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This paper describes progress made in context with the construction of a general library of Lie algebra algorithms,
called ELIAS (Eindhoven LIe Algebra System), within the computer algebra packageGAP. A first sketch of the
package can be found in Cohen and de Graaf[1]. Since then, in a collaborative effort with G. Ivanyos, the authors
have continued to develop algorithms which were implemented in ELIAS by the second author. These activities are
part of a bigger project, called ACELA and financed by STW, the Dutch Technology Foundation, which aims at an
interactive book on Lie algebras (cf. Cohen and Meertens [2]). This paper gives a global description of the main ways
in which to present Lie algebras on a computer. We focus on the transition from a Lie algebra abstractly given by
an array of structure constants to a Lie algebra presented as a subalgebra of the Lie algebra ofn � n matrices. We
describe an algorithm typical of the structure analysis of a finite-dimensional Lie algebra: finding a Levi subalgebra
of a Lie algebra.
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1 Presentations of Lie Algebras
The three most common ways to present a Lie algebra over a fieldF are

FL by means of generators and relations,

GL as a Lie subalgebra of the general linear Lie algebragln(F ), or

SC by means of an explicit multiplication table.

These three ways will be called thebasic presentations. Together they suffice for most applications.
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1.1 Basic Presentations

To obtain the basic presentations, we start with the following atomic presentations:

FL The free Lie algebraL(A) on the alphabetA. Its elements can be presented by sums of terms, where
a term is the product of a scalar (fromF ) with a (square bracketed) monomial in the variables from
A. The Lie bracket is (formally)F -bilinear, whence determined by its value on a pair of monomials;
the Lie bracket of two monomialss andt is just the bracketed monomial[s; t]. This presentation is
not unique as one has to divide out by the anti-symmetry and the Jacobi identities. Normal forms
algorithms exist forL(A) – see below.

GL The linear Lie algebragln(F ) of all n� n matrices overF . Here the Lie bracket of the matricesx
andy is [x; y] = x � y � y � x, where� stands for the usual matrix multiplication.

SC The abstract Lie algebraL with basisfxi j i 2 I g, where the Lie bracket[ � ; � ] is determined by an
explicitly given multiplication table, consisting of the so-calledstructure constantsckij (i; j; k 2 I)
which are defined by the relations

[xi; xj] =
X
k2I

ckijxk:

In view of the bilinearity of the Lie bracket, these are sufficient to calculate the bracket of two
arbitrary elements ofL.

Starting from an atomic presentation, we can obtain a presentation for a subalgebra or a quotient algebra.
The simplest and most frequently employed constructions of a Lie algebraL make use of one of the
following threebasic presentations:

FL L = L(A)=I for an idealI of L(A);

GL L = hXi for a subsetX of gln(F );

SC L given by a basisfxi j i 2 I g and structure constantsckij (i; j; k 2 I).

If L is known to be semi-simple or nilpotent, other efficient presentations are known, depending on
the structure ofL, e.g. the Chevalley generators and Serre relations for semi-simple Lie algebras (cf.
Humphreys [3]). Here we shall not go into those ramifications.

1.2 Example

We give a basic presentation of each kind for the3-dimensional Heisenberg algebra. This is a Lie algebra
with basisfx; y; zg whose structure constants are given by the following table:

H x y z

x 0 z 0

y �z 0 0

z 0 0 0
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In matrix form,H can be taken to be generated by the following three matrices corresponding tox, y,
z, respectively: 0

@
0 1 0

0 0 0

0 0 0

1
A
0
@

0 0 0

0 0 1

0 0 0

1
A
0
@

0 0 1

0 0 0

0 0 0

1
A

Clearly,H is a quotient of the free Lie algebra on the alphabetfX;Y; g. The relations (corresponding to
generators of the ideal that has to be divided out to getH) can be described by first expressing all other
basis elements as products ofx andy, and subsequently substituting these expressions in the multiplica-
tions given by the multiplication table. Thus, one easily finds thatH is a quotient of the free Lie algebra
on the alphabetfX;Y g with relations

0 = [X; [X;Y ]]; 0 = [Y; [X;Y ]]

1.3 Changing Presentations
From a theoretical point of view, it is known that every finite-dimensional Lie algebracan be presented
in any of the three basic presentations. However, for performing computations on finite-dimensional Lie
algebras, the presentation by means of a commutator table giving the structure constants(SC) seems to
be the most suitable. In the implementation of the algorithms we will therefore assume that every finite-
dimensional Lie algebra is presented in this way. For this, and other reasons, we mustbe able to compute
the transition from the first two presentations to a commutator table (SC) presentation, andvice versa.

The transitions
GL ! SC! FL

are straightforward. The first transition can be achieved by using linearalgebra forgln(F ). Find a basis
x1; : : : ; xn for L, and determine the structure constantsckij by computing[xi; xj] and expressing it as
a linear combination of the basis elementsxk. For the second transition (SC ! FL) we can take the
generators to be the basis elements, and the relations to be all commutation relations.

The reverse arrows are significantly harder.

1.4 Todd–Coxeter Type Algorithms
In caseL is finite dimensional, the transitionFL ! SC can be achieved by applying various kinds of
Todd–Coxeter techniques.

The first and perhaps most practical approach is to start with a unique presentation for each element of
L(A). This can be done by allowing, in the presentation of a member ofL(A), only those monomials to
occur that belong to a so-calledHall basis– cf. Reutenauer [4]. A Hall set is an ordered set of monomials
H in the free magmaM (A) on A with the properties thatA is contained inH, that [g; h] 2 H for
g; h 2 M (A) impliesh 2 H and[g; h] < h, and that, for any magma element[g; h] in M (A) n A, we
have

[g; h] 2 H , fg; h 2 H and g < h and (g = [x; y]) y � h)g

A basis ofL(A) is obtained fromH by interpreting its elements as members ofL(A); this is the corre-
sponding Hall basis. Hall bases exist. Thus,L(A) can be viewed as an infinite-dimensional Lie algebra
(providedjAj > 1) with an ordered basis. Moreover, given an arbitrary monomial inL(A), by use of the
Jacobi identity it can easily be rewritten to a normal form: a linear combination of Hall monomials.
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Given a finite subsetR of L(A), the Todd–Coxeter algorithms search for a (finite) setS of Hall mono-
mials ofL(A) such that each element of thequotient Lie algebraL(A)=I, whereI is the ideal generated
by R, has an inverse image in the linear span ofS. Initially, in the algorithm, the setS is taken to beA.
The strategy is to extendS in such a manner that the multiplication of any two of its members gives an
element of the linear span ofS. To this end, combinations of the following two steps are taken:

1. Add toS monomials obtained from multiplication of two members ofS.

2. Use linear relations of the form[[� � � [r; t]; t1] � � � ; tn] for r 2 R andti 2 A to replace members of
S by smaller Hall monomials.

Various strategies for applying Steps 1 and 2, etc. are possible, but clearly, such aprocedure will only
terminate if the Lie algebraL = L(A)=I is finite dimensional. By a result in Ufnarovsky [5], the converse
is true, i.e. such a procedure does indeed terminate ifdim(L) <1. This algorithm has been implemented
by Gerdt and Kornyak in C code (see Gerdt and Kornyak [7]).

Another approach has been chosen by Roelofs inReduce (cf. Roelofs [6] and Gragert [8]). Its
theoretical foundation is explained in van Leeuwen and Roelofs [9]. Here, insteadof starting with a Hall
basis inL(A), the authors work in the universal anti-commutative tensor algebra on the (formal) linearF

vector space spanned byA, divide out the relationsR, and subsequently impose instances of the Jacobi
identity (instead of the consequences of the relations as in Step 2 above).

It is our intention to have both approaches built into ELIAS.

1.5 Ado’s Theorem
The remaining transitionSC ! GL can be seen as an effective version of Ado’s theorem (see Bour-
baki [10], Chapt. VI). Up to now, no satisfactory complete solution to this problem is known.For
instance, in Bourbaki [10], an effective solution is described, but a simple complexity analysis gives a
clear signal not to attempt an implementation of the implicitly given algorithm.

In this section we try to find matrix representations of finite-dimensional Lie algebras defined over a
field of characteristic 0, given by structure constants. We shall succeedhere only for some special classes
of Lie algebra. ThroughoutL will be a finite-dimensional Lie algebra with basisfx1; : : : ; xng. The
universal enveloping algebra ofL will be denoted byU (L). We first recall some results proved in [11],
Chapter VI.

Proposition 1.1 The Lie algebraL has a faithful finite-dimensional representation if and only if there is
an idealI ofU (L) of finite codimension such thatL \ I = 0.

Proof. We only prove the if part. For the proof of the other direction we refer to Jacobson [11]. Suppose
thatI is an ideal ofU (L) of finite codimension such thatL \ I = 0. SetA = U (L)=I, thenA is a finite-
dimensional associative algebra containingL. This algebra contains an identity element. From this it
follows that the regular representation (sending an elementx 2 A to the matrix of the right multiplication
by x in A) is faithful. By restricting this representation to the subspaceL � A we obtain a faithful
representation ofL in gl(A). 2

An elementa of an associative algebraA over the fieldF is calledalgebraic if there is a nonzero
polynomialf 2 F [z] such thatf(a) = 0. If I is an ideal ofA thena is calledalgebraic moduloI if
f(a) 2 I for some nonzero polynomialf 2 F [z].
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Lemma 1.2 Let fx1; : : : ; xng be a basis ofL. An idealI ofU (L) is of finite codimension if and only if
everyxi is algebraic moduloI.

Proof. (cf. Jacobson [11]) Letfi 2 F [z] be a nonzero polynomial such thatfi(xi) 2 I. Let ni be
the degree offi. Then any power ofxi is congruent moduloI to a linear combination of the elements
1; xi; x

2

i ; : : : ; x
ni�1
i . Hence a monomial

x
k1
1
� � �xknn

is congruent moduloI to a sum of monomials of the formxm1

1
� � �xmn

n where0 � mi < ni.
Now by the Poincar´e–Birkhoff–Witt theorem ([11], p. 156), we have thatU (L)=I is finite dimensional.

This proves the ‘if’ part. The other implication is trivial. 2

Let N be a nilpotent Lie algebra, and letq be the smallest integer such that allq + 1-fold brackets of
elements ofN are zero. Thenq is called thenilpotency classof N . The following generalization of Ado’s
theorem was proved in Block [12].

Theorem 1.3 LetL be a finite-dimensional Lie algebra. SupposeK is a nilpotent ideal ofL of nilpotency
classq. Then there exists a faithful finite-dimensional representation� ofL such that�(x1 � � �xq+1) = 0

for all x1; : : : ; xq+1 2 K.

Proof. See Block [12]. 2

We now describe two cases where we can find idealsI of U (L) of finite codimension such thatL\I =

0.

Proposition 1.4 Let L be a nilpotent Lie algebra of nilpotency classq. Let Ik be the ideal ofU (L)

generated byfxk
1
; : : : ; xkng. ThenIk has finite codimension and there is anm such that1 < m � q + 1

andL \ Im = 0.

Proof. The fact thatIk has finite codimension follows from Lemma 1.2. By Theorem 1.3 there exists a
faithful finite-dimensional representation ofL such that all elements ofL are mapped to nilpotent linear
transformations. LetI be the ideal corresponding to this representation. It follows that there is anm > 1

such thatxmi 2 I for 1 � i � n. Now Im � I andI \ L = 0, so thatIm \ L = 0. Takem minimal such
thatIm \ L = 0; clearlm > 1. By Theorem 1.3 we infer that there exists a faithful finite-dimensional
representation� of L such that�(xq+1) = 0 for all x 2 L. Hence,Iq+1 \ L = 0. It follows that
1 < m � q + 1. 2

Lemma 1.5 Let f1; : : : ; fn 2 F [z] be polynomials such thatfi(adxi) = 0. Let I be the ideal ofU (L)

generated byff1(x1); : : : ; fn(xn)g. If x 2 L \ I thenx 2 Z(L).

Proof. Let

x =

nX
i=1

gifi(xi)hi (1)

be an element ofL \ I, wheregi andhi are elements ofU (L). Let � denote the extension of the map
ad : L! EndF (L) toU (L). We have

adx = �(x) =

nX
i=1

�(gi)�(fi(xi))�(hi) =

nX
i=1

�(gi)fi(adxi)�(hi) = 0 (2)
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implying thatx 2 Z(L). 2

The next statement concerns Lie algebrasL for whichZ(L) \ [L;L] = 0. Such a Lie algebra has a
basisfx1; : : : ; xng overF such that

1. fx1; : : : ; xsg is a basis ofZ(L) (where0 � s � n).

2. The space spanned byfxs+1; : : : ; xng is a subalgebra ofL.

A basis with these properties is called agood basisof L. Starting from an arbitrary basis ofL, it is easy
to obtain a good basis.

Proposition 1.6 Suppose thatZ(L) \ [L;L] = 0 and letfx1; : : : ; xng be a good basis basis ofL over
F . We define the polynomialsfi 2 F [z] as follows: if1 � i � s, thenfi = z2. Otherwise, ifs <

i � n, thenfi is the minimal polynomial ofadxi over F . Let I be the ideal ofU (L) generated by
ff1(x1); : : : ; fn(xn)g. ThenI is of finite codimension andL \ I = 0.

Proof. By Lemma 1.2,I has finite codimension. Letx be an element ofU (Z(L)) \ I. We can write

x =

sX
i=1

eix
2

i +

sX
i=1

gix
2

i +

nX
i=s+1

pifi(xi)qi

where theei are elements ofU (Z(L)), thegi are sums of monomials,each monomial containing at least
onexi such thati > s andpi; qi are arbitrary elements ofU (L). In the process of straightening monomials
in x1; : : : ; xn to express them as linear combinations of standard monomials we make substitutions of the
form

xixj = xjxi +

nX
k=1

ckijxk

By condition (2) above, we have thatckij = 0 for k = 1; : : : ; s. This, together with the fact that the
constant term offi is 0, implies that no monomial of

P
pifi(xi)qi lies inU (Z(L)). The same is valid

for
P

gix
2

i . It follows that
P

gix
2

i +
P

pifi(xi)qi = 0. The conclusion is thatU (Z(L)) \ I is the ideal
in U (Z(L)) generated byfx2

1
; : : : ; x2sg. Now letx 2 I \ L. From Lemma 1.5, we infer thatx 2 Z(L).

Hencex 2 U (Z(L))\I. ButU (Z(L)) is the commutative polynomial ring over the variablesx1; : : : ; xs.
From this we see that the idealI \U (Z(L)) of U (Z(L)) does not contain linear elements. It follows that
x = 0. 2

Remarks.

1. If we have an idealI of U (L) of finite codimension, then by the algorithm described in Linton [13],
[14] (which is implemented inGAP) we can calculate a basis and a multiplication table ofU (L)=I.
Hence, we can check whetherL \ I = 0 and we can calculate the matrices corresponding to the
representation determined byI.

2. In the case whereZ(L)\ [L;L] = 0 (Proposition 1.6), we can calculate a good basis ofL. The first
s basis elements form a basis ofZ(L). The next basis elements will form a basis of[L;L]. Finally
we complete the basis.
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The representation obtained by Proposition 1.6 is closely related to the following one. Using agood
basis we see that we can write

L = Z(L) �K

whereK is an ideal without centre. A faithful representation is given by the directsum of the
adjoint representation ofK and a faithful representation ofZ(L) (which is easy to construct).

Example. Consider the Heisenberg algebraH of 1.2. A vector space basis ofH is fx; y; zg and the
Lie bracket is specified by[x; y] = z; [x; z] = [y; z] = 0. Following Proposition 1.4, we try the ideal
I2 of U (L) generated byfx2; y2; z2g. Using the vector enumeration package ofGAP, (which uses the
algorithm described in Linton [13], [14]) we find thatf1; x; y; z; xyg is a basis ofU (L)=I2. The matrices
of the corresponding representation are

x 7!

0
BBBB@

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 �1 0 0

1
CCCCA
; y 7!

0
BBBB@

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 �1 0 0 0

0 1 0 0 0

1
CCCCA
; z 7!

0
BBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

1
CCCCA

which indeed gives aGL presentation ofH (different from that given in 1.2).

2 Levi Decomposition
The algorithm to be discussed in this section is part of a suite of routines built toidentify the structure of a
Lie algebra given by a table of structure constants. See Cohen and de Graaf [1] for more details on other
routines, and Randet al. [17] for earlier versions of the specific algorithm under discussion. Although we
have no direct evidence, the fact that the Levi decomposition is used in various proofs of Ado’s Theorem
might indicate its use in constructing matrix representations.

For the duration of this section,L will be a Lie algebra of dimensionn over the fieldF of characteristic
0, given in theSC presentation. Thus,L has a basisfx1; : : : ; xng and its Lie multiplication is described
by

[xi; xj] =

nX
k=1

ckijxk;

whereckij 2 F . This set of structure constantsfckijg will be the input of our algorithms.

Theorem 2.1 (Levi) If L is not solvable, then there exists a (necessarily semi-simple) subalgebraS ofL
such thatL is the semidirect product ofS and the solvable radicalR ofL.

Proof. See Jacobson [11], Section III.9. 2

The subalgebraS in the conclusion of this theorem is called aLevi subalgebraof L. For solvable
Lie algebras not much structure theory is known. So the computational analysis of the structure ofthe
Lie algebra is not very promising in this case. On the other hand, for semi-simple Lie algebras a very
elaborate theory is available. So the structure of the Levi subalgebra may be analysedin detail as well as
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the action of this subalgebra on the solvable radicalR. Hence the importance of being able to calculate a
Levi subalgebra. For the algorithm computing a Levi subalgebra we follow R´onyaiet al. [15].

In the sequelRk will denote the ideal

[R; [R; [� � � ; [R;R] � � �]]] (k copies ofR)

By the following lemma we can reduce the problem of calculating a Levi subalgebra tothe case where the
solvable radical is nilpotent.

Lemma 2.2 LetS1 be the inverse image inL of a Levi subalgebra ofL=R2. If S is a Levi subalgebra of
S1, thenS is a Levi subalgebra ofL.

Proof. (cf.Jacobson [11], Sect. III.9) It is clear thatS is a semi-simple subalgebra ofL. Furthermore,R2

is the solvable radical ofS1. Hence

L = R+ S1 = R+ R2 + S = R+ S

It follows thatS is a Levi subalgebra ofL. 2

Since the radical ofS1 (which isR2) and the radical ofL=R2 (which is abelian) are nilpotent, we can
reduce to the case where the solvable radical is nilpotent. Now suppose that the solvable radicalR of L is
nilpotent. Let

R = R1
� R2

� � � � � Rm = 0

be the lower central series ofR. We note that this series can be computed efficiently (see Beck em et
al. [16]).

Let fu1; : : : ; usg be a maximal linearly independent set in the complement ofR. Then we have the
following commutation relations:

[ui; uj] =

sX
k=1


kijuk mod R1

and theui span a Levi subalgebra moduloR1. We are looking for elementsy1; : : : ; ys of L that span a
Levi subalgebra moduloRm = 0. To this end, we construct a seriesyti for 1 � i � s and1 � t � m such
thatfyt

1
; : : : ; ytsg spans a Levi subalgebra moduloRt, i.e.

[yti ; y
t
j] =

sX
k=1


kijy
t
k mod Rt

For the initialization we sety1i = ui for 1 � i � s. We now describe the iteration step. We define a vector
spaceVt by the formulaRt = Rt+1�Vt. We setyt+1i = yti +vti wherevti 2 Vt for 1 � i � s and require
that

[yt+1i ; yt+1j ] =

sX
k=1


kijy
t+1
k

mod Rt+1

This is equivalent to

[yti ; v
t
j] + [vti ; y

t
j] + [vti ; v

t
j] =

sX
k=1


kijy
t
k +

sX
k=1


kijv
t
k � [yti ; y

t
j] mod Rt+1
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Since[vti ; v
t
j] 2 Rt+1 and[yti ; v

t
j] = [ui; v

t
j] mod Rt+1 we have that this is equivalent to

[ui; v
t
j] + [vti ; uj]�

sX
k=1


kijv
t
k =

sX
k=1


kijy
t
k � [yti ; y

t
j] mod Rt+1

This is a system of equations for thevti . Since the equations are moduloRt+1, the left-hand side as well
as the right-hand side can be viewed as elements ofVt. By Levi’s theorem applied to the Lie algebra
L=Rt+1 this system has a solution. The conclusion is that afterm � 1 iteration steps we have found a
Levi subalgebra ofL.

Remark. The method described here runs in polynomial time. This fact is proved in [15].
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