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This paper describes progress made in context with the construction of a general library lgebealgorithms,
called ELIAS (Eindhoven Lle Algebra System), within the computer algebra padBadgre A first sketch of the
package can be found in Cohen and de Graaf[1]. Since then, in a collaborative effort with G. Ivaeyasthors

have continued to develop algorithms which were implemented in Elbgthe second author. These activities are
part of a bigger project, called ACELA and financed by STW, the Dutch Technology Foundation, which aims at an
interactive book on Lie algebras (cf. Cohen and Meertens [2]). This paper gives a globaltitesofithe main ways

in which to present Lie algebras on a computer. We focus on the transition framaldebra abstractly given by

an array of structure constants to a Lie algebra presented as a subalgebra of the Lie algebra ofatrices. We
describe an algorithm typical of the structure analysis of a finite-dimensional Lie algebra: findingsubalgebra

of a Lie algebra.
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1 Presentations of Lie Algebras

The three most common ways to present a Lie algebra over affiate
FL by means of generators and relations,
GL as a Lie subalgebra of the general linear Lie algetyéar '), or

sc by means of an explicit multiplication table.

These three ways will be called thasic presentationslogether they suffice for most applications.
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1.1 Basic Presentations

To obtain the basic presentations, we start with the following atomic presergat

FL The free Lie algebrd (A4) on the alphabet. Its elements can be presented by sums of terms, where
atermis the product of a scalar (froii) with a (square bracketed) monomial in the variables from
A. The Lie bracket is (formally)'-bilinear, whence determined by its value on a pair of monomials;
the Lie bracket of two monomiaksandt is just the bracketed monomifal, ¢]. This presentation is
not unigue as one has to divide out by the anti-symmetry and the Jaewiities. Normal forms
algorithms exist fot,(A) — see below.

GL The linear Lie algebragl,, (F) of all n x n matrices ovef”. Here the Lie bracket of the matrices
andy is [z, y] = « * y — y * «, wherex stands for the usual matrix multiplication.

sc The abstract Lie algebrawith basis{ «; | i € I }, where the Lie brackgt , -] is determined by an
explicitly given multiplication table, consisting of the so-callducture constantsfj (4,7, k€
which are defined by the relations

(i, 2;] = oy
g
kel

In view of the bilinearity of the Lie bracket, these are sufficient to calculagebitacket of two
arbitrary elements of.

Starting from an atomic presentation, we can obtain a presentation for a duadge quotient algebra.
The simplest and most frequently employed constructions of a Lie algelmake use of one of the
following threebasic presentations

FL L = L(A)/I for an ideall of L(A);
GL L = (X) for asubselX of ¢/, (F);
sc L given by a basig «; | i € I} and structure constant% (4,7, ke I).

If L is known to be semi-simple or nilpotent, other efficient presentations are knapending on
the structure of., e.g. the Chevalley generators and Serre relations for semi-sinmplaldebras (cf.
Humphreys [3]). Here we shall not go into those ramifications.

1.2 Example

We give a basic presentation of each kind for3hdimensional Heisenberg algebrahis is a Lie algebra
with basis{z, y, z} whose structure constants are given by the following table:

H | x oy z
x 0O z 0
y |—2 0 0
z 0 0 0
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In matrix form, H can be taken to be generated by the following three matrices corresponding to
z, respectively:

Clearly, H is a quotient of the free Lie algebra on the alphgl¥étY, }. The relations (corresponding to
generators of the ideal that has to be divided out tafjetan be described by first expressing all other
basis elements as productsmofindy, and subsequently substituting these expressions in the multiplica-
tions given by the multiplication table. Thus, one easily finds ffias a quotient of the free Lie algebra

on the alphabef X, Y} with relations

0=[X,[X,Y], 0=[Y,[X,Y]]

1.3 Changing Presentations

From a theoretical point of view, it is known that every finite-dimensional Lie algeanabe presented
in any of the three basic presentations. However, for performing computations on fingesional Lie
algebras, the presentation by means of a commutator table giving the structure cdsslasgeems to
be the most suitable. In the implementation of the algorithms we will therefmenze that every finite-
dimensional Lie algebra is presented in this way. For this, and other reasons, weemab$ to compute
the transition from the first two presentations to a commutator taldepfesentation, andce versa
The transitions
GL — SC— FL

are straightforward. The first transition can be achieved by using laigabra foryl, (7). Find a basis
x1,...,x, for L, and determine the structure constaffj}sby computing[z;, ;] and expressing it as
a linear combination of the basis elements For the second transitios¢ — FL) we can take the
generators to be the basis elements, and the relations to be all commutatiomse

The reverse arrows are significantly harder.

1.4 Todd-Coxeter Type Algorithms

In casel is finite dimensional, the transitiocf. — sc can be achieved by applying various kinds of
Todd—Coxeter techniques.

The first and perhaps most practical approach is to start with a uniquenpaien for each element of
L(A). This can be done by allowing, in the presentation of a membéx df, only those monomials to
occur that belong to a so-calléthll basis— cf. Reutenauer [4]. A Hall set is an ordered set of monomials
H in the free magmal/(A) on A with the properties thatl is contained inH, that[g,h] € H for
g,h € M(A) impliesh € H and[g, h] < h, and that, for any magma elemdnt 2] in M (A4) \ A, we
have

[g, /e H< {ghe H andg < h and (g = [x,y] =y > h)}

A basis of L(A) is obtained fromA by interpreting its elements as membersi¢fi); this is the corre-
sponding Hall basis. Hall bases exist. Thii$A) can be viewed as an infinite-dimensional Lie algebra
(provided| A| > 1) with an ordered basis. Moreover, given an arbitrary monomial(i#), by use of the
Jacobi identity it can easily be rewritten to a normal form: a linear combination of Hall monomials.
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Given a finite subseR of L(A), the Todd—Coxeter algorithms search for a (finite)%ef Hall mono-
mials of Z.( A) such that each element of thaotient Lie algebrd.(A)/I, where] is the ideal generated
by R, has an inverse image in the linear spartofnitially, in the algorithm, the set is taken to bed.
The strategy is to extensl in such a manner that the multiplication of any two of its members gives an
element of the linear span 6f To this end, combinations of the following two steps are taken:

1. Add toS monomials obtained from multiplication of two membersSof

2. Use linear relations of the forfp - - [, ¢],11] - - - , 1] for » € R and¢; € A to replace members of
S by smaller Hall monomials.

Various strategies for applying Steps 1 and 2, etc. are possible, but clearly, gstmtedure will only
terminate if the Lie algebra = L(A)/I isfinite dimensional. By a result in Ufnarovsky [5], the converse
istrue, i.e. such a procedure does indeed termindieif.) < oco. This algorithm has been implemented
by Gerdt and Kornyak in C code (see Gerdt and Kornyalk [7]).

Another approach has been chosen by RoelofReduce (cf. Roelofs [6] and Gragert [8]). Its
theoretical foundation is explained in van Leeuwen and Roelofs [9]. Here, instatalting with a Hall
basis inZ(A4), the authors work in the universal anti-commutative tensor algebra on the (formal)finear
vector space spanned by divide out the relation®, and subsequently impose instances of the Jacobi
identity (instead of the consequences of the relations as in Step 2 above).

It is our intention to have both approaches built into ELIAS.

1.5 Ado’s Theorem

The remaining transitiosC — GL can be seen as an effective version of Ado’s theorem (see Bour-
baki [101. Chapt. VI). Up to now, no satisfactory complete solution to this problem is kndwan.
instance, in Bourbaki [10], an effective solution is described, but a simple critypémalysis gives a
clear signal not to attempt an implementation of the implicitly given algorithm.

In this section we try to find matrix representations of finite-dimensional Igetaas defined over a
field of characteristic 0, given by structure constants. We shall su¢eednly for some special classes
of Lie algebra. Throughouk will be a finite-dimensional Lie algebra with basjg;,... ,z,}. The
universal enveloping algebra @fwill be denoted by (). We first recall some results proved in [1.1],
Chapter VI.

Proposition 1.1 The Lie algebral has a faithful finite-dimensional representation if and only if there is
anideall of U (L) of finite codimension such thatn 7 = 0.

Proof. We only prove the if part. For the proof of the other direction we refer to Jacobson [11]. Suppos
that/ is an ideal of/ (L) of finite codimension such thd@tN I = 0. SetA = U(L)/I, thenA is a finite-
dimensional associative algebra containing This algebra contains an identity element. From this it
follows that the regular representation (sending an elementd to the matrix of the right multiplication

by = in A) is faithful. By restricting this representation to the subspaAce A we obtain a faithful
representation of in gl(A). ]

An elementa of an associative algebra over the fieldF is calledalgebraicif there is a nonzero
polynomial f € F[z] such thatf(«) = 0. If I is an ideal ofA thena is calledalgebraic moduladl if
f(a) € I for some nonzero polynomidle F[z].
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Lemmal.2 Let{z,...,z,} be abasis of.. Anideall of U(L) is of finite codimension if and only if
everyz; is algebraic moduld.

Proof. (cf Jacobson [11]) Lef; € F[z] be a nonzero polynomial such that{(z;) € I. Letn; be
the degree of;. Then any power of; is congruent moduld to a linear combination of the elements
1,2, 23, ... "' Hence a monomial

En

xlfl PR x
is congruent moduld to a sum of monomials of the fored™ - - - 7'~ where0 < m; < n;.
Now by the Poinca—Birkhoff-Witt theorem ([11], p. 156), we have tti&{L) /1 is finite dimensional.

This proves the ‘if’ part. The other implication is trivial. |

Let N be a nilpotent Lie algebra, and lgbe the smallest integer such thatal- 1-fold brackets of
elements ofV are zero. Then is called thenilpotency clasef V. The following generalization of Ado’s
theorem was proved in Block [12].

Theorem 1.3 Let L be a finite-dimensional Lie algebra. Suppdsés a nilpotentideal of. of nilpotency
classg. Then there exists a faithful finite-dimensional representagiofi L such thaip(xz1 - - - 2441) = 0
forall x1,... 2441 € K.

Proof. See Block [12]. O

We now describe two cases where we can find ideald/ (L) of finite codimension such thétn I =
0.

Proposition 1.4 Let I be a nilpotent Lie algebra of nilpotency clags Let /;; be the ideal oft/ (L)
generated by{z%, ... z*}. ThenI, has finite codimension and there isansuch thatl < m < ¢ + 1
andL N1, =0.

Proof. The fact thatl; has finite codimension follows from Lemma 1.2. By Theorem 1.3 there exists a
faithful finite-dimensional representation bfsuch that all elements df are mapped to nilpotent linear
transformations. Lef be the ideal corresponding to this representation. It follows that thererisan
suchthat” € Ifor1 < <n.Nowl, C Tand/ N L =0, sothat/,, N L = 0. Takem minimal such
thatl,, N L = 0; clearlm > 1. By Theorem 1.3 we infer that there exists a faithful finite-dimensional
representatiom of L such thatp(z?*t') = 0 for all = € L. Hence,/,11 N L = 0. It follows that
l<m<qg+1. a

Lemmal.5 Letfi,...,f, € F[z] be polynomials such thgt(adz;) = 0. Let] be the ideal of/ (L)
generated by{ f1 (z1), ..., fu(zn)}. fz € LN T thens € Z(L).

Proof. Let
i=1

be an element of. N I, whereg; andh; are elements of/ (). Let ¢ denote the extension of the map
ad : L — Endp(L)toU(L). We have

adz = ¢(x) = 3 6(g:)8(fi(wi))é(hi) = 3 6(gi)fi(@dwi)é(hi) = 0 2

i=1
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implying thatx € Z(L). O

The next statement concerns Lie algebka®r which Z(L) N [L, L] = 0. Such a Lie algebra has a
basis{x1,...,z,} overF such that

1. {#1,... ,z;}isabasisofZ/(L) (where0 < s < n).
2. The space spanned By, i,...,«,} isasubalgebraaf.

A basis with these properties is called@od basiof L. Starting from an arbitrary basis @&f it is easy
to obtain a good basis.

Proposition 1.6 Suppose thaZ (L) N [L, L] = 0 and let{xy, ..., =, } be a good basis basis @f over
F. We define the polynomiafs € F[:] as follows: ifl < i < s, thenf; = z%. Otherwise, ifs <
i < n, thenf; is the minimal polynomial oddx; over F'. Let I be the ideal oft/ (L) generated by
{fi(z1),..., falzn)}. Thenl is of finite codimensionand N 7 = 0.

Proof. By Lemma 1.2 has finite codimension. Letbe an element df (Z(L)) N I. We can write

r = Zeix? + Zgzl‘f + Z pifi(xi)gi
i=1

i=1 i=s+1

where the:; are elements dff (Z (L)), theg; are sums of monomialsach nonomial containing at least
onez; such that > s andp;, ¢; are arbitrary elements &f(L). In the process of straightening monomials
inzy,...,z, toexpressthem as linear combinations of standard monomials we make substitutions of the
form

n
_ k
Tix; = x;2; + E Ci Tk
k=1

By condition (2) above, we have thdfij = 0fork = 1,...,s. This, together with the fact that the
constant term of; is 0, implies that no monomial &f” p; fi(x;)g; liesinU(Z(L)). The same is valid
for 3" g;x?. Itfollows thaty” ;27 + > pi fi(x;)g: = 0. The conclusion is that (Z (L)) N I is the ideal
inU(Z(L)) generated byz?, ... ,z2}. Nowletz € I N L. From Lemma 1.5, we infer thate Z(L).
Hencer € U(Z(L))NI. ButU(Z(L)) is the commutative polynomial ring over the variahigs. . . , ;.
From this we see that the idelh U/ (Z (L)) of U(Z(L)) does not contain linear elements. It follows that
x = 0. m|

Remarks.

1. Ifwe have an ideal of /(L) of finite codimension, then by the algorithm described in Linton [13],
[14] (which is implemented iGAP) we can calculate a basis and a multiplicationtabl& of) /7.
Hence, we can check whethem I = 0 and we can calculate the matrices corresponding to the
representation determined by

2. Inthe case wherg(L)N[L, L] = 0 (Proposition 1.6), we can calculate a good basis.of he first
s basis elements form a basis&fL). The next basis elements will form a basiq bf Z]. Finally
we complete the basis.
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The representation obtained by Proposition 1.6 is closely related to the following one. dgiad a
basis we see that we can write

L=Z(L) &K

where K is an ideal without centre. A faithful representation is given by the dsaot of the
adjoint representation df and a faithful representation &f(Z) (which is easy to construct).

Example. Consider the Heisenberg algetfaof 1.2. A vector space basis &f is {«,y, z} and the
Lie bracket is specified by, y] = 2, [#,z] = [y, 2] = 0. Following Proposition 1.4, we try the ideal
I of U(L) generated by{z?, y?, 2?}. Using the vector enumeration packageG#P, (which uses the
algorithm described in Linton [1.3], [14]) we find thét, «, y, z, zy} is a basis of/(L)/I>. The matrices
of the corresponding representation are

00 00 0 0O 00 0 0 000 0 0
10 00 0 0O 00 0 0 000 0 0
zs]l 00 000 ]|,y=]1 0000],2]0000 0
00 00 0 0 -1 0 0 0 10000
00 -1 0 0 0O 1 0 0 0 000 0 0

which indeed gives &L presentation off (different from that given in 1.2).

2 Levi Decomposition

The algorithmto be discussed in this section is part of a suite of routines bigiéritify the structure of a
Lie algebra given by a table of structure constants. See Cohen and de Graaf [1] for mibseodetther
routines, and Ranelt al. [17] for earlier versions of the specific algorithm under discussion. Although we
have no direct evidence, the fact that the Levi decomposition is usedioug proofs of Ado’s Theorem
might indicate its use in constructing matrix representations.

For the duration of this sectiofi, will be a Lie algebra of dimensiom over the fieldF" of characteristic

0, given in thesc presentation. Thud, has a basi$«, ..., z,} and its Lie multiplication is described
by
[z, 2] = Zcfjl‘k,
k=1

wherecfj € F. This set of structure constar{téj} will be the input of our algorithms.

Theorem 2.1 (Levi) If L is not solvable, then there exists a (necessarily semi-simple) subalgeifra
such thatl. is the semidirect product ¢f and the solvable radicak of L.

Proof. See Jacobson [11], Section III.9. O

The subalgebr#® in the conclusion of this theorem is called_avi subalgebraof .. For solvable
Lie algebras not much structure theory is known. So the computational analysis of the strut¢hee of
Lie algebra is not very promising in this case. On the other hand, for sienpile Lie algebras a very
elaborate theory is available. So the structure of the Levi subalgebra may be analgstall as well as
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the action of this subalgebra on the solvable raditaHence the importance of being able to calculate a
Levi subalgebra. For the algorithm computing a Levi subalgebra we follomy&et al. [15].
In the sequeRR* will denote the ideal

[Ra [Ra [ Ty [Ra R] o ]]] (k COpieS OfR)
By the following lemma we can reduce the problem of calculating a Levi subalgetita tase where the
solvable radical is nilpotent.

Lemma 2.2 Let.S; be the inverse image ih of a Levi subalgebra of / R?. If S is a Levi subalgebra of
S, thensS is a Levi subalgebra of.

Proof. (cf.Jacobson [11], Sect. 111.9) It is clear thatis a semi-simple subalgebra bf FurthermoreR?
is the solvable radical of;. Hence

L=R+S =R+R*+S=R+S5S

It follows that S is a Levi subalgebra of. O

Since the radical of; (which is R?) and the radical of,/ R? (which is abelian) are nilpotent, we can
reduce to the case where the solvable radical is nilpotent. Now suppose that thees@datalR of I is
nilpotent. Let

R=R'DR*D>---DR"=0
be the lower central series &f. We note that this series can be computed efficiently (see Beck em et
al. [16]).

Let {uy,...,us} be a maximal linearly independent set in the complemerit.oThen we have the

following commutation relations:

[ui, u;] = Z'yfyuk mod R!

k=1
and theu; span a Levi subalgebra modufty. We are looking for elementg , . .. , y, of L that span a
Levi subalgebra modul&™ = 0. To this end, we construct a serigsfor 1 < i < s andl < ¢ < m such
that{¢}, ... 4.} spans a Levi subalgebra modu, i.e.

B3
[vi,v5] = Afuk mod R
k=1

For the initialization we se§} = w; for 1 < i < s. We now describe the iteration step. We define a vector
spaceV; by the formulaR! = R'*! @ V. We setyi ™! = y¢ + vt wherev! € V; for1 < i < s and require
that

t 1 .t 1 k t+1 t+1
Tyt Z%ﬂ;j’ mod R'*

This is equivalent to

[yf, of] + [vf, 9] + [of, ] Z%]yk +Z%]vk [}, y}] mod R'*
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Since[v}, vi] € R and[y}, vi] = [u;, vi] mod R**" we have that this is equivalent to
s s
i, o] + [of, ug] = > a5k = > 40k — v, vi] mod R
k=1 k=1

This is a system of equations for thg Since the equations are moduté™!, the left-hand side as well
as the right-hand side can be viewed as elemenig.oBy Levi’'s theorem applied to the Lie algebra
L/ R+ this system has a solution. The conclusion is that after 1 iteration steps we have found a
Levi subalgebra of..

Remark. The method described here runs in polynomial time. This fact is proved in [15].
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