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Rationally smooth Schubert varieties,
inversion hyperplane arrangements, and
Peterson translation

William Slofstra∗

Department of Mathematics, UC Davis, Davis, CA, USA

Abstract. We show that an element w of a finite Weyl group W is rationally smooth if and only if the hyperplane
arrangement I(w) associated to the inversion set of w is inductively free, and the product (d1 +1) · · · (dl +1) of the
coexponents d1, . . . , dl is equal to the size of the Bruhat interval [e, w]. We also use Peterson translation of coconvex
sets to give a Shapiro-Steinberg-Kostant rule for the exponents of w.

Résumé. Nous montrons qu’un élément w d’un groupe de Weyl fini est rationnellement lisse si et seulement si
l’arrangement des hyperplans associé à l’ensemble d’inversion de w est libre, et le produit (d1 + 1) · · · (dl + 1)

des coexposants d1, . . . , dl est égal à la cardinalité de l’intervalle [e, w] pour l’ordre de Bruhat. Nous donnons une
règle de Shapiro-Steinberg-Kostant pour calculer les exposants de w en utilisant traduction de Peterson sur des sous-
ensembles coconvexes.

Keywords: rational smoothness, Schubert varieties, inversion sets, inversion arrangements, hyperplane arrangements,
Peterson translation

1 Introduction
LetR be a crystallographic root system in a Euclidean space V , and letR+ be the subset of positive roots.
If we identity V with V ∗ using the inner product, then the vectors ofR+ cut out a hyperplane arrangement
in V . It is well-known that the characteristic polynomial χ(t) of this arrangement is equal to a product∏l
i=1(t − mi), where l is the rank of R. The integers m1, . . . ,ml that appear in this factorization are

called the exponents of R, and arise in many other contexts. In particular, if W is the Weyl group of R,
and ` is the length function on W , then the Poincare polynomial P (q) =

∑
w∈W q`(w) =

∏l
i=1[mi+1]q ,

where [m]q is the q-integer (1 + q+ . . .+ qm−1). If X is the generalized flag variety of R, then P (q2) =∑
i q
i dimHi(X), so the exponents can be used to calculate the Betti numbers of X . The exponents can

also be calculated directly from R via the Shapiro-Steinberg-Kostant rule: the multiplicity of m as an
exponent of R is the number of positive roots of height m minus the number of positive roots of height
m+ 1.
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In this paper (an extended abstract of [Slo13b] and [Slo13a]), we show that the picture above extends
to any rationally smooth Schubert variety of the flag variety X . Furthermore, by combining the condition
that the inversion arrangement be free with a condition introduced by Hultman, Linusson, Shareshian, and
Sjöstrand, we can characterize the Schubert varieties which are rationally smooth.

The Schubert varieties X(w) of X are indexed by the elements w of the Weyl group W . Let ≤ denote
the Bruhat order on W , and let [e, w] denote the interval in Bruhat order between the identity e and the
element w. The Poincare polynomial of w is the polynomial

Pw(q) =
∑

x∈[e,w]

q`(x).

Note that Pw(q) has degree `(w). As with the flag variety, Pw(q2) =
∑
i q
i dimHi(X(w)). A theorem

of Carrell and Peterson states thatX(w) is rationally smooth if and only if Pw(q) is palindromic, meaning
that q`(w)Pw(q−1) = Pw(q) [Car94]. We say that w ∈ W is rationally smooth if this latter condition is
satisfied. By combining deep results of Gasharov, Billey, Billey-Postnikov, and Akyildiz-Carrell, we get
the following result:

Theorem 1.1 ([Gas98], [Bil98], [BP05], [AC12]). Let W be a finite Weyl group. An element w ∈ W is
rationally smooth if and only if

Pw(q) =

l∏
i=1

[mi + 1]q

for some collection of non-negative integers m1, . . . ,ml.

Theorem 1.1 allows us to make the following definition:

Definition 1.2. Let W be a finite Weyl group. If w ∈W is rationally smooth, then the exponents of w are
the integers m1, . . . ,ml appearing in Theorem 1.1.

Given an element w ∈W , the inversion set of w is the set

I(w) = {α ∈ R+ : w−1α ∈ R−},

where R− is the set of negative roots of R. The inversion hyperplane arrangement I(w) of w is the
hyperplane arrangement in V cut out by the elements of I(w). If w0 is the longest element of W , then
X(w0) = X , I(w0) = R+, and I(w0) is the arrangement cut out by R+ mentioned above.

Given an arrangementA = A(T ) in V cut out by a set of vectors T , let VC = V ⊗C,R = S∗VC, andQ
be the polynomial

∏
α∈T α in R cutting out A. Let Der(A) be the set of derivations of R which preserve

the ideal generated by Q. The set Der(A) is an R-module, called the module of derivations of A. The
arrangement A is said to be free if Der(A) is a free R-module. In this case, Der(A) has a homogeneous
basis, and the polynomial degrees d1, . . . , dl of the elements of this basis are called the coexponents ofA.
When A is free, a theorem of Terao [Ter81] states that the characteristic polynomial χ(A; t) of A factors
as

χ(A; t) =
∏
i

(t− di).

It is well-known that the arrangement I(w0) cut out by R+ is free, with coexponents corresponding to
the exponents of R. We can now state the main theorem:



Schubert varieties, inversion arrangements, and Peterson translation 717

Theorem 1.3. Let W be a finite Weyl group. An element w ∈ W is rationally smooth if and only
if the inversion hyperplane arrangement I(w) is free, and the product

∏
i(1 + di) of the coexponents

d1, . . . , dl is equal to the size of the Bruhat interval [e, w]. Furthermore, if w is rationally smooth then
the coexponents d1, . . . , dl are equal to the exponents of w.

When I(w) is free, the product
∏
i(1+di) = (−1)lχ(I(w);−1) is equal to the number of chambers of

I(w). The condition that the number of chambers of I(w) be equal to the size of the Bruhat interval [e, w]
has previously been studied by Hultman, Linusson, Shareshian, and Sjöstrand (type A, [HLSS09]) and
Hultman (all finite Coxeter groups, [Hul11]). Accordingly, we call this the HLSS condition (see Section
5).

As an immediate corollary of Theorem 1.3, we have:

Corollary 1.4. Let W be a finite Weyl group. If w ∈W is rationally smooth, then

χ(I(w); t) =

l∏
i=1

(t−mi),

where m1, . . . ,ml are the exponents of w.

In type A, Corollary 1.4 has previously been proved by Oh, Postnikov, and Yoo [OPY08]. Their proof
implicitly shows that I(w) is free. The general case of Corollary 1.4 answers a conjecture of Yoo [Yoo11,
Conjecture 1.7.3]. Oh, Postnikov, and Yoo also show, in type A, that w is rationally smooth if and only
if the Poincare polynomial Pw(q) is equal to the wall-crossing polynomial of I(w). This result has been
extended to all finite-type Weyl groups by Oh and Yoo [OY10], using what we will call chain Billey-
Postnikov (BP) decompositions (this is a modest variation on the terminology in [OY10]).

Inspired by [OY10], we list the rationally smooth elements in finite type which do not have a chain
BP decomposition. We also show that an element w of an arbitrary finite Coxeter group has a chain BP
decomposition if and only if I(w) has a modular coatom of a certain form. From these two results, we
show that I(w) is inductively free when w is rationally smooth, with coexponents equal to the exponents
of w. To prove that w is rationally smooth when I(w) is free and the HLSS condition holds, we use the
root-system pattern avoidance criterion for rational smoothness due to Billey and Postnikov [BP05].

The roots in R+ can be ordered by dominance order �, so α � β if and only if β − α is a sum of
simple positive roots. Given a lower order ideal T ⊂ R+ with respect to dominance order, let hi be the
number of roots in T of height i. Since T is a lower order ideal, we always have hi ≥ hi+1. Let Exp(T )
be the multiset which contains i with multiplicity hi − hi+1. One example of a lower order ideal is the
set −ΩTeX(w), where ΩTeX(w) ⊂ R− is the set of torus weights of the Zariski tangent space of X(w)
at the identity. A theorem of Akyildiz-Carrell states that when X(w) is smooth (a stronger condition than
being rationally smooth), the set Exp(−ΩTeX(w)) is precisely the set of exponents of w [AC12]. This
gives an analogue of the Shapiro-Steinberg-Kostant rule for the exponents of a smooth Schubert varietyw.
A theorem of Summers-Tymoszko [ST06] and Abe-Barakat-Cuntz-Hoge-Terao [ABC+13] states that the
arrangementA(T ) cut out by the elements of a lower order ideal T ⊂ R+ is always free, with coexponents
equal to Exp(T ). Thus when T = −ΩTeX(w) and w is smooth, we get that I(w) andA(T ) are free with
the same coexponents. In Section 6, we show that any inversion set I(w) can be transformed into a lower
order ideal T using a combinatorial version of Peterson translation. In the simply-laced types and type B,
if I(w) is free then the arrangement A(T ) is free, and I(w) and A(T ) have the same coexponents. Thus
for these types we get an analogue of the Shapiro-Steinberg-Kostant rule for calculating the exponents of
a rationally smooth element w ∈W .
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2 Chain Billey-Postnikov decompositions
Let S be the set of simple generators of W . Given a subset J ⊂ S, we let WJ denote the parabolic
subgroup generated by J , W J denote the set of minimal length left coset representatives, and JW denote
the set of minimal length right coset representatives. Every element w ∈ W can be written uniquely as
w = vu, where v ∈ W J and u ∈ WJ . This factorization is called the right parabolic decomposition of
w. Left parabolic decompositions are defined similarly. If v ∈ W J , then the Poincare polynomial of v
relative to J is the polynomial

P Jv (q) =
∑

x∈[e,v]∩WJ

q`(v).

If w = vu is the parabolic decomposition of w with respect to J ⊂ S, then multiplication gives an
injective map (

[e, v] ∩W J
)
× [e, u]→ [e, w]. (1)

If x = v1u1 is the parabolic decomposition of an element x ∈ [e, w], then v1 ≤ v. However, it is not
necessarily true that u1 ≤ u, even though u1 ≤ w and u1 ∈WJ .

Let S(w) ⊂ S denote the support set of an element w ∈ W (i.e. the set of simple generators which
appear in some reduced decomposition of w), and let DL(w) denote the left descent set.

Lemma 2.1 ([BP05], [OY10], [RS13]). Let w = vu be the parabolic decomposition of w with respect to
J . Then the following are equivalent:

(a) The map in equation (1) is surjective (hence bijective).

(b) u is the maximal element of [e, w] ∩WJ .

(c) S(v) ∩ J ⊆ DL(u).

(d) Pw(q) = P Jv (q)Pu(q).

If any of the equivalent conditions of Lemma 2.1 are satisfied, then we say that w = vu is a (right)
Billey-Postnikov (BP) decomposition with respect to J . If in addition [e, v] ∩W J is a chain, or equiv-
alently P Jv (q) = [`(v) + 1]q , then we say that w = vu is a chain BP decomposition. Left BP decom-
positions and left chain BP decompositions are defined similarly. Note that a left parabolic (resp. BP)
decomposition of w is the same as a right parabolic (resp. BP) decomposition of w−1.

Deep results of Gasharov [Gas98], Billey [Bil98], and Billey-Postnikov [BP05] imply that every ratio-
nally smooth element w ∈ W has either a left or right BP decomposition. In addition, most rationally
smooth elements have a chain BP decomposition. In this section, we list the few exceptions. To do so, we
use the following labelling for the Dynkin diagram of E8:

1

8 7 6 5 4 3 2

We write elements of E8 as products of the simple generators si, i = 1 . . . , 8, where si corresponds to
the node in the Dynkin diagram labelled by i. For this section, we let Sk = {s1, . . . , sk}, and take the
convention that E6 and E7 are embedded in E8 as WS6 and WS7 respectively. Finally, we let Jk =
Sk \ {s2}, ũk be the maximal element of WJk , and ṽk be the maximal element of W Jk

Sk
.
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Theorem 2.2. Suppose that w ∈W is a rationally smooth element of a finite Weyl group W , that `(w) ≥
2, and that w has no (left or right) chain BP decomposition. Then w is one of the following elements:

• The maximal element of Dn, n ≥ 4.

• The maximal element of En, n = 6, 7, 8.

• The element wkl = ṽlũk in E8, or its inverse w−1
kl , where 5 ≤ l < k ≤ 8.

• The maximal element of F4.

For the proof of Theorem 2.2 in the classical types, we refer to [Gas98] and [Bil98], as well as the
summary of this work in [OY10]. For the exceptional types it is possible to check Theorem 2.2 by
computer. We give a human-readable proof based on the existence theorems of [BP05] (which also use
computer verification) in [Slo13b].

Theorem 2.2 allows us to give a direct proof of Theorem 1.1. If w is rationally smooth and has a
chain BP decomposition w = vu or w = uv, then Pw(q) = [`(v) + 1]qPu(q). The element u is
also rationally smooth, and we can proceed by induction. As mentioned in the introduction, Theorem
1.1 for maximal elements is well-known. Furthermore, Pw(q) = Pw−1(q), so we only need to check
Theorem 1.1 for the elements wkl. If w̃l is the maximal element ofWSl

, then Pwkl
(q) = P Jlṽl (q)Pũk

(q) =

Pw̃l
(q)Pũk

(q)P−1
ũl

(q), where the last equality uses the fact that w̃l = ṽlũl. The Poincare polynomials
Pw̃l

(q) and Pũk
(q) are well-known, so it is easy to check that Pwkl

(q) is a product of q-integers as
desired. For example, the exponents of w87 are 1, 6, 7, 9, 11, 11, 13, 17.

3 The HLSS condition and nbc-sets
In this section we give some background on the Hultman-Linusson-Shareshian-Sjöstrand (HLSS) con-
dition which is necessary for the proof of Theorem 1.3. If s ∈ S is a simple generator, let αs denote
the corresponding simple root. Conversely, let tα ∈ W denote the reflection corresponding to a root
α ∈ R. Given an order < on a set T of vectors in V , a broken circuit is defined to be an ordered subset
{v1 < . . . < vk} of T such that there is vk+1 > vk for which {v1, . . . , vk+1} is a minimal linearly depen-
dent set in T . An nbc-set is an ordered subset of T which does not contain a broken circuit. The number
of nbc-sets is equal to the number of chambers in the arrangement A(T ). In particular, the number of
nbc-sets does not depend on the chosen order.

If s1 · · · sk is a reduced expression for an element w ∈ W , we can order the inversion set I(w) by
β1 < · · · < β`(w), where βi = s1 · · · si−1αsi . A total order on I(w) constructed is this way is called a
convex order. Let 2I(w) denote the power set of I(w). Given a convex order, we can define a surjective
map

φ : 2I(w) → [e, w] : {β1, . . . , βk} 7→ tβ1
· · · tβk

w, where β1 < · · · < βk.

Theorem 3.1 (Hultman-Linusson-Shareshian-Sjöstrand [HLSS09] ). Choose a convex order for I(w),
and let nbc(I(w)) denote the set of nbc-sets of I(w) with respect to the chosen order. Then the restriction
of φ to nbc(I(w)) is injective.

In particular, the number of nbc-sets of I(w) is less than the size of the Bruhat interval. The restriction
of φ to nbc(I(w)) will be surjective if and only if the number of nbc-sets is equal to the size of the
Bruhat interval. As mentioned in the introduction, when the restriction of φ is surjective we say that w
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satisfies the HLSS condition. A theorem of Hultman-Linusson-Shareshian-Sjöstrand (type A [HLSS09])
and Hultman (all finite Coxeter groups [Hul11]) characterizes when this condition holds in terms of the
directed Bruhat graph of [e, w]. In particular, the HLSS condition is weaker than being rationally smooth:

Theorem 3.2 ([Hul11]). If w is rationally smooth, then w satisfies the HLSS condition.

4 Chain BP decompositions and modular flats
Given an arrangement A, let L(A) denote the intersection lattice of A. By convention, the maximal
element of A is the center

⋂
H∈AH of A. A coatom is a flat of L(A) of rank one more than the center.

If X ∈ L(A), the localization of A at X is the arrangement AX containing all hyperplanes H of A
such that X ⊂ H . We let AX denote the restriction of A to X , and A \ H the deletion by H , which
is the arrangement containing all hyperplanes of A except H . An arrangement is said to be inductively
free if either (a) A contains no hyperplanes (in which case all coexponents are zero) or (b) there is some
hyperplane H ⊂ A such that A \ H is inductively free with coexponents d1, . . . , dl − 1, and AH is
inductively free with coexponents d1, . . . , dl−1. Any inductively free arrangement is free. The following
lemma gives a useful sufficient criterion for A to be inductively free.

Lemma 4.1. If X is a modular coatom of L(A), andAX is inductively free with coexponents 0,m1, . . . ,
ml−1, then A is inductively free with coexponents m1, . . . ,ml−1, ml = |A| − |AX |.

Here |A| denotes the number of hyperplanes in A. We use the following characterization of modular
coatoms:

Lemma 4.2 ([CDF+09], Lemma 3.20). Let A be an arrangement, and for each hyperplane H ∈ A let
αH be a normal vector to H . Let X ⊂ L(A) be a coatom. Then X is modular if and only if for every
distinct pair H1, H2 6∈ AX , there is H3 ∈ AX such that αH1

, αH2
, αH3

are linearly dependent.

Recall that V is the ambient Euclidean space containing R. Given J ⊂ S, let VJ ⊂ V be the subspace
spanned by {αs : s ∈ J}, and let RJ = R ∩ VJ be the root system for WJ . The following lemma is easy
to prove:

Lemma 4.3. The linear span of the inversion set I(w) in V is VS(w), where S(w) is the support set of w.
The center of the inversion hyperplane arrangement I(w) is the orthogonal complement of VS(w).

Lemma 4.3 implies that the rank of I(w) is the size of the support set S(w), so a coatom of I(w) is an
element of L(I(w)) of rank |S(w)| − 1. If w = uv is a left parabolic decomposition, then the inversion
set I(w) is the disjoint union of I(u) and uI(v), and

X =
⋂

α∈I(u)

kerα (2)

is a flat of L(I(w)). This flat has rank |S(u)|, and hence X will be a coatom if and only if |S(u)| =
|S(w)| − 1.

Theorem 4.4. Suppose that w = uv is a left parabolic decomposition with respect to J , so u ∈ WJ and
v ∈ JW . Let X ∈ L(I(w)) be defined as in Equation (2). Then w = uv is a chain BP decomposition if
and only if X is a modular coatom of L(I(w)).
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Theorem 4.4 holds for any element w ∈ W , where W is an arbitrary finite Coxeter group. However,
the proof is lengthy, and will be left for [Slo13b]. We give a shorter proof of Theorem 4.4 when w and u
both satisfy the HLSS condition, as this assumption is sufficient to prove Theorem 1.3.

Proof of Theorem 4.4. If w = uv is a chain BP decomposition, then |S(w) ∩ J | = |S(w)| − 1, and
S(v)∩ J ⊂ S(u), so |S(u)| = |S(w)| − 1. Hence we can assume throughout that X is a coatom. The set
I(u) = I(w) ∩ VJ , and w ∈ JW if and only if I(w) ∩ VJ is empty. The hyperplanes of I(w) which do
not contain X correspond precisely to the roots of I(w) in uI(v).

Suppose that w = uv is a chain BP decomposition, and that u satisfies the HLSS condition. Order
I(w) so that all the elements of I(u) come after the elements of uI(v). Every element α ∈ uI(v) is
independent from the span of I(u). Thus if {γ1, . . . , γk} is an nbc-set for I(u), then {α, γ1, . . . , γk} is
an nbc-set for I(w). Consequently

|nbc(I(w))| ≥ (1 + `(v)) · | nbc(I(u))|.

Since u satisfies the HLSS condition, |nbc(I(u))| = |[e, u]|, while |nbc(I(w))| ≤ |[e, w]|. But w = uv
is a chain BP decomposition, so

|[e, w]| = Pw(1) = (1 + `(v))|[e, u]| = (1 + `(v)) · | nbc(I(u))|.

We conclude that all nbc-sets of I(w) are either nbc-sets of I(u), or of the form {α, γ1, . . . , γk} for
α ∈ uI(v) and {γ1, . . . , γk} an nbc-set of I(u).

In particular, if α, β ∈ uI(v), α < β, then {α, β} is not an nbc-set, and hence there must be some
γ ∈ I(w), γ > β, such that α, β, γ is linearly dependent. If γ 6∈ I(u) we can repeat this process by
replacing α, β with β, γ until we find γ′ ∈ I(u) such that β, γ, γ′ is linearly dependent. This implies that
γ′ is in the span of β and γ, and since γ is in the span of α and β, we get that α, β, γ′ is linearly dependent.
By Lemma 4.2, X is modular.

Now suppose that X is modular. If we assume that u and w satisfy the HLSS condition, then

|[e, w]| = |nbc(I(w))| = |nbc(I(u))| · (|A| − |AX |+ 1) = |[e, u]| · (`(v) + 1).

On the other hand, |[e, w]| ≥ |[e, u]| · |[e, v] ∩ JW |, and |[e, v] ∩ JW | ≥ `(v) + 1. So we must have
|[e, v] ∩ JW | = `(v) + 1. But [e, v] ∩ JW contains a chain of size `(v) + 1, so [e, v] ∩ JW is a chain.
Furthermore, the multiplication map [e, u]× ([e, v]× JW )→ [e, w] will be surjective, so w = uv is a BP
decomposition.

We now prove one direction of Theorem 1.3:

Corollary 4.5. If w ∈W is rationally smooth then I(w) is inductively free, and the coexponents of I(w)
are equal to the exponents of w.

Proof. The proof is by induction on |S(w)|. Clearly the corollary is true if |S(w)| ≤ 1. Suppose w has
a chain BP decomposition. The element w is rationally smooth if and only if w−1 is rationally smooth,
and since I(w−1) = −w−1I(w), the arrangements I(w) and I(w−1) are linearly equivalent. Thus we
can assume without loss of generality that w has a left chain BP decomposition w = uv. Then u is also
rationally smooth, and Pw(q) = [`(v) + 1]qPu(q), so if the exponents of u are 0,m1, . . . ,ml−1, then
the exponents of w are m1, . . . ,ml−1, ml = `(v). The coatom X corresponding to I(u) is modular by
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Theorem 4.4, and the arrangement I(w)X is simply I(u), which by induction is inductively free with
coexponents 0,m1, . . . ,ml−1. Finally, |I(w)| − |I(w)X | = `(w) − `(u) = `(v). By Lemma 4.1, the
arrangement I(w) is inductively free with coexponents equal to m1, . . . ,ml.

This leaves the possibility that w is one of the elements listed in Theorem 2.2. If w is the maximal
element of Dn, En, or F4, then Barakat and Cuntz have shown that I(w) is inductively free [BC12].
Again, without loss of generality we only need to check that the corollary holds for the elements wkl, and
this is done on a computer (we defer to [Slo13b] for details of the computation).

5 The flattening map
Let U be a subspace of V . The intersection RU = R∩U is also a root system, with positive and negative
roots R+

U = R+ ∩U and R−U = R− ∩U respectively. Let WU be the Weyl group of RU . Note that WU is
the parabolic subgroup of W generated by the reflections tβ for β ∈ R+

U , or equivalently is the subgroup
of W which acts identically on the orthogonal complement of U in V .

A subset I ⊂ R+ is convex if α, β ∈ I , α+ β ∈ R+ implies that α+ β ∈ I . The subset I is coconvex
ifR+ \I is convex, and I is biconvex if it is both convex and coconvex. A subset I is biconvex if and only
if it is the inversion set I(w) for some w ∈ W . Since biconvexity is a linear condition, the intersection
I(w)∩U is biconvex, and hence there is an element w′ ∈WU such that I(w′) = I(w)∩U . The element
w′ is called the flattening of w, and is denoted by flU (w) [BP05]. If U = VJ , then flU (w) = u, where
w = uv is the left parabolic decomposition of W with respect to J . We use the following lemma:

Lemma 5.1 ([BB03]). If u ∈WU , w ∈W , then flU (uw) = uflU (w).

Recall from the definition of the HLSS condition that a convex order on an inversion set I(w) is an
order coming from a reduced expression for w. An arbitrary total order < on I(w) is convex if and only
if it satisfies two conditions [Pap94]:

• if α < β and α+ β ∈ R+, then α < α+ β < β, and

• if α ∈ I(w), β 6∈ I(w), and α− β ∈ R+, then α− β < α.

Because these conditions are linear, we immediately get the following lemma:

Lemma 5.2. If < is a convex order on I(w), then the induced order on I(flU (w)) = I(w) ∩ U is also
convex.

Proposition 5.3. Let U ⊂ V be any subspace. If w satisfies the HLSS condition, then so does flU (w).

Proof. The absolute length `′(w) of an element w ∈ W is the smallest integer k such that w can be
written as a product of k reflections. If w = tβ1

· · · tβm
, then clearly the fixed point space of w contains

the orthogonal complement of span{β1, . . . , βm}. A theorem of Carter states that the fixed point space of
w is equal to the orthogonal complement of span{β1, . . . , βm} if and only if `′(w) = m, and furthermore
`′(w) = m if and only if β1, . . . , βm are linearly independent [Car72].

Choose a convex order < on I(w), and take the induced convex order on I(flU (w)). If x ∈ [e,flU (w)],
we can always find u = tβ1 · · · tβm , where β1 < . . . < βm in I(flU (w)) such that x = uflU (w). To
show that flU (w) satisfies the HLSS condition, we want to show that we can take {β1 < . . . < βm} to
be an nbc-set with respect to the given convex order. Now x′ = uw is less than w in Bruhat order, and
since w satisfies the HLSS condition, we can find an nbc-set {γ1 < . . . < γm} such that x′ = yw, where
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y = tγ1 · · · tγk . Let V0 denote the fixed point space of y. Then {γ1, . . . , γm} is linearly independent,
so V0 is the orthogonal complement of span{γ1, . . . , γm}. Since yw = uw, we have y = u, so the
orthogonal complement of span{β1, . . . , βk} is contained in V0. It follows that span{γ1, . . . , γm} ⊂
span{β1, . . . , βk}, and hence γ1, . . . , γm ∈ RU . We conclude that y ∈WU .

Now {γ1 < . . . < γk} is an nbc-set in I(flU (w)), and x = uflU (w) = flU (uw) = flU (yw) = y flU (w)
by Lemma 5.1. We conclude that the map from 2I(flU (w)) → [e,flU (w)] restricts to a surjective map on
nbc(I(flU (w))), and hence flU (w) satisfies the HLSS condition.

Given an arrangement A in V and a subspace U0 of the center of A, we let A/U0 denote the quotient
arrangement in V/U0. It is easy to see that A is free if and only if A/U0 is free.

Proposition 5.4. Let U ⊂ V be any subspace. If I(w) is free, then so is I(flU (w)).

Proof. Let U⊥ be the orthogonal complement to U , and let

X =
⋂

α∈I(w)∩U

kerα ∈ L(I(w)).

Then U⊥ ⊂ X , and I(flU (w)) is isomorphic to the localization I(w)X/U
⊥. It is well-known that

localization preserves freeness (see [OT92, Theorem 4.37]), so if I(w) is free then I(w)X is free, and
consequently I(w)X/U

⊥ is free.

Let R′ be another root system with Weyl group W (R′), and let w′ ∈ W (R′). An element w ∈ W is
said to contain the pattern (w′, R′) if there is a subspace U ⊂ V such that RU is isomorphic to R′, and
flU (w) = w′ when RU is identified with R′. If this does not happen for any subspace U , then w is said to
avoid (w′, R′). This notion of root system pattern avoidance due to Billey and Postnikov generalizes the
usual notion of pattern avoidance for permutations [BP05]. We can now prove the main theorem:

Proof of Theorem 1.3. One direction of the theorem has already been proved in Corollary 4.5. Suppose
that I(w) is free, and the product of the coexponents

∏
i(1+di) is equal to the size of the Bruhat interval.

This latter condition implies that w satisfies the HLSS condition. We want to show that w is rationally
smooth. The main result of [BP05] states that w is rationally smooth if and only if w avoids a finite list of
bad patterns in the root systems R′ = A3, B3, C3, and D4. If (w′, R′) is a pattern in this list (there are 17
bad patterns, since the patterns for B3 and C3 are equivalent), then either I(w′) is not free, or w′ does not
satisfy the HLSS condition. By Propositions 5.3 and 5.4, I(flU (w)) is free and flU (w) satisfies the HLSS
condition for any subspace U ⊂ V . We conclude that w must avoid all the bad patterns, and hence w is
rationally smooth.

6 Peterson translation
In this section we assume that R has no components of type C or F4. Given α ∈ R+, an α-string is a
subset of R+ of the form {β, β + α, . . . , β + kα, where β − α 6∈ R+ and β + (k + 1)α 6∈ R+. The set
of α-strings partitions R+. The Peterson translate of a subset T ⊂ R+ compresses each α-string:

Definition 6.1. Given T ⊂ R+, α ∈ R+, we define the Peterson translate τ(T, α) of T by α as follows:

• If T is a subset of an α-string {β, β+α, β+ kα}, so T = {β+ i1α, . . . , β+ irα}, then τ(S, α) =
{β, β + α, . . . , β + (r − 1)α}.
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• For a general subset T of R+, let T =
⋃
Ti be the partition of T induced by the partition of R+

into α-strings. Then τ(T, α) =
⋃
τ(Ti, α).

This definition is equivalent to the geometric Peterson translate defined by Carrell and Kuttler [CK03].

Theorem 6.2. Let T be a coconvex set in R+, where R has no components of type C or F4. Then:

(a) The Peterson translate τ(T, α) is coconvex for every α ∈ R+.

(b) If A(T ) is free and α ∈ R+ then A(τ(T, α)) is free with the same coexponents as A(T ).

(c) If T is not a lower order ideal, then there is α ∈ T such that τ(T, α) is not equal to T .

Proof sketch. Part (c) of the theorem follows from the definition of coconvex set and lower order ideal.
We use a computer to check that parts (a) and (b) hold for the root systems R = A3, B3, and G2. The
key idea of the proof for general R is that Peterson translation is local, in the sense that if U is a subspace
of V , and α ∈ U , then τ(T, α) ∩ U = τ(T ∩ U,α), where the latter refers to Peterson translation in
RU . Since part (a) holds for all root systems of rank ≤ 3, and T ∩ U is a coconvex subset of RU for any
subspace U , we conclude that τ(T, α) ∩ U is coconvex for all subspaces U ⊆ V of rank 3 with α ∈ U .
But to check that τ(T, α) is coconvex, we only need to check that τ(T, α) ∩ U is coconvex for subspaces
U ′ ⊂ V of rank 2, so part (a) holds for all root systems.

If an arrangement A is free, then the Ziegler multiarrangement ÃH is free for any hyperplane H ∈ A
[Zie89]. Abe and Yoshinaga have recently proved a converse to Zeigler’s theorem: if ÃH is free for some
H ∈ A, then A is free if and only if AX is free for every flat X ⊂ H of corank 3.

Now given a subspace U in V spanned by elements of T , we can take the flat X ∈ L(A(T )) cut out
by the elements of U ∩ T . The corank of X is the rank of U , and X ⊂ kerα if and only if α ∈ U . If
A(T ) is free, then the Zeigler multirestriction of A(T ) to kerα is also free. Since the elements of T and
τ(T, α) only differ by translation by α, the Zeigler multirestriction of A(T ) to kerα is isomorphic to the
Zeigler multirestriction of A(τ(T, α)). Since part (b) holds for every root system of rank ≤ 3, we know
that A(τ(T, α))X = A(τ(T, α) ∩ U) is free for every corank 3 flat X ⊂ kerα. Hence we can apply Abe
and Yoshinaga’s theorem to prove that A(τ(T, α)) is free. The coexponents of A(τ(T, α)) can easily be
recovered from the coexponents of the Ziegler multirestriction, so A(τ(T, α)) has the same coexponents
as A(T ).

Peterson translation decreases the heights of roots, so part (c) of Theorem 6.2 implies that we can
repeatedly translate any coconvex set T until we get an order ideal T ′. As mentioned in the introduction,
A(T ′) is free with coexponents Exp(T ′) [ST06] [ABC+13], and Theorem 6.2 implies that if A(T ) is
free, then A(T ) and A(T ′) have the same exponents. If T = I(w) is the inversion set of a rationally
smooth element w, then T is a coconvex set and A(T ) is free, so we get an analogue of the Shapiro-
Steinberg-Kostant rule for calculating the exponents of w.

Example 6.3. Let w = s1s2s3s2 in the Weyl group of A3, where s1 and s3 are the simple generators
corresponding to the leaves of the Dynkin diagram. If αi is the simple root corresponding to si, then

I(w) = {α1, α3, α1 + α2, α1 + α2 + α3},

so I(w) is not an order ideal. But

T = τ(I(w), α1) = {α1, α2, α3, α2 + α3}
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is an order ideal, with Exp(T ) = {1, 1, 2}. Since w is rationally smooth, we conclude that the exponents
of w are 1, 1, 2.

If X(w) is smooth, it follows from [CK03] that there is a sequence of translations that sends I(w)
to the lower order ideal −ΩTeX(w), and thus we can use Theorem 6.2 to directly compare I(w) and
A(−ΩTeX(w)). In [Slo13a], Theorem 6.2 is used to give a root-system pattern avoidance criterion for
the arrangement A(T ) to be free, assuming that T is coconvex.
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