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A Murgnahan-Nakayama rule for Schubert
polynomials
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Abstract. We expose a rule for multiplying a general Schubert polynomial with a power sum polynomial in &k vari-
ables. A signed sum over cyclic permutations replaces the signed sum over rim hooks in the classical Murgnahan—
Nakayama rule. In the intersection theory of flag manifolds this computes all intersections of Schubert cycles with
tautological classes coming from the Chern character. We also discuss extensions of this rule to small quantum
cohomology.

Résumé. Nous &crivons une formule pour multiplier les polyndmes de Schubert avec les sommes de Newton. Une
somme signée de permutations cycliques remplace la somme signée de rubans dans la formule classique de Murgnahan-
Nakayama. Nous obtenons donc des relations dans 1’anneau de Chow de la variété de drapeaux. Nous discutons
également des extensions de cette formule en cohomologie quantique.
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1 Introduction

To each partition A we may associate a Schur function sy, which is a formal generating series for all
semi-standard Young tableaux of shape A. These form an integer basis for the algebra of symmetric
functions. Alternatively, the symmetric functions (over Q) are freely generated as an algebra by the power
sum symmetric functions p,.

The classical Murnaghan—Nakayama rule expresses the product of a Schur function and a power sum

function in the Schur basis,
Pr-Sx = Z(_l)ht(u/A)S# )
i

the sum is over all partitions p such that ;/ ) is a rim hook of length r and ht(z/)) is its height [21]].
When we rewrite the Schur functions as linear combinations of products of power sum functions the

change of basis matrix is given by the characters of the symmetric group. In this way the above algebro-

combinatorial relation is equivalently expressed in representation theory as a character formula [10].
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The Murnaghan—Nakayama rule also has geometric content. The ring of symmetric functions provides
an algebraic model for the Chow/Cohomology ring of the Grassmannian. The associated Schur polyno-
mials represent geometric degeneracy loci while the power sum polynomials give Chern characters of the
tautological bundle. The intersection of these cycles then has significance for enumerative geometry [[11].

The goal of the paper is to write down the analogous formula for Schubert polynomials:

Theorem 1. For any permutation w we have

pr(an, k) Gy = (~1)*6,.,,
the sum over all cycles o such that
w<pw-oandl(w-o) =1l(w)+r
where <, is the k-Bruhat order, [(w) is the length of w, and

ex(o)=#{i<Ek:00)#i}+1.

In the final section of this abstract we discuss extensions of this rule to (small) quantum cohomology.

Several generalizations of the Murnaghan—Nakayama rule have appeared in the literature. Fomin and
Green gave a version for certain non-commutative symmetric functions, which led to combinatorial for-
mulas for characters of representations associated to stable Schubert and stable Grothendieck polyno-
mials [12]. McNamara gave a skew version of the Murnaghan—Nakayama rule [23]], which Konvalinka
generalized to a skew rule for multiplication by a ‘quantum’ (perturbed with parameter g) power sum
function [16]. Bandlow, et al. gave a version of it in the cohomology of an affine Grassmannian [1].
That is, a formula for the product of a power sum symmetric function by a k-Schur function expanded
in the basis of k-Schur polynomials. In another recent paper Ross gave a new proof of the Murnaghan—
Nakayama rule which generalized to loop Schur functions [27] thus proving a fundamental step in the
orbifold GW/DT correspondence [28]].

2 The Murgnahan-Nakayama rule for Schubert polynomials.

The Schubert polynomials of Lascoux and Schiitzenberger [19] provide a linear basis for the space of
all polynomials in a countable number of variables. This Schubert basis contains all Schur symmetric
polynomials. While the well-known Littlewood Richardson rule describes products of Schur polynomi-
als, it is a open problem to give a similar combinatorial expression for the multiplication of Schubert
polynomials [22].

We begin by recalling the definition of Schubert polynomials. Then we explain how the Schur poly-
nomials embed in the ring of Schubert polynomials and give the known rules for multiplying a Schur
polynomial and a Schubert polynomial. We then give a short proof of the Murgnahan-Nakayama rule
for Schubert polynomials and end by explaining a geometric application to the intersection theory of flag
manifolds, which was the motivation for this work.

2.1 Preliminaries.

Bruhat order. Write s, for the transposition in the symmetric group .S,, interchanging integers a and
b and s; for s;;41. Every permutation admits a factorization as w = S4, - - - S¢,.. When this is of minimal
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length we call (aq, . .., a,) areduced word for w. The length of this word is the number of inversions in w,
i.e. pairs ¢ < j such that w(i) > w(j), we denote this number by /(w). The Bruhat order on permutations
is generated by the following covering relation

w<w ifw =w-se and (W) = I(w) + 1.
The k-Bruhat order <y, is the suborder whose covers are as above where a < k < b.

Schubert polynomials. The group S,, acts on R,, = Z[x1, ..., zy] by permuting the variables. Define
the divided difference operators 9; fori = 1,...,n—1 by

9; = s

Tj — Ti41

where the transposition s; interchanges z; and x;y; leaving the other generators invariant. We have
0; 0 9; = 0 and these operators satisfy the braid relations so that if w has reduced word (a1, . .., a,) then
Oy = 04, © -+ 0 0,, does not depend upon the choice of reduced word. Lascoux and Schiitzenberger
defined the Schubert polynomial &, as

n—1,_n—2
Cu = 01y (T) 25 " 1),

were wy is the involution sending ¢ to n—i+1. If we let I,, be the ideal generated by the non-constant
symmetric functions then the above Schubert polynomials form a basis for H,, = R,,/I,,.

Schur polynomials from Grassmannian permutations. A permutation w € 5, is called Grassman-
nian of descent k if w(i) < w(i + 1) for ¢ # k. Such a permutation w determines a partition

A=Aw)=(wk)—kwk-1)—k+1,...,0()—=1).

Schubert polynomials corresponding to Grassmannian permutations give the Schur polynomials. Specifi-
cally, if w is a Grassmannian permutation with descent k£ and partition \, then

Gw = S,\(ml,...,xk).

Pieri’s rule for Schubert polynomials. The classical Pieri’s rule gives a rule for multiplying a complete
symmetric function h, = s(,.) with a Schur function s,

hy sy = § Sps

m

where the sum is over y such that no two boxes in the diagram of 11/ appear in the same column. Using
the involution w on the space of symmetric functions defined by w(h,.) = e,, we have w(s)) = sy and
an equivalent statement can be deduced for the elementary symmetric functions.

The first such rule for Schubert polynomials appeared in a paper of Monk [25]]. Monk showed that for
the transposition s, = (kk+1) one gets

G, Gu= Y = 6Gu.

w<pw'
H(w)=l(w)+1
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From the definition it is an easy exercise to show that
Gsk :61($17...7Ik) :x1++xk

Monk’s rule determines all the structure constants for the multiplication of Schubert polynomials. The
product of the rth elementary symmetric polynomial in k variables with a Schubert polynomial was for-
mulated by Lascoux and Schiitzenberger [19] in analogy with the classical Pieri rule above. This was
proven geometrically by Sottile [29], where he also gave a generalization to hook Schur functions.

Theorem 2. ([29], Theorem 8) Let ¢ < k and k+ p < n be integers and set m = p+¢q— 1. Forw € S,,,
S(p,qul)(xh s ,Ik) -6y = Z 6end(’y)
the sum over all paths v : w <j w® < -+ < w™) in the k-Bruhat order such that on writing
w® = w1 . (g;b;) with a; < b; we have
w(l)(al) >.0> w(Q)(aq) andw@(aq) << w(m)(am).
Setting p or g equal to 1 in the above gives the Schubert polynomial analogue of the classical Pieri rule.

2.2 Proof of the Murgnahan-Nakayama rule for Schubert polynomials.

We first apply Monk’s formula to deduce that only terms coming from cycles occur. Then we use the ex-
pression for the power sum polynomial as an alternating sum of hook Schur polynomials. Using Sottile’s
Pieri rule shows that the contribution from each hook Schur function is expressed as a count of paths in
the k-Bruhat order, then we apply a result of Begeron and Sottile [2] for paths in the k-Bruhat order to see
that each cycle contributes only once.

Step one. First we use Monk’s formula to see that the answer can be written as a sum of permutations
that differ by a cycle. Monk’s formula can equivalently be stated as [22]

T Gu= > Guay— Y. G,
H(w-skp)=l(w)+1 l(w-sqr)=l(w)+1

Applying this r times gives a sum over cycles

xy -6, = Z 6y
o=(k,c1,...,¢r)
where a, € Z, so that ultimately p,.(z1, ..., 2x) - &, is a sum over cycles.

Step two. We next rewrite the power sum symmetric function as an alternating sum of hook Schur

functions
pr= Y, (5@
p+q—1l=n

This is a simple case of the Murgnahan-Nakayama rule for symmetric functions. It now suffices to prove
the following claim
S(p,1a-1) G, = Z GCu.o + Z s

l(w-o)=l(w)+r
ex(o)=p
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where here the second sum contains contributions from not arising from cycles, that is, terms &, such
that w™?! - w’ is not a cycle.

Step three. Finally we compute the contribution from each hook Schur function. We begin by showing
that the cycles o occurring in the product of s, ja-1y and &, all have e (o) = p. This follows by
induction. In the special case of complete symmetric and elementary symmetric polynomials we have the
Pieri formulas

8(1q)(x1, N ,l‘k) . Gw = Z 6€nd(7)
via;Fa;ViFty
S(p) (.’tl, . ,l’k) -6, = Z Gend(’y)

y:bib; Vi

Considering these together we see that in the product

8(1’)(‘1:17 s ,l’k) ' S(lq)(.’lfh s ,Z‘k)' =6, = Zawlgw’

two types of p+q—1-cycle o with w’ = w- o can occur. Firstly those with p+ 1 district entries a; less than
of equal to k, and secondly those with p distinct entries a; less than or equal to k. Invoking the identity

$(p) () - 810) (%) = S(pr1,10) (%) + S(p10-1) (T)

one finds, by induction on p, that these correspond firstly to the contribution of cycle terms from s(,,11,14)(z)
and secondly to the contribution of cycle terms from s, 1a-1 ().
Thus the contribution to s, 14-1) - &, coming from cycles is

Z n(o) - Su.o

o -cycle
w<pw o
l(w-o)=l(w)+r

ex(o)=p

where n -
. Cpathsy rw <p Wy < w' =w-o
n(o) = # {7 S wW(ay) > > w@(ag) < - w(ay) }

The result of 2, Lemma 6.8] implies that there is a unique path from w to wo in the k-Bruhat order whose
sequence of labels {w((a;)} was peakless. This implies that n(c) = 1. Note: to use [2, Lemma 6.8]
here, we need to note that the cycle it uses is wow ™' and that the path will end in an increasing sequence
of €x (o) labels.

2.3 Application to flag manifolds.
The manifold of complete flags F'i(n) has a modular interpretation with a universal family of flags
Filn): FoC Fi C---C F, =C*" x Fl(n)

where F; is the rank 4 tautological bundle given by the ith flag. We denote by x; = ¢1(F;/Fit1),i =
1,...,n. These algebraic classes generate the cohomology of Fl(n) and the only relations between them
are the non-constant symmetric functions in 1, . . ., Zy.
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_ Geometrically Fl(n) has a cell decomposition. We fix a specific flag F'*, so that F; = (ey, ..., €;) and
F, ;= <€i+1, . ,6n> then

X% :={E* € Fi(n) : dim(E, N F, = #{i <p:w(i) >n+1-q}Yp,q})}
each such cell has co-dimension ¢(w) and we get a geometric basis for the cohomology given by
H*(Fl(n)) = ®uwes, Z[X9)].

It was shown by Bernstein-Gel’fand-Gel’fand [3] and Demazure [8]] that by identifying x; with the first
Chern class as above these geometric Schubert cells are represented in cohomology by the corresponding
Schubert polynomials so that we have a natural isomorphism of rings H*(Fl(n)) = H,, above. This
gives a geometric interpretation to all terms in our Murgnahan-Nakayama rule. That is,

6"" = [XB] and pr(xl,...,xk.) :T'ChT(Fk)

and we can interpret the formula as a geometric representation of the intersection of a Schubert cell with
the rth Chern character of one of the tautological bundles.

Remark. The above formulas determine the intersection number of Schubert cells and Chern characters
in any partial flag manifold. This is because the cohomology of the partial flag manifold is a subring of the
cohomology of the complete flag manifold. Also in the above we worked with the singular cohomology
of the complex flag variety but everything is valid for the Chow rings with Q coefficients of flag varieties
defined over any base field.

Remark. As another possible application we remark that the number of terms occurring in the Murnaghan-
Nakayama rule is vastly smaller than those occurring in the Pieri rule. Potentially, this could be exploited
for efficient computations as in classical case where the rule provides an effective method for inductively
computing the characters of the symmetric group.

3 The Murnagahan-Nakayama rule in quantum cohomology.

The (small) quantum cohomology ring of a flag manifold gives a deformation of the classical cohomology
so that additively we have,

qH*(Fl(dl < -es<dg <’I’L) :H*(Fl(dl < --- < odg <n))®@[q1,...,qk}.

However the multiplicative structure is non-trivial. For example, the construction is not functorial so that
we cannot embed the quantum cohomology of a partial flag manifold inside the quantum cohomology of
the complete flag manifold.

In the case of the Grassmannian there is a rim hook algorithm which essentially enables us to express the
quantum product in terms of the classical one. Using this we write down a simple Murnagahan-Nakayama
rule in the quantum cohomology of the Grassmannian.

3.1 Quantum cohomology.

Definition. Let X be a complex projective manifold. Suppose that {7} and {T;} are dual basis for the
classical cohomology H*(X). The quantum product of two cohomology classes is defined in terms of
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three point Gromov-Witten invariants

axqb= Z (a,b,T})0.3,5¢°T"
BEH,

where the sum is over all 7, all effective classes § and ¢ is as a formal parameter of the generating series.
The three point function (e, e, e)( 3 5 is defined by an integral over the moduli space of stable maps
My 3(X, 8) and gives a virtual count of the number of rational curves in the class /3 intersecting a, b and
T; [14]. In particular the constant term of the series is the classical product so setting ¢ = 0 we recover
the ordinary cohomology.

Grassmannian. Grassmannians were the first collection of manifolds to have their quantum cohomol-
ogy computed [31)4]. The ring structure is given by

gH" (Gr(k,n)) = Qlex, ..., erllgl/(hn—k+1,- -y hn_1, hn + (—l)kq)

Here e; is the ith elementary symmetric polynomial in k variables and h; is the ith complete symmetric
polynomial in k variables. From this we can immediately see that the ¢ — O limit recovers the classical
cohomology. It was shown in [4] that the geometric Schubert cell in the Grassmannian corresponding to
the partition A is represented in this ring by the Schur polynomial sy in k variables. In particular the e;
and h; correspond to the ith Chern classes of the tautological and quotient bundles respectively.

We can express this quantum cohomology ring as a quotient in another way. Let A, = Qleq, ..., ex] be
the ring of symmetric polynomials in k variables. Sending e; to the ith Chern character of the tautological
bundle and s(,, _j,41,1%-1) to the quantum parameter ¢ gives an isomorphism

Y Ap/(hp—pit1y- s hn1) = qH*(Gr(k,n)).
To see that this onto map is an isomorphism we consider the identity
ha —e1tha_1 +eshg_o— -+ (=1)%, =0
which specializes when a = n to
oy + (=1)*8(p_py1,10-1) = 0
since exhn—k = S(n—kp1,16-1) 0 A = A /(Pp—pt1, o o).

3.2 The Murnagahan-Nakayama rule in ¢H*(Gr(k,n))

One obtains a Murnagahan-Nakayama rule for the quantum cohomology of the Grassmannian by analysing
the terms in the classical Murnagahan-Nakayama rule under the rim hook algorithm.

Proof via rim hook algorithm. The strategy of proof is to take sy € Ay, lift this to sy € Ay then
compute p,. - sy in A; where we have the classical Murnaghan-Nakayama rule. We push forward the
resulting alternating sum to Ay ,,, and then consider the class in ¢H*(Gr(k,n)). As such it suffices to
compute the image of an arbitrary Schur polynomial under the map Ay, — Ay, — ¢H*(Gr(k,n)).

In their study of representations of Hecke algebras at nth roots of unity, Goodman and Wenzl [15]]
defined a (seemingly) different quotient of Ay,

Ak/(s)\:)\lf)\k:nkarl),
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after rewriting the partitions in shifted Frobenius coordinates the relation Ay — A\, = n — k + 1 they get
an action of the affine reflection group on R* generated by the symmetric group Sj, and one additional
reflection. Certain orbits of the reflection group action give a basis for the quotient ring, from this they
found a formula for the corresponding Littlewood-Richardson coefficients in their quotient ring which was
equal to a formula obtained by Kac [[17]] and Walton [30]] for fusion coefficients in a Wess—Zumino—Witten
conformal field theory. Later, Bertram, Ciocan-Fontanine and Fulton [5]] obtained the same formula for
the Littlewood-Richardson coefficients in the quantum cohomology of the Grassmannian, which shows
that this quotient is equal to the quantum cohomology ring ¢ H*(Gr(k,n)) and the ideals in both quotients
coincide.

From this re-expression of the quantum cohomology ring the image of a Schur polynomial sy € Ay
in ¢H*(Gr(k,n)) can now be written in a simple combinatorial way. Given any partition A with at most
k parts, we define its n-core A by repeatedly removing rim hooks of length n until it is not possible to
remove any more, what results is a well defined partition independent of the choices of rim hooks [21].
The image of a Schur polynomial sy € Ay in ¢H*(Gr(k,n)) is given in [3] by

Ao (1A =] A ey
N G(A/A)q(l [—I |)/n85\ lf %\1 <n-—=k
0 if\y >n—k
where e(\/)) is a sign with parity >_ k— ht(r;) summed over all rim hooks r; removed. The Murnaghan—
Nakayama rule for gH*(Gr(k,n)) is an immediate consequence of this algorithm:

Theorem 3. [[5]] Let A C (k"’k ) be a partition and r < n be a positive integer. Then

Prxgsn = (=) N, — (=1)Fq ) (1),
n v

where the first sum is over all ;1 C (k") with y2/\ a rim hook of size r and the second sum is over all
v C (k"~F) with \/v a rim hook of size n — r.

Proof. We first of all lift the calculation to Ay where the product has the usual classical expansion,

DrS) = Z(_l)ht(#/)\)su
n

given by summing over all the relevant Schur polynomials in Ag. To discover the image of these Schur
polynomials in the quotient we apply the rim hook algorithm. There are two cases. When p C (k" ~F),
it is already an n-core, so in the quotient these terms give the classical contribution occurring in the first
part of the sum. When y is not contained in (k" ~*), the rim hook algorithm removes all boxes outside of
(k"~F). The only way to remove a length n-rim hook from 4 is to start at the corner of the first column.
Any other rim hook would have smaller length by construction of p. If this n-rim hook cannot be removed
then p is already an n-core and has image zero in the quotient. Otherwise the effect of removing the n-rim
hook from the partition p can been seen as removing an n — k-rim hook from the original partition A, in
the quotient this term comes with a linear ¢ factor and a sign. Moreover any such term can be achieved in
this way giving the second sum in the formula.
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3.3 The Murnagahan-Nakayama rule in ¢H*(Fl(n)).

Postnikov [26] gave a quantum version of Pieri’s formula for Fl(n) and Ciocan-Fontanine gave quantum
Pieri rules for all partial flag manifolds. Quantum Chevalley formulas for general G/P were given by
Woodward and Fulton in [9] proving a generalization of Peterson’s formula.

The quantum cohomology ring of the complete flag manifold was computed by Kim [[L8] and Ciocan-
Fontanine [[7]]

qH*(Fl(TL)) = Q[xla-' '7xn,q1a"'aqn—l]/(Elw-'aEn)'

here E;(z1,...,xy) is the ith coefficient in the characteristic polynomial of
1 ql 0 PP O
-1 23 q -+ 0
0 -1 23 --- O
0O 0 0 - =z,

The goal of this section is to write down a Murgnahan—Nakayama rule in the quantum cohomology of the
complete flag manifold.

Quantum polynomials. In the quantum cohomology of the complete flag manifold the Schubert cells

Yg are represented by quantum Schubert polynomials &4 (x) in g H* (Fl(n)) [13]. For J = (41, .., Jn-1)
and writing ey and E; for the polynomials

n—1
eJ:HEﬁ(xl,...,xi) and EJ:HE‘i(Il,...7Ii)
j i=1

then each (classical) Schubert polynomial has a unique expression as &% (z) = > ajes(z) withay € Z.
The quantum Schubert polynomials are then defined by

&4(z) => asEs ().

For a Grassmannian permutation corresponding to a partition A of descent k alternatively denote this
quantum deformation of the Schur polynomial as s} (z1,...,2)). We define our quantum power sum
polynomial in analogy with the classical case as the alternating sum of quantum hook Schur polynomials,

pL(z1,...,28) = s‘(lr)(xl, ceyTg) — s(gr71,1)(x17 cenxE) e+ (D)7 s‘(zlr)(xl, ey T
Calculations. To illustrate the Murnaghan—Nakayama rule in the quantum cohomology of the complete
flag manifold we begin with an example. Let w = 81253467 € Sg. Then the product of p(z1,...,z4)
and &4 (z) in the ring ¢ H*(F1(8)) is

Q46:1J-(3,7,6,5,4) (z) — Q463;-(2,3,7,6,5) (z) — ‘J4Gi~(2,3,6,5,4)(x) - Q4GZ-(2,4,3,6,5) ()
_GZ‘(2,5,6,4,3)(1‘) + 91‘12%‘1462.(1,2,4,3,8)(x) + Q463J~(1,2,3,6,5) (z) + Q4GZ~(1,2,3,5,4) (z)
+q463~(1,2,4,3,5)(x) - q1q2q3q463).(1’2’3’5$8)(x)

Computer calculations were made for all such products in the rings ¢H*(Fi(n)) for n < 9 and power
sums of degree r < 4.
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General Formula. Based on these calculations we suggest that the general form of the Murnaghan—
Nakayama rule in the quantum cohomology of the complete flag manifold will be,

pl(xy,...,25) - 6L(x) = Z(_l)ek(a)qw(a)gw'o(x) ,

where the sum is over cycles o such that w is connected to w - o via a path {(a;b;)} of length r in the
quantum k-Bruhat graph. The sign ey, is as in the classical case. The monomial factor ¢*() is determined
by a product of the contributions coming from the transpositions {(a;b;)} in the path, each of which
contributes a factor

1 ifl(w®) = 1w D) +1
Qa,Ga; 11 Qo—1 ifL(wD) = [(wO) = 2(b; —a;) + 1.

We have proven this result when » = 2. In general, Mészaros, Panova, and Postnikov have shown ([24]]
Theorem 8.) that in the quantum deformation of the Formin—Kirillov algebra, the quantum hook Schur
polynomials can be written as a certain sum over forests. From their expressions it is immediate that the
alternating sum of these polynomials simplifies to a sum over trees. Each such term corresponds to a
path in the quantum Bruhat graph and also to a cycle o contributing with a sign (—1)+(?). The quantum
parameter ¢(?) is also immediate from the action of the Formin—Kirillov on the quantum cohomology.

For the completed version of this abstract, we hope to extend these formulas to all partial flag manifolds
in type A, and possibly also to the K-theory of the flag manifold that is, to Grothendieck polynomials.
Computer calculations suggest that together with the Pieri formulas of [20] one can obtain similar formu-
las for Grothendieck polynomials.
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