebras obeying the restrictions defined in theopsev
subsection. It is given oy Dresse [7]

Py (57)
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The corresponding solutionis called the ‘covariant’ solutiecduse it remains invariamhder any regular
transformation

C, — MrC, (58)
Pa — MrP, (59)
o= (MY (60)

5 Applications

The computation of the BRST charge is trivial if the Poisson algebeali® algebra. This is the case

in all usual gauge theories closely linked to present phenomenology. The algorithm of Seat. bk
applied in many cases which gpeyondthe usual gauge theories. However, in this extended context, the
calculations are much more complex and very often untractable by hand calculd@inass not even
sure that there exists a closed fornibfThe recursive procedure must be pursued toward very big values
of V, eventually, to be able to see that. This justifies the use of computer algghrs dontext.

5.1 Implementation

Implementation has been doneReaduce, and it uses two complementary packeadsJMY [8] and
ASSI ST [9]. It is written in the symbolic language. A few important remarks are in order:

(a) Since the number of constraints may be anything (and may be large), it is absoktebsary
to avoid an explicit representation of indices. The packaldeMY offers precisely the possibility
to work with dummy indices and, therefore, to free oneself from the number of constraints. This
package also allows us

() tofind a canonical form to any expression involving dummy indices,
(ii) toinclude anticommutative as well as commutative operators, and

(i) to take intoaccount full and mixed symmetries.

The many reordering operations necessary to achieve these propetiestmecessary to base the
internal representation on tlvectordata structure for efficiency reasons. It is one of the functions
of ASSI ST to allow us to manipulate them in a list-like way.

The restriction on the kind of mixed symmetries which can be consideredaishtby may be
expressed as a tree-like configuration.

(b) The package contains three files. The first contains the part of the algorithm whichicaappl
independentThe second contains the basic Poisson brackets; the third contains the Jacobi identi-
ties. The inclusion of Jacobi identities is crucial to obtain a compact mefahimgult. Of course,
when they are involved, we can only get a normal form. When there are kef/étam, the search
for the normal form may be time consuming. It is done by a function whicfotsautomatically
called by the main algorithm, but which can be used at each step of the recursivatoafcul
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5.2 Results

The program has been applied to the usual linear algebra, to several quadratic algekmsdnd
algebras. A full discussion can be found elsewhere [4., 10]. Here, one considers only thetexatgde
of the linear algebra, and the most spectacular of the generic cubic algebra which isalizgien of
the spin 4 algebra.

5.2.1 Usual Linear Lie Algebras

The constraint algebra is given by
{Ca,Cb} = fabc c.

Using the program, one easily recovers the well known result

1
Q(l) — 5 abcnabpc (61)

ComputingD") and checking thatD(!) = 0 leads to the Jacobi identity
f[cab f;]c =0

One getsh!) = (. This stops the construction because all the higher order conritsutanish.

5.2.2 The Generic Cubic Algebra

Of course, here there is no reason to find a closed forM fdtis for this (rather academic) example that
the power of the package can be best appreciated.
The generic Poisson algebra is

{Ca,,Ca} = [, Cay + D31 Ca,Cay + B2 51" Ca,Ca,C, (62)

Itis seen that the constantsD and I/ must satisfy the five Jacobi identities:

SravFge =0, (63)
T . + Disyf ol + Dl fa = 0, (64)
2D D] + Bl ™ i 4 30 B = 0. (65)
Bt Bt + 2B Dyl =0, (66)
B “ Egja™ = 0. (67)

The calculation order by order can be done. The result is explosive if one does not enforce tHieaimpl
tion induced by the above identities. The one and six order results are

Q0 = (0 0’ Pu, (fib, + Diti Ca+ ER® Cu, Cuy)) /2
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6) __ dy do ds d4 ds  de  dr
Q) = (n" 0™yt g n® 9" " Pa, Pa, Payy Pay, Pary Pass
dg d1o d11 disdi7diz ppdisdisdia
(864 fd14d2 fd15d15 fdl’?dlS Cd19 Ed3d4 Ed5d5
d14d16ds dg d1o d11 di7d19d12
Ed7d1 + 864 fd14d15 fd15d2 fdl’?dlS Cd19 Ed3d4

d14d16d13 d15d18d8 _ dQ dlD d18d12
EdeG Ed'?dl 126 fd14d15 fd16d17 Dd3d4

died11 d1adi7diz ppdisdieds dg died1o
Dd18d2 Cd19 Ed5d5 Ed7d1 63 fd14d15 Dd2d3

d17d11 d18d12 d14d13 d15d19d8 dQ
Dyt Dyreas D Cao E —42f

digds drdy diadis
diedio ydisdin ydizdiz nydiadis disdiods
Dd2d3 Dd4d5 Ddlsds Dd18d17 Cd19 Ed7d1 168

dg diedio ydi7din ydisdiz ydiadia disdigds
fd14d15 Dd2d3 Dd15d4 Dd17d5 Ddlsds Cd19 Ed7d1

d1adi1 ydizdiz nydisdis ydiedio ydieds disds
+ 84 Dd1d2 Dd3d4 Dd5d5 Dd14d15 Dd17d18 Dd19d7 Cd15

d1adi di7d12 ydisdia mydisdio Nydisds d1sds
+ 56 Dd1d2 Dd3d4 Dd5d5 Dd14d15 Dd17d18 Dd19d7 Cd15

di7di1 nydisdiz nydisdiz ydiedio ydisds d1ads
+ 168 Dd1d2 Dd3d4 Dd5d5 Dd14d15 Dd17d18 Dd19d7 Cd15

d1adio pydirdin ydieds di1sds ydiodiz ydisdiz
+ 224 Dd2d3 Dd4d5 Dd14d15 Dd17d1 Dd18d7 Dd19d5 Cd15

_|_ 84 Dd16d11 Dd17d12 DdISdlD Dd18d9 Dd19d8 Dd14d13
dads

dads d1ady died17 T d1sdr T digds
diedi1 ydisdiz nydiedis ydisdio ydiads
C1Cl15 - 126 Dd2d3 Dd4d5 Dd5d7 Dd14d1 Dd15d17

d17dg _ diedi1 ydisdiz nydisdio nydizdis
Dd18d19 Cd15 140Dd2d3 Dd4d5 Dd14d1 Ddlsds

d14dg d19ds disdi1 ydisdiz ndisdio
Dd17d19 Dd18d7 Cd15 + 336 Dd2d3 Dd4d5 Dd14d1

d14dg di9ds mydizdis died11 ydiodiz
Dd15d17 Dd18d7 Dd19d5 Cd15 + 56 D D

dads dads
disdio ydisds d14d1z ydizds _ di7d10 ydisdin
Dd14d1 Dd15d17 Ddlsds Dd19d7 Cd15 56 Dd2d3 Dd4d5

diedg disdia ydieds ydiadiz _ diedio
d14d1s Dd17d7 DdlSdl Dd19d5 Cd15 224 Dd3d4

d15d9 d17d8 d19d13 d14d11 d18d12
Dd14d2 Ddlsdl Dd17d7 Dd18d5 Dd19d5 Cd15)) /211680
Some mathematical questions can be raised at this point:

+ What are the conditions required on the structure constants to guarantee the existencsed a cl
form solution forQ2? What are their meanings?

e Among the many solutions, the most concise (i.e. the one which is of lowest arfg) is not, in
general, the covariant one. So the minimal rank of the algebra is difficult to dagerm

Some considerations on the above questions have already been made [4, 7, 10]. To properlhasswer
guestions, however, a deeper study of nonlinear Poisson algebras should be made. No doulpiitze com

tion of the BRST charge can play a role in that study. The pacBR$ turns out to be potentially very
useful in that context.
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