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Abstract.

Sweep maps are a family of maps on words that, while simple to define, are not yet known to be injective in general.
This family subsumes many of the “zeta maps” that have arisen in the study of q, t-Catalan numbers in the course
of relating the three statistics of area, bounce and dinv. A sweep map can be defined for words over arbitrary al-
phabets with arbitrary weights. The latter property makes them particularly suitable for the study of rational Catalan
combinatorics.

Résumé.

Applications de balayage sont une famille de applications sur les mots qui, bien que simple à définir, ne sont pas
encore connus pour être injective en général. Cette famille englobe bon nombre des «applications zeta» qui sont
apparues dans l’étude de les numéros q, t-Catalan dans le cadre de relier les trois statistiques de la area, bounce et
dinv. Un application de balayage peut être définie pour les mots sur alphabets arbitraires avec des poids arbitraires.
Cette derniére propriété rend particulièrement adapté à l’étude de rationnel Catalan combinatoire.

Keywords: q, t-Catalan numbers, Dyck paths, zeta map, diagonal harmonics, nabla operator

1 Introduction
We introduce a family of sorting maps on words that we call sweep maps. In its simplest form, a sweep
map swr,s uses coprime parameters r and s to associate a level li to each letter wi in a word w =
w1, . . . , wn over the alphabet {N,E}. (Note that r or s may be negative.) This assignment is done
recursively: Using the convention that l0 = 0, for i ≥ 1 we set li = li−1 + r if wi = N and li = li−1 + s
if wi = E. The word swr,s(w) is then obtained by sorting the letters in w according to level, starting
with −1,−2,−3, . . . then continuing with . . . , 2, 1, 0. Figure 1 provides an example of sw5,−3 acting on
the word w = ENEENNEE. (Here we have identified w with a lattice path in the plane: Each N
corresponds to a unit-length north step while each E corresponds to a unit-length east step.)
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Fig. 1: The action of the sweep map sw5,−3 on the word w = ENEENNEE. Next to each step in w is written its
level, li. Each step in sw5,−3(w) has been labeled by the level of the corresponding step in w.

Paradoxically, even though sweep maps act by sorting, they are (apparently) injective. The reader may
find it useful to check this injectivity by hand for sw3,−2 acting on the set of all lattice paths from (0, 0)
to (3, 2). As detailed in Conjecture 3.3, injectivity seems to hold even for the general sweep maps over
arbitrary alphabets with arbitrary weights. The injectivity of the general sweep maps appears to be a very
subtle and difficult fact. See [3] for a review of the special cases in which an algorithm for the inverse of
a particular sweep map is known.

The sweep maps encode complex combinatorial information related to q, t-Catalan numbers, to the
Bergeron-Garsia nabla operator, and to other constructions arising in representation theory, algebraic
geometry, and symmetric functions. Many researchers have discovered special cases of the sweep map in
many different guises over the last fifteen years or so. One of the goals of this paper is to present a general
unifying framework for all of this work. In [14, 15, 16], the first author introduced bijections on m-Dyck
paths, as well as generalizations to lattice paths contained in certain trapezoids, that turn out to be special
cases of the sweep map. The bijection in the casem = 1 also appears in a paper of Haglund and Loehr [13]
and is foreshadowed by a counting argument in Haglund’s seminal paper on q, t-Catalan numbers [12,
proof of Thm. 3.1]. The inverse bijection in the case m = 1 appears even earlier, where it was used by
Andrews et al. [1] in their study of ad-nilpotent b-ideals in the Lie algebra sl(n). (See also [19].) More
recently, special cases of the sweep map have arisen while studying lattice paths in squares [18]; partition
statistics [17]; simultaneous core partitions [2]; and compactified Jacobians [10, 11]. We discuss a number
of these connections in more detail in Section 4.

We suspect that to the mathematician-on-the-street, the most interesting question regarding the sweep
maps is whether they are injective (as conjectured in Conjecture 3.3). For a researcher interested in the
q, t-Catalan numbers, however, of comparable interest is the connection between the sweep maps and
statistics on lattice paths such as area, bounce and dinv. Since shortly after Haiman’s introduction of
dinv it has been known that a “zeta map” takes dinv to area to bounce. One point of view, then, is that
rather than having three statistics on Dyck paths, we have one statistic — area — and a sweep map. Many
polynomials related to the q, t-Catalan can be defined using only an “area” and an appropriate sweep
map. That these polynomials are jointly symmetric (conjecturally) supports the utility of this view (see
Section 5).

The structure of this paper is as follows. Section 2 introduces the necessary background on lattice
paths. We then define sweep maps and present Conjecture 3.3 on their injectivity in Section 3. Section 4
reviews various algorithms that have appeared in the literature that are equivalent to the sweep map.
Finally, Section 5 shows how the sweep maps may be used to give concise combinatorial formulas for
the higher q, t-Catalan numbers and many related polynomials that arise by applying the nabla operator
to appropriate symmetric functions and then extracting the coefficient of s(1n). We show how some
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previously known or conjectured formulas can be stated using the sweep map together with certain area
statistics, and we also give some new formulas and conjectures for rational-slope and rectangular cases.

This paper is an extended abstract of the paper [3]. That full paper contains both proofs as well as
additional details on such tasks as how to explicitly invert certain sweep maps.

2 Partitions, Words, and Lattice Paths
The fundamental objects considered in this paper live on the integer square lattice within the first quadrant.
These objects include integer partitions (as Ferrers diagrams) and lattice paths. Integer parameters a and
b will serve to restrict our attention to such objects fitting within an a× b rectangle. Integer parameters r
and s will be used to assign a “level” to the components of the various objects considered. Of particular
interest will the case of r = b and s = −a. The constraint of gcd(a, b) = 1 arises naturally in some
particular sweep maps such as the map due to Armstrong, Hanusa and Jones [2] and the map due to
Gorksy and Mazin [10, 11] (see Sections 4.2 and 4.3, respectively).

Let a, b ∈ Z≥0. Integer partitions with at most a parts and largest part at most b fit naturally (adhering
to the English convention) in the rectangle with vertices (0, 0), (b, 0), (0, a) and (b, a). We denote the
set of such partitions (as subsets of boxes in the first quadrant) by Rptn = Rptn(a, b). Let {N,E}∗
denote the set of all words w = w1w2 · · ·wn, n ≥ 0, for which each wj ∈ {N,E} and let Rword =
Rword(NaEb) denote the subset of words consisting of a copies of N and b copies of E. Finally, let
Rpath = Rpath(NaEb) denote the set of lattice paths from (0, 0) to (b, a) consisting of a unit-length
“north” steps and b unit-length “east” steps.

There are natural bijections among the three sets Rptn, Rword and Rpath. Each word w ∈ Rword

encodes a lattice path in Rpath by letting each E correspond to an east step and each N correspond to
a north step. The “frontier” of a partition π ∈ Rptn also naturally encodes a path in Rpath. We write
WORD(P ) or WORD(π) for the word associated to a path P or a partition π, respectively. Operators PATH
and PTN are defined analogously.

Let r, s ∈ Z. We assign a level to each square of a partition and each step of a path in the following
manner. First, assign to each lattice point (x, y) the (r, s)-level ry+ sx. Assign to each lattice square the
level of its southeast corner. We will have occasion to consider two different conventions for associating
levels to north and east steps of paths. For the east-north convention, each east (north) step inherits the
level of its eastern (northern) endpoint. For the west-south convention, each east (north) step inherits
the level of its western (southern) endpoint. Figure 2 illustrates the various levels relevant to the path
NNENE for r = 8 and s = −5.

The set of partitions in Rptn(a, b) whose lattice squares have nonnegative (r, s)-levels will be denoted
Dptn = Dptn

r,s (a, b) and its members will be referred to as (r, s)-Dyck partitions. A lattice path P (and
its corresponding word, WORD(P )) will be termed (r, s)-Dyck if the underlying partition PTN(P ) is
(r, s)-Dyck. We use Dpath

r,s (NaEb) and Dword
r,s (NaEb) to denote the set of such (r, s)-Dyck paths and

(r, s)-Dyck words, respectively. Note that whether or not a path or word is (r, s)-Dyck is independent of
which level-assignment convention is used.

3 The Sweep Map
We begin in Section 3.1 by giving an algorithmic description of the basic sweep maps for two-dimensional
lattice paths. We then present a general sweep map in Section 3.2 and various minor variations of the basic
sweep map in Section 3.3.
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Fig. 2: Illustration of level-assignment conventions for lattice points, squares, path steps with the east-north conven-
tion, and path steps with the west-south convention for the case of r = 8 and s = −5.

3.1 The basic sweep map
Let r, s ∈ Z. We first describe the (r, s)−-sweep map, sw−r,s : {N,E}∗ → {N,E}∗. Given w ∈
{N,E}∗, assign levels using the east-north convention applied to PATH(w). Define a word y = sw−r,s(w)
by the following algorithm. Initially, y is the empty word. For k = −1,−2,−3, . . . and then for k =
. . . , 3, 2, 1, 0, scan w from right to left. Whenever a letter wi is encountered with level k, append wi to y.
The (r, s)+-sweep map sw+

r,s is defined the same way as sw−r,s except that 1) the value 0 is the first value
of k used rather than the last and 2) for each value of k, w is scanned from left to right. Figure 3 illustrates
the action of both sw+

3,−2 and sw−3,−2 on a path in Rpath(N8E10). When the distinction between, or
choice of, sw+

r,s versus sw−r,s is unimportant, we will simply write swr,s. We define the action of swr,s on
a partition π as PTN(swr,s(WORD(π))) and the action of swr,s on a path as PATH(swr,s(WORD(P ))).
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Fig. 3: Images of sw−3,−2 and sw+
3,−2 acting on a path inRpath(N8E10).

Geometrically, we think of each step in PATH(w) as a wand whose tip is located at the lattice point
at the end of each step. (The maps sw±r,s defined above are assigning labels according to the east-north
convention. Some of the variants described in Section 3.3 assign levels according to the west-south
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convention.) The sweep map swr,s acts (at least when r > 0 and s < 0) by scanning southwest along
each diagonal line ry + sx = c in the appropriate order and “sweeping up” the wands whose tips lie on
each of these diagonals. The wands are laid out in the order in which they were swept up to produce the
output lattice path. (The labels on the wand tips are not part of the final output.) It is clear from this
description, or from the original definition, that the sweep map depends only on the “slope” −s/r; more
precisely, we have swr,s = swrk,sk for every positive integer k.

Remark 3.1 The area∗r,s statistic introduced in Section 5.1 uses the actual (r, s)-wand labels, and so it’s
not universally safe to always assume gcd(r, s) = 1.

Since the sweep maps merely rearrange the letters in the input word w, it is immediate that both sw−r,s
and sw+

r,s map each set Rword(NaEb) into itself. As described in [3], one can easily extend the basic
sweep map to irrational slopes. The irrational-slope sweep maps provides a direct proof of the following.

Proposition 3.2 For all r, s ∈ Z and a, b ≥ 0, swr,s maps each set Dword
r,s (NaEb) into itself.

Note that we do not have a proof of injectivity for these irrational-slope sweep maps.

3.2 The general sweep map
Suppose A = {x1, . . . , xk} is a given alphabet and wt : A→ Z is a function assigning an integer weight
to each letter in A. Given a word w = w1w2 · · ·wn ∈ A∗, define the wand labels l0, . . . , ln relative to the
weight function wt by setting l0 = 0 and, for 1 ≤ i ≤ n, letting li = li−1 + wt(wi). (These wand labels
are essentially computed according to the east-north convention, though the west-south convention works
equally well.) Define swwt : A∗ → A∗ as follows: For each k from −1 down to −∞ and then from∞
down to 0, scan w from right to left, writing down each wi with li = k and i > 0. LetRword(xn1

1 · · ·x
nk

k )
be the set of words w ∈ A∗ consisting of nj copies of j for 1 ≤ j ≤ k. Let Dword

wt (xn1
1 · · ·x

nk

k ) be the set
of such words for which all labels li are nonnegative.

Conjecture 3.3 Let A = {x1, . . . , xk} be an alphabet and wt : A → Z a weight function. For any
nonnegative integers n1, n2, . . . , nk,

• swwt mapsRword(xn1
1 · · ·x

nk

k ) bijectively to itself, and

• swwt maps Dword
wt (xn1

1 · · ·x
nk

k ) bijectively to itself.

Remark 3.4 The order in which the levels are traversed is a key ingredient to invertibility. For example,
in the case of a = b = 2 and r = 1, s = −1, if we scan levels in the order k = . . . , 2, 1, 0,−1,−2, . . .,
both of the paths NENE and NEEN map to NNEE.

3.3 Reversed and transposed sweeps
For fixed r and s, there are four natural parameters that can be used to define a potential sweep map:

• The level to start sweeping at,

• The direction of sweep for a given level (i.e., right-to-left or left-to-right),

• The relative order in which to visit levels (i.e., k + 1 after level k versus k − 1 after level k),

• The convention for labeling steps (i.e., assign levels according to the west-south convention or the
east-north convention).
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Empirical evidence suggests that for each of the 8 = 23 possible choices for the second through fourth
parameters, there is a unique choice of starting level that will lead to an injective sweep map for general
Rword(NaEb). In fact, each of these maps is closely related to each other through two natural involutions
on paths. Let rev : {N,E}∗ → {N,E}∗ be the reversal map given by rev(w1w2 · · ·wn) = wn · · ·w2w1.
Let flip : {N,E}∗ → {N,E}∗ be the transposition map that acts on a word w by interchanging Ns
and Es. Evidently, both rev and flip are involutions; rev maps Rword(NaEb) bijectively onto itself,
whereas flip maps Rword(NaEb) bijectively onto Rword(N bEa). We can modify the sweep maps by
composing on the left or right with rev and/or flip. The new maps are one-to-one (hence bijections between
appropriate domains and codomains) iff the original sweep maps are one-to-one. One can check that
rev ◦ sw+

r,−s = flip ◦ sw−s,−r ◦ flip. The paper [3] describes explicitly the eight maps along with their
relationships to sw−r,s and sw+

r,s.

4 Algorithms Equivalent to a Sweep Map
This section reviews some algorithms that have appeared in the literature that are equivalent to special
cases of variants of the sweep map. We describe each algorithm and indicate its exact relation to the
general sweep map. Proofs that each algorithm really does implement a particular case of the sweep map
may be found in [3].

4.1 Algorithms based on area vectors

4.1.1 Trapezoidal lattice paths
In [16], the first author considers analogues of the q, t-Catalan numbers associated to paths contained in
a trapezoidal region. Fix integers k ≥ 0 and n,m > 0. Let Tn,k,m denote the trapezoidal lattice paths
from (0, 0) to (k + mn, n) that never go strictly to the right of the line x = k + my. Loehr introduces
two different families of statistics on these paths: one based on bounce paths and the other on generalized
inversion statistics. He then introduces a bijection φ = φn,k,m on Tn,k,m that proves that the associated
generating functions are equal. Below we recall his definition and then show that a variant of φ is a sweep
map.

Given a path P ∈ Tn,k,m, we first construct the (slope-m) area vector g(P ) = (g0, g1, . . . , gn−1),
where gi is the number of complete lattice squares in the horizontal strip {(x, y) : x ≥ 0, i ≤ y ≤ i+ 1}
that lie to the right of P and to the left of the line x = k + my. The area vector g(P ) has the following
properties: 0 ≤ g0 ≤ k; gi is a nonnegative integer for 0 ≤ i < n; and gi ≤ gi−1 + m for 1 ≤ i < n.
One readily checks that P 7→ g(P ) is a bijection from Tn,k,m to the set of vectors of length n with the
properties just stated.

We define the new path PATH(v) = φ(P ) ∈ Tn,k,m by concatenating lattice paths (regarded as words
in {N,E}∗) that are built up from subwords of g(P ) as follows. For i = 0, 1, 2, . . . ,M , let z(i) be the
subword of g(P ) consisting of symbols in the set {i, i − 1, i − 2, . . . , i −m}; here M is maximal such
that z(i) is nonempty. Create a word v(i) ∈ {N,E}∗ from z(i) by replacing each symbol i in z(i) by N
and replacing all other symbols in z(i) by E. Finally, let v be the concatenation of words

v = v(0) Ev(1) Ev(2) · · · Ev(k) v(k+1) . . . v(M),

in which an extra east step is added after the first k words. It is proved in [16] that PATH(v) = φ(P )
always lies in Tn,k,m, and that φn,k,m is a bijection.
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To relate φ to the sweep map, we need to introduce a modified map φ′ that incorporates the bijection
described in [16, Sec. 4]. To describe φ′, keep the notation of the previous paragraph. For all i with
k < i ≤ M , note that v(i) must begin with an E, so we can write v(i) = Eṽ(i). Let w(i) = rev(v(i)) for
0 ≤ i ≤ k, and let w(i) = E rev(ṽ(i)) for k < i ≤M . Define φ′(P ) = PATH(w), where

w = w(0) Ew(1) Ew(2) · · · Ew(k) w(k+1) . . . w(M).

Example 4.1 Let n = 8, k = 2, m = 2, and WORD(P ) = ENNEENEEEEENNEEENNEEENEEEE.
Then g(P ) = (1, 3, 3, 0, 2, 1, 3, 2), so

z(0) = 0, z(1) = 101, z(2) = 10212, z(3) = 1332132, z(4) = 33232, z(5) = 333,
v(0) = N, v(1) = NEN, v(2) = EENEN, v(3) = ENNEENE, v(4) = EEEEE, v(5) = EEE,
w(0) = N, w(1) = NEN, w(2) = NENEE, w(3) = EENEENN, w(4) = EEEEE, w(5) = EEE,

WORD(φ(P )) = N ENEN EEENEN ENNEENE EEEEE EEE,

WORD(φ′(P )) = N ENEN ENENEE EENEENN EEEEE EEE.

Theorem 4.2 Suppose k ≥ 0, n,m > 0, w ∈ {N,E}∗, and P = PATH(w) ∈ Tn,k,m. Then

WORD(φ′n,k,m(P )) = flip ◦ rev ◦ sw1,−m ◦ rev ◦ flip(w).

4.1.2 Square lattice paths
In [18], the authors modified the map φn,0,1 to obtain a bijection φ on Rpath(NnEn). Given P ∈
Rpath(NnEn), we define its area vector g(P ) = (g0, g1, . . . , gn−1) by letting gi + n− i be the number
of complete boxes in the strip {(x, y) : x ≥ 0, i ≤ y ≤ i + 1} that lie to the right of P and to the left
of x = n. (This reduces to the previous slope-one area vector if P is a Dyck path.) In this case, the area
vectors of paths in Rpath(NnEn) are characterized by the following properties: g0 ≤ 0; gi + n− i ≥ 0
for 0 ≤ i < n; and gi ≤ gi−1 + 1 for 1 ≤ i < n.

Given P ∈ Rpath(NnEn), we define a new path PATH(v) = φ(P ) as follows. For all i ∈ Z, let z(i)

be the subword of g(P ) consisting of all occurrences of i and i− 1. For all i ≥ 0, let y(i) be the reversal
of z(i). For all i < 0, let y(i) be the word obtained by reversing z(i), then moving the leftmost symbol
(which must be i) to the right end of the word. Create words v(i) by replacing each i− 1 in y(i) by N and
each i in y(i) by E. Finally, define PATH(v) to be the concatenation of the partial paths v(−1), v(−2), . . .
followed by the partial paths . . . , v(2), v(1), v(0).

Example 4.3 Let P ∈ Rpath(N16E16) be such that

PATH(P ) = ENEENENNNNEENEEEENNNENEENNNNENEE.

Then g(P ) = (−1,−2,−2,−1, 0, 1, 0,−3,−2,−1,−1,−2,−1, 0, 1, 1), so (for instance) z(1) = 010011,
y(1) = 110010, z(−2) = −2 −2 −3 −2 −2, y(−2) = −2 −3 −2 −2 −2, and so on. The new path
PATH(v) = φ(P ) is the concatenation of the word v(−1) = NEENENNEE, v(−2) = ENEEE, v(−3) = E,
v(2) = NNN, v(1) = EENNEN, and v(0) = ENNNEENN. On the other hand, the reader can check that
PATH(v) = sw1,−1(P ). In fact, for −3 ≤ i ≤ 2, the subword v(i) consists precisely of the steps in the
output of the sweep map that came from steps with (1,−1)-label equal to i in the input word WORD(P ).

Theorem 4.4 For all n > 0 and all P ∈ Rpath(NnEn), φ(P ) = sw1,−1(P ).
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4.1.3 q, t-Schröder numbers
An order-n Schröder path is a path from the origin (0, 0) to (n, n) never going below y = x comprised
not only of the unit north and east steps, but also of a length-

√
2 northeast step. In [8], the authors

define area, dinv and bounce statistics in analogy with their Catalan brethren. In [8, Theorem 6], they
define a map φ that acts on the Schröder paths and prove it sends (dinv, area) to (area, bounce). A direct
translation of notation establishes the following:

Theorem 4.5 The map φ described in [8, Theorem 6] is equivalent to the sweep map swwt associated to
the alphabet A = {N,D,E} with weight function wt(N) = 1, wt(D) = 0, wt(E) = −1.

4.2 An algorithm based on hook-lengths
In [2], D. Armstrong, C. Hanusa and B. Jones investigate the combinatorics of (a, b)-cores. In the process,
they define a map zeta : Dptn

b,−a(a, b) → Dptn
b,−a(a, b). Let gcd(a, b) = 1 and π ∈ Dptn

b,−a(a, b). The
partition zeta(π) is defined in two stages. First, create a partition ν = nu(π) as follows. Consider the
labels of all lattice squares lying above by = ax and below the path PATH(π). Sort these labels into
increasing order. (It follows from our hypothesis of gcd(a, b) = 1 that these labels will all be distinct.)
Write them in a column from bottom to top. We define ν = nu(π) to be the unique partition such that
these labels are the hook lengths of the cells in the first column.

The second stage maps ν to a new partition ρ = rho(ν) as follows. There will be one row of ρ for
each row of ν whose first-column hook length labels a north step of PATH(π). To determine the length of
each row in ρ, count the number of cells of ν in the corresponding row whose hook-length is less than or
equal to b. The zeta map is then defined by zeta(π) = rho ◦ nu(π).
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Fig. 4: Example of the zeta map for π = (4, 4, 4, 2, 2, 1) for a = 7 and b = 10. The resulting partition ρ is (8, 6, 4, 2)
as shown. Note that the numbers written within the squares of ν are hook lengths rather than the lattice-square labels
defined in the Introduction.

Theorem 4.6 For a, b ∈ Z>0 with gcd(a, b) = 1, WORD(zeta(π)) = sw+
b,−a ◦ rev(WORD(π)) for all

π ∈ Dptn
b,−a(a, b).
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4.3 An algorithm based on semi-module generators
In [10, 11], E. Gorsky and M. Mazin relate the q, t-Catalan numbers and their generalizations to the
homology of compactified Jacobians for singular plane curves with Puiseux pair (a, b). In the course of
their investigations, they introduce a map G on partitions in Dptn

b,−a(a, b). Theorem 4.8 states that the map
G is a sweep map.

Let a, b ∈ Z with gcd(a, b) = 1 and π ∈ Dptn
b,−a(a, b). For 1 ≤ i ≤ b, define the b-generators of π,

{β1 < · · · < βb}, to be the levels of the squares immediately above PATH(π). Define ∆ = ∆(π) to be the
set of labels of all lattice squares lying above PATH(π) (i.e., including squares not adjacent to PATH(π)).
We then define a new partition ρ = G(π) by setting the i-th column of ρ to have length

gb(βi) = |{{βi, βi + 1, . . . , βi + a− 1} \∆}|.

Example 4.7 Consider π = (4, 4, 4, 2, 2, 1), a = 7 and b = 10 as in Section 4.2. The 10-generators in
this case are {0, 3, 6, 7, 12, 14, 19, 21, 28, 35} and

∆ = Z≥0 \ {1, 2, 4, 5, 8, 9, 11, 15, 18, 25}.

It follows that (g10(0), g10(3), . . . , g10(35)) = (4, 4, 3, 3, 2, 2, 1, 1). These are the column lengths of the
partition (8, 6, 4, 2), as desired.

π ρ

3

6

19 12

35 28 21 14 7 0

25

15

5

9

8 1

18 11 4

2

Fig. 5: Example of the Gorsky-Mazin map.

Theorem 4.8 For a, b ∈ Z>0 with gcd(a, b) = 1, WORD(G(π)) = sw+
b,−a ◦ rev(WORD(π)) for all

π ∈ Dptn
b,−a(a, b).

5 Area Statistics and Generalized q, t-Catalan Numbers
This section applies the sweep map to provide new combinatorial generalizations of the q, t-Catalan num-
bers [9] and the q, t-square numbers [18]. Several of the generating functions introduced below have (at
least conjecturally) close relations to the nabla operator∇ on symmetric functions introduced by A. Garsia
and F. Bergeron [4, 5, 6]. See [3] for details.

5.1 Area statistics
For any word w ∈ {N,E}∗, let area(w) be the number of pairs i < j with wi = E and wj = N . This
is the area of the partition diagram consisting of the boxes above and to the left of the steps in the lattice
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path encoded by w. For r, s ∈ Z, let w have (r, s)-labels l0, l1, . . .. Let mlr,s(w) = min{l0, l1, . . .},
and set area∗r,s(w) = area(w) + mlr,s(w). Note that area∗r,s(w) 6= area∗rk,sk(w) in general, so we cannot
necessarily assume that gcd(r, s) = 1 when using area∗.

5.2 Generalized q, t-Catalan polynomials
For r, s ∈ Z and a, b ≥ 0, define the q, t-Catalan numbers for slope (−s/r) ending at (b, a) by

Cr,s,a,b(q, t) =
∑

w∈Dword
r,s (NaEb)

qarea(w)tarea(swr,s(w)).

Conjecture 5.1 (Joint Symmetry) For all r, s ∈ Z, a, b ≥ 0, Cr,s,a,b(q, t) = Cr,s,a,b(t, q).

Note that the conjectured bijectivity of swr,s on the domain Dword
r,s (NaEb) would imply the weaker

univariate symmetry property Cr,s,a,b(q, 1) = Cr,s,a,b(1, q).

5.3 Generalized q, t-square numbers
Next we generalize the q, t-square numbers studied in [18]. For a, b ≥ 0, define the q, t-rectangle
numbers for the a× b rectangle by

Sa,b(q, t) =
∑

w∈Rword(NaEb)

qarea
∗
b,−a(w)tarea

∗
b,−a(swb,−a(w)).

Conjecture 5.2 (Joint Symmetry) For all a, b ≥ 0, Sa,b(q, t) = Sa,b(t, q).

The joint symmetry conjecture is known to hold when a = b. This follows from the stronger statement

(qt)n(n−1)/2Sn,n(1/q, 1/t) = 2〈(−1)n−1∇(pn), s(1n)〉,

which was conjectured in [18] and proved in [7]. We conjecture the following more general relationship
between certain q, t-rectangle numbers and higher powers of∇.

Conjecture 5.3 For all m ≥ 0 and n ≥ 1,

(qt)m(n
2)Sn,mn(1/q, 1/t) = (−1)n−1(m+ 1)〈∇m(pn), s(1n)〉.

5.4 Specialization at t = 1/q

Recall the definitions of q-integers, q-factorials, and q-binomial coefficients: [n]q = 1+q+q2+· · ·+qn−1,
[n]!q = [n]q[n− 1]q · · · [2]q[1]q , and

[
a+b
a,b

]
q

= [a+ b]!q/([a]!q[b]!q).

Conjecture 5.4 For all m,n ≥ 0,

qm(n
2)Sn,mn(q, 1/q) =

(m+ 1)

[m+ 1]qn

[
mn+ n

mn, n

]
q

.

This conjecture generalizes to arbitrary rectangles as follows:

Conjecture 5.5 For all a, b ≥ 0, write b = b′k and a = a′k for integers a′, b′, k ≥ 0 with gcd(a′, b′) = 1.
The equality

qca′,b′,kSa,b(q, 1/q) =
(a′ + b′)

[a′ + b′]qk

[
a+ b

a, b

]
q

holds (ca′,b′,k is a constant).
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