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Expanding Hall-Littlewood and related
polynomials as sums over Yamanouchi words

Austin Roberts∗

University of Washington& Seattle, WA, USA

Abstract. This paper uses the theory of dual equivalence graphs to giveexplicit Schur expansions to several families
of symmetric functions. We begin by giving a combinatorial definition of the modified Macdonald polynomials and
modified Hall-Littlewood polynomials indexed by any diagram δ ⊂ Z × Z, written asH̃δ(X; q, t) and P̃δ(X; t),
respectively. We then give an explicit Schur expansion ofP̃δ(X; t) as a sum over a subset of the Yamanouchi words,
as opposed to the expansion using the charge statistic givenin 1978 by Lascoux and Schüztenberger. We further
define the symmetric functionRγ,δ(X) as a refinement of̃Pδ and similarly describe its Schur expansion. We then
analysizeRγ,δ(X) to determine the leading term of its Schur expansion. To gainthese results, we associate each
Macdonald polynomial with a signed colored graphHδ. In the case where a subgraph ofHδ is a dual equivalence
graph, we provide the Schur expansion of its associated symmetric function, yielding several corollaries.

Résuḿe.Ce document utilise la théorie des graphes double équivalence pour donner expansions de Schur explicites à
plusieurs familles de fonctions symétriques. Nous commençons par donner une définition combinatoire des polynômes
de Macdonald modifiés et polynômes de Hall-Littlewood modifiés indexés par tout schèmaδ ⊂ Z × Z, écrit
H̃δ(X, q, t) et P̃δ(X, t), respectivement. Nous donnons ensuite une expansion de Schur explicite deP̃δ(X, t) comme
une somme sur un sous-ensemble des mots Yamanouchi, plutôtque l’expansion en utilisant la statistique de charge
donnée en 1978 par Lascoux et Schüztenberger . Nous définissons davantage la fonction symétriqueRγ,δ(X) comme
un raffinement dẽPδ et décrire même son expansion de Schur . Nous analysons puis Rγ,δ(X) afin de dèterminer
le premier terme de son expansion de Schur. pour obtenir ces résultats, nous associons chaque polynôme Macdon-
ald avec un graphique coloré signéHδ. En le cas où un sous-graphe deHδ est un graphe dual équivalence, nous
fournissons l’expansion de Schur de sa fonction symétrique associée, ce qui donne plusieurs corollaires.

Keywords: Dual Equivalence Graph, Hall-Littlewood Polynomials, Macdonald Polynomials, quasisymmetric func-
tions, symmetric functions

1 Introduction
Adriano Garsia posed the question, when can the modified Hall-Littlewood polynomialsP̃µ(X ; t) be
expanded into the Schur functions as a particular sum over the Yamanouchi words, and is there a way to
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fix the expansion when it is not? The results of this paper are in direct response to Garsia’s question. In
fact, the results we found proved to be more general than the question as originally posed.

In this paper, we will concentrate on three main families of polynomials. First, the Macdonald polyno-
mials were introduced in Macdonald (1988) and are often defined as the set ofq, t-symmetric functions
satisfying certain orthogonality and triangularity conditions. Macdonald polynomials were shown to be
Schur positive by Mark Haiman via representation-theoretic and geometric means in Haiman (2001). Mac-
donald polynomials also specialize to several well known functions, including Hall-Littlewood polynomi-
als and Jack polynomials. A combinatorial descriptions of the Schur expansion of Macdonald polynomials
remains elusive outside of some special cases.

As just noted, Macdonald polynomials specialize to Hall-Littlewood polynomials. Hall-Littlewood
polynomials, in turn, specialize to the Schur functions as well as the monomial symmetric functions.
They were first studied by Paul Hall in relation to the Hall algebra in Hall (1957), though their current
definition is due to D.E. Littlewood in Littlewood (1961). Itshould be noted that the earliest known work
on Hall-Littlewood polynomials actually dates back to the lectures of Ernst Steinitz in Steinitz (1901).
Expanding Hall-Littlewood polynomials into Schur functions can be achieved via the charge statistic, as
found in Lascoux and Schützenberger (1978), though we willpresent a new expansion in this paper.

We use the statistics defined in Haglund et al. (2005), to generalize the definition for the modified Mac-
donald polynomials̃Hµ(X ; q, t) and the modified Hall-Littlewood polynomials̃Pµ(X ; t) to any diagram
δ ⊂ Z × Z, giving the functionsH̃δ(X ; q, t) andP̃δ(X ; t). We may then writẽPδ(X ; t) in terms of the
refinement polynomialsRγ,δ(X), defined via row reading words of fillings ofδ with a fixed descent set
γ ⊂ δ. We will discuss these polynomials in the general context ofdiagrams, though the reader with
a refined taste for the specific is free to replaceδ with a partition shape. We may then write the main
theorem of this paper as follows.

Theorem 1.1. If γ andδ are any diagrams such thatγ ⊂ δ, then

P̃δ(X ; t) =
∑

λ⊢|δ|

∑

w∈Yamδ(λ)

invδ(w)=0

tmajδ(w)sλ, and Rγ,δ(X) =
∑

λ⊢|δ|

∑

w∈Yamδ(λ)

invδ(w)=0

Desδ(w)=γ

sλ.

Here, Yamδ(λ) is the subset of the Yamanouchi words with contentλ whose elements, when thought of
as row reading words of a tableau of shapeδ, never have thejth from lasti in the same pistol ofδ as the
j + 1th from lasti + 1. The above definitions and notation will be given a more thorough treatment in
Section 2.

The main tool used in the proof of Theorem 1.1 is the theory of dual equivalence graphs. Building
on work in Haiman (1992), Sami Assaf introduced the theory ofdual equivalence graphs in her Ph.D.
dissertation Assaf (2007) and later preprint Assaf (2013).The theory was further advanced by the author
in Roberts (2013), from which we will derive the definition ofdual equivalence graph used in this paper.
In these papers, a dual equivalence graph is associated to a symmetric function so that each component of
the graph corresponds to a single Schur function. Thus, the Schur expansion of said symmetric function
is described by a sum over the the set of components of the graph.

This paper will focus on dual equivalence graphs that emergeas components of a larger family of graphs.
The involutionDδ

i : Sn → Sn was first introduced in Assaf (2007) and can be used to define the edge sets
of a signed colored graphHδ with vertex setSn and vertices labeled by the signature functionσ, which
is defined via the inverse descent sets of permutations. We may then associatẽPµ(X ; t) andRγ,δ(X) to
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subgraphs ofHδ. We show that these two subgraphs are dual equivalence graphs in Theorem 3.4. The
main contribution of this paper to the theory of dual equivalence graphs can then be stated in the following
theorem.

Theorem 1.2. Let δ be a diagram of sizen, and letG = (V, σ,E) be a dual equivalence graph such
that G is a component ofHδ and G ∼= Gλ. Then there is a unique vertex ofV in SYamδ(λ), and
V ∩ SYamδ(µ) = ∅ for all µ 6= λ.

This paper is organized as follows. We begin with the necessary material from the literature in Sec-
tion 2, discussing tableaux, symmetric functions, and dualequivalence graphs. In Section 3, we show
that the signed colored graphs associated toRγ,δ(X) andP̃δ(X ; t) are dual equivalence graphs. We then
sketch the proof of Theorem 1.2 followed by Theorem 1.1. Section 4 is dedicated to further analysis
of H̃µ(X ; q, t), P̃µ(X ; t), andRγ,δ(X). After classifying whenH̃µ(X ; q, t) and P̃µ(X ; t) expand via
Yamanouchi words in Corollary 4.1 and Proposition 20, we then end this section by classifying when
Rγ,δ(X) = 0 in Proposition 4.4 and giving a description of the leading term in the Schur expansion of
Rγ,δ(X) in Proposition 4.6.

2 Preliminaries
2.1 Tableaux and Permutations
By a diagramδ, we mean a subset ofZ × Z. A partition λ is a weekly decreasing finite sequence of
nonnegative integersλ1 ≥ . . . ≥ λk ≥ 0. We write |λ| = n or λ ⊢ n if

∑
λi = n. We will give the

diagram of a partition in french notation by drawing left justified rows of boxes, whereλi is the number
of boxes in theith row, from bottom to top, with bottom left cell at the origin, as in the left diagram of
Figure 1.

Fig. 1: The diagrams for (4,3,2,2) and an arbitrary subsetδ ⊂ Z× Z.

A tableauis a function that takes each cell of a diagramδ to a positive integer. We express a tableau
visually by writing the value assigned to a cell inside of thecell. A standardtableau uses each value in
some[n] = {1, . . . , n} exactly once. Given a standard tableauT , define theshapeof T , sh(T ), to be the
shape of the underlying diagram ofT , and we define ST(δ) as the set of standard tableaux with shapeδ.
That issh(T ) = δ for all T ∈ ST(δ). A Young tableauis a tableau in which all values are required to be
increasing up columns and across rows from left to right. Astandard Young tableauis a Young tableau
that is also a standard tableau. The set of all standard Youngtableaux on diagrams of partition shapeλ is
denoted bySYT(λ), and the union ofSYT(λ) over allλ ⊢ n is denotedSYT(n). For more information,
see (Fulton, 1997, Part I), (Sagan, 2001, Ch. 3), or (Stanley, 1999, Ch. 7).

Define therow reading wordof a tableauT , denotedrw(T ), by reading across rows from left to right,
starting with the top row and working down, as in Figure 2. Therow reading word of a standard tableau is
necessarily a permutation. By apistol of a diagramδ or tableauT , we mean a set of cells, in row reading
order, between some cellc and the cell directly belowc, inclusive. We will often conflate cells of a tableau



730 Austin Roberts

4 8
3 6 9
1 2 5 7

3
2

1 4

Fig. 2: On the left, a standard tableau with row reading word 483691257. On the right, a standard tableau with row
reading word 3214.

T with indices of its row reading word. In particular, the cells of a pistol ofδ give a set of indices ofw
when thought of as the row reading word of a tableauT of shapeδ. We will refer to the indices ofw as
forming apistolof δ if they correspond to the cells of of a pistol ofδ in this fashion.

• • • • • • •
•

• •
• •

•
• • •

Fig. 3: Four pistols filled with bullets.

Given a permutationw in one-line notation, the signature ofw is a string of 1’s and−1’s, or +’s and
−’s for short, where there is a+ in the ith position if and only ifi comes beforei + 1 in w. Notice
that a word is one entry longer than its signature. The signature of a standard tableauT is defined as
σ(T ) := σ(rw(T )). As an example, the signatures of the tableaux in Figure 2 are+−−+−+−+ and
−−+, respectively.

We maystandardizea wordw with positive integer values by replacing the values inw with the values
in [n] while respecting the relative order of the values inw, treating each occurrence of the valuei as
less than any later occurrence of the valuei in w. We denote the resulting permutation asst(w). If w
is a permutation, we will sometimesunstandardizew asunst(w), which is the result of replacing each
value inw with the smallest possible positive integer while respecting the relative order just described.
Specifically, ifw is a permutation, theni andi + 1 are taken to the same value ifi occurs beforei + 1.
Otherwise,i + 1 is taken to the value that is one lager than that ofi. If w is a permutation, the signature
of w uniquely determinesunst(w), andst(unst(w)) = w.

Next, we define a useful subset ofSn. For λ ⊢ n, let Uλ be the standard tableau of shapeλ given
by assigning the numbers in[n] in order across the first row, then across the second row, and so on.
Now defineSYam(λ) := {w ∈ Sn : P (w) = Uλ}, whereP (w) is the insertion tableauas given by
the Robinson-Schensted-Knuth (R-S-K) correspondence. Call this set of permutations thestandardized
Yamanouchi words of shapeλ. We may generate SYam(λ) more directly by considering all words of
lengthn such that there are never morei+1’s thani’s while reading from right to left. We further require
thati occursλi times. Any such word is called a Yamanouchi word, and the set of such words is denoted
Yam(λ). It then follows thatSYam(λ) = {st(w) : w ∈ Yam(λ)}. Similarly,Yam(λ) = {unst(w) : w ∈
SYam(λ)}.

Definition 2.1. Let δ be any diagram. Given a wordw of lengthn, we say thatw jamsδ if there exists
somei and somej such that thejth from lasti in unst(w) shares a pistol ofδ with thej + 1th from last
i+ 1 in unst(w).
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We may then define

Yamδ(λ) := {w ∈ Yam(λ) : w does not jamδ}, (1)

SYamδ(λ) := {w ∈ SYam(λ) : w does not jamδ}, (2)

with examples of each set given in Figure 4.

Yam(3,3)(2, 2, 2) =

{
rw

(
3 2 1
3 2 1

)
, rw

(
3 2 3
1 2 1

)}
, rw

(
3 3 2

1 2 1

)
, rw

(
3 2 3
2 1 1

)
/∈ Yam(3,3)(2, 2, 2)

SYam(3,3)(2, 2, 2) =

{
rw

(
5 3 1
6 4 2

)
, rw

(
5 3 6
1 4 2

)}
, rw

(
5 6 3

1 4 2

)
, rw

(
5 3 6
4 1 2

)
/∈ SYam(3,3)(2, 2, 2)

Fig. 4: At left, the setsYam(3,3)(2, 2, 2) andSYam(3,3)(2, 2, 2). At right, examples of words inYam(2, 2, 2) and
SYam(2, 2, 2) that jam(3, 3).

Remark 2.2.

1. The usual method for listing Yamanouchi words is to begin with the number 1 and add numbers
to the left of it, as allowed by the description of Yamanouchiwords in Section 2.1. The condition
that a word not jamδ means that upon adding thej + 1th i + 1, this i + 1 may not be in a pistol
with thejth i. Similarly, we may check if the addition of each new value creates an inversion pair
or an inversion triple. That is, the process is readily integrated into the procedure for generating
Yamanouchi words.

2. For the reader that prefers permutations, we may describeSYamδ(λ) as follows. Consider the result
of right justifying the tableauUλ, and letS be the set of pairs of values in cells that are touching on a
southeasterly diagonal. Now treatw ∈ SYam(λ) as a row reading word ofδ. Thenw ∈ SYamδ(λ)
if and only if no pairs inS are in a pistol ofδ. See Figure 5 for an example.

8 9
6 7
1 2 3 4 5

8 9
6 7

1 2 3 4 5
S = {(6, 5), (8, 7)}

8 6 9
7 1 2
3 4 5

Fig. 5: From the left,U(5,2,2), followed by the result of right justifying, followed byS, followed by a tableau of shape
µ = (3, 3, 3) byw ∈ SYam((5, 2, 2)) such that the pair(8, 7) ∈ S is in a pistol ofµ. Thusw /∈ SYamµ((5, 2, 2)).

3. The set Yam(λ) is a Knuth class. The setYamδ(λ) is necessarily a subset of this class, and so can
be expressed via some set of recording tableaux of a given shape. Finding a more explicit way of
generating all such recording tableaux remains an open problem.

2.2 Symmetric Functions
We will take the unorthodox approach of defining several symmetric functions via the fundamental qua-
sisymmetric functions.
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Definition 2.3. Given any signatureσ ∈ {±1}n−1, define thefundamental quasisymmetric function
Fσ(X) ∈ Z[x1, x2, . . .] by

Fσ(X) :=
∑

i1≤...≤in
ij=ij+1⇒σj=+1

xi1 · · ·xin .

We may now use the previous definition to define the Schur functions, relying on a result of Ira Gessel.
While it is not the standard definition, it is the most functional for our purposes.

Definition 2.4. Gessel (1984)Given any partitionλ, define

sλ :=
∑

T∈SYT(λ)

Fσ(T )(X), (3)

wheresλ is a Schur function of shapeλ.

In order to define Macdonald polynomials, we first need to define some statistics, relying on the results
in Haglund et al. (2005) for our definitions. LetT be a tableau of shapeδ. Given a cellc ∈ δ, let T (c)
denote the value ofT in cell c. A descent ofT is a cellc in δ such thatT (c) > T (d), whered is the
cell directly below and adjacent toc. We denote the set of descents ofT as Des(T ). If, in addition,w is
the row reading word ofT , we will say thatc is adescent ofw in δ, taking care to differentiate it from
other common meanings of the word descent. Given a cellc of δ, define leg(c) as the number of cells in
δ strictly above and in the same column asc. We may then define

majδ(w) := maj(T ) := majδ(Des(T )) :=
∑

c∈Des(T )

1 + leg(c). (4)

Let c, d, ande be cells ofδ in row reading order. Thenc, d, ande form a triple if c andd are in the
same row ande is the cell immediately belowc, as in Figure 6. If, in addition,T is a tableau of shape
δ, thenc, d, ande form an inversion tripleof T if T (e) < T (d) < T (c), T (c) ≤ T (e) < T (d), or
T (d) < T (c) ≤ T (e). As a mnemonic, in each sequence of inequalities, the three cells are presented in a
counterclockwise order. If eitherc or e is not inδ, then the remaining two cells form aninversion pairof
T if eitherT (c) > T (d) orT (d) > T (e). See Figure 6 for an example of each of these types of inversions.
We may now define the final statistic as

invδ(w) := inv(T ) := |{inversion triples ofT}|+ |{inversion pairs ofT}|. (5)

c d

e

1 2
1

2 1
2

3 2
1

2 1
×

× 2
1

Fig. 6: From left, a generic triple, three inversion triples, and then two inversion pairs, where× denotes the lack of a
cell.

We are now able to define a generalized version of the modified Macdonald polynomials and Hall-
Littlewood polynomials (respectively) as,

H̃δ(X ; q, t) :=
∑

T∈ST(δ)

qinv(T )tmaj(T )Fσ(T), P̃δ(X ; t) := H̃δ(X ; 0, t) =
∑

T∈ST(δ)
inv(T )=0

tmaj(T )Fσ(T ).

(6)
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Further, if we letγ ⊂ δ, we may define

Rγ,δ(X) =
∑

T∈ST(δ)
inv(T )=0
Des(T )=γ

Fσ(T ). (7)

It follows immediately from these definitions that

P̃δ(X ; t) =
∑

γ⊂δ

tmajδ(γ)Rγ,δ(X). (8)

2.3 Dual Equivalence Graphs

Definition 2.5 (Haiman (1992)). Given a permutation inSn expressed in one-line notation, define an
elementary dual equivalenceas an involutiondi that interchanges the valuesi− 1, i, andi+ 1 as

di(. . . i . . . i− 1 . . . i+ 1 . . .) = (. . . i+ 1 . . . i− 1 . . . i . . .), (9)

di(. . . i− 1 . . . i+ 1 . . . i . . .) = (. . . i . . . i+ 1 . . . i− 1 . . .), (10)

and that acts as the identity ifi occurs betweeni − 1 andi + 1. Two words aredual equivalent if one
may be transformed into the other by successive elementary dual equivalences.

For example, 21345 is dual equivalent to 41235 becaused3(d2(21345)) = d3(31245) = 41235.
We may also letdi act on the entries of a tableau by applying them to the row reading word. It is not

hard to check that the result is again a tableau of the same shape. The transitivity of this action is described
in the following theorem.

Theorem 2.6(Haiman (1992), Prop. 2.4). Two standard Young tableaux on partition shapes are dual
equivalent if and only if they have the same shape.

By definition,di is an involution, and so we define a graph on standard Young tableaux by letting each
nontrivial orbit of di define an edge colored byi. By Theorem 2.6, the graph onSYT(n) with edges
labeled by1 < i < n has connected components with vertices inSYT(λ) for eachλ ⊢ n. We may further
label each vertex with its signature to create astandard dual equivalence graphthat we will denoteGλ.
See Figure 7 for an example.

1 2 3 4 5
++++

3 4
1 2 5
+−++

2

3

2 4
1 3 5
−+−+

4 2 5
1 3 4
−++−

2 3 5
1 2 4
+−+−

3

4

4 5
1 2 3
++−+

2
1 3 4 5
−+++

2 3
1 2 4 5
+−++

3 4
1 2 3 5
++−+

4 5
1 2 3 4
+++−

Fig. 7: Some standard dual equivalence graphs onλ ⊢ 5.
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Definition 2.4 and Theorem 2.6 determine the connection between Schur functions and dual equivalence
graphs as highlighted in (Assaf, 2013, Cor. 3.10). Given anystandard dual equivalence graphGλ =
(V, σ,E), ∑

v∈V

Fσ(v) = sλ. (11)

Here,Gλ is an example of the following broader class of graphs.

Definition 2.7. A signed colored graphconsists of the following data:

1. a finite vertex setV ,
2. a signature functionσ : V → {±1}n−1 for some fixed positive integern,
3. a collectionEi of unordered pairs of distinct vertices inV for eachi ∈ {2, . . . , n − 1} and the

same positive integern.

We denote a signed colored graph byG = (V, σ,E2 ∪ · · · ∪ En−1) or simplyG = (V, σ,E).

In order to give an abstract definition of dual equivalence graphs, we will need definitions for isomor-
phisms and restrictions.

Definition 2.8. Given two signed colored graphsG(V, σ,E) andH(V ′, σ′, E′), anisomorphismφ : G → H
is a bijective map fromV to V ′ such that bothφ andφ−1 preserve colored edges and signatures.

Definition 2.9. Given a signed colored graphG = (V, σ,E) and an interval of nonnegative integersI,
define the restriction ofG to I, denotedG|I , as the signed colored graphH = (V, σ′, E′), where

1. σ′(v)i = σ(v)min(I)+i−1 wheni ∈ {1, . . . , |I| − 1}, andσmin(I)+i−1 is defined.
2. E′

i = Emin(I)+i−1 wheni ∈ {2, 3, . . . , |I| − 1}, andEmin(I)+i−1 is defined.

We now proceed to the definition of a dual equivalence graph. Here, we use a result of Roberts (2013)
as our definition. For more general definitions, see Assaf (2013) and Roberts (2013).

Definition 2.10. A signed colored graphG = (V, σ,E) is a dual equivalence graphif the following
properties hold:
(P1): If I is any interval of integers with|I| = 6, thenG|I ∼= Gλ for some partitionλ.
(P2): If{v, w} ∈ Ei and{w, x} ∈ Ej for some|i−j| > 2, then there existsy ∈ V such that{v, y} ∈ Ej

and{x, y} ∈ Ei.

Theorem 2.11(Assaf (2013), Thm. 3.9). A connected component of a signed colored graph is a dual
equivalence graph if and only if it is isomorphic to a uniqueGλ.

Next, we will associate to every Macdonald polynomial and Hall-Littlewood polynomial a signed
colored graph. To do this, we need to define an involutionDδ

i to provide the edge sets of a signed colored
graph, as defined originally in Assaf (2013). First letd̃i : Sn → Sn be the involution that permutes the
valuesi− 1, i, andi+ 1 as

d̃i(. . . i . . . i− 1 . . . i+ 1 . . .) = (. . . i− 1 . . . i+ 1 . . . i . . .), (12)

d̃i(. . . i . . . i+ 1 . . . i− 1 . . .) = (. . . i+ 1 . . . i− 1 . . . i . . .), (13)

and that acts as the identity ifi occurs betweeni−1 andi+1. For example,̃d3 ◦ d̃2(4123) = d̃3(4123) =
3142.
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We now define the desired involution. Given a wordw of lengthn and a diagramδ of sizen,

Dδ
i (w) :=

{
d̃i(w) if the valuesi− 1, i, andi + 1 occur in a pistol ofδ.
di(w) otherwise.

(14)

As an example, we may takew = 534826179 andδ as in Figure 8. ThenDδ
3(w) = d̃3(w) = 542836179

andDδ
5(w) = d5(w) = 634825179.

5 3 4
8 2 6

1 7
9

5 4 2
8 3 6

1 7
9

6 3 4
8 2 5

1 7
9

Fig. 8: Three standard tableaux of shapeδ. At left, a tableau with row wordw = 534826179 followed byDδ
3(w)

and thenDδ
5(w).

Given someδ of sizen, we may then define the signed colored graphHδ = (V, σ,E) with vertex set
V = Sn and edge setsEi defined via the nontrivial orbits ofDδ

i . It is readily shown that the action ofDδ
i

onw preserves invδ(w), Desδ(w), and majδ(w). Thus, these functions are all constant on components of
Hδ. We may studỹPδ(X ; t) by restricting our attention to components ofHδ where invδ is zero, as in the
following definition.

Definition 2.12. Let γ andδ be diagrams such thatγ ⊂ δ and|δ| = n. DefineRγ,δ = (V, σ,E) as the
signed colored graph withV = {w ∈ Sn : invδ(w) = 0,Desδ(w) = γ} andEi defined via the nontrivial
orbits ofDδ

i onV . DefinePδ = (V ′, σ, E′) as the signed colored graph withV ′ = {w ∈ Sn : invδ(w) =
0} andE′

i defined via the nontrivial orbits ofDδ
i onV ′.

Notice thatRγ,δ = (V, σ,E) is a subgraph ofPδ = (V ′, σ, E′), which in turn is a subgraph of
Hδ = (V ′′, σ, E′′), each respectively comprised of connected components inHδ, and that

Rγ,δ(X) =
∑

v∈V Fσ(v), (15)

P̃δ(X ; t) =
∑

v∈V ′ tmajδ(v)Fσ(v), (16)

H̃δ(X ; q, t) =
∑

v∈V ′′ qinvδ(v)tmajδ(v)Fσ(v). (17)

3 Dual Equivalence graphs in Hδ

In this section we develop the key results of the paper. The following lemma demonstrates the importance
of the set SYamδ(λ) in the study of the graphHδ and is crucial to the proof of Theorem 1.2.

Lemma 3.1. Let C andD be connected components ofHγ andHδ, respectively. Further suppose that
there exists an isomorphismφ : C → D, and letw be a vertex ofC. Thenw ∈ SYamγ(λ) if and only if
φ(w) ∈ SYamδ(λ), for all partitions shapesλ.

Proof of Theorem 1.2:By Theorem2.11, we may assume the existence of an isomorphismφ : G → Gµ

for someµ ⊢ n. By conflating tableaux inGµ with their row reading words, we may considerGµ as
a component ofHγ , whereγ is the subset of the vertical-axis{(0, i) ∈ Z × Z : 0 ≤ i < n}. Hence,
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SYamγ(λ) = SYam(λ). The unique standardized Yamanouchi word inGλ is the row reading word ofUλ.
Applying Lemma 3.1, there is a unique permutation inV ∩ SYamδ(λ) corresponding toφ−1(Uλ). Also
by Lemma 3.1,V ∩ SYamδ(µ) = ∅ whenµ 6= λ.

Corollary 3.2. If G = (V, σ,E) is a dual equivalence graph contained inHδ, then

∑

v∈V

Fσ(v)(X) =
∑

λ⊢n

|V ∩ SYamδ(λ)| · sλ (18)

Remark 3.3. For each partitionλ and diagramδ, there exists a setSδ defined as the intersection of
SYamδ(λ) with the set of permutations of length|δ| whose component inHδ is a dual equivalence graph.
That is, ifG = (V, σ,E) is a component ofHδ, then|V ∩ Sδ(λ)| = 1 if G ∼= Gλ, and|V ∩ Sδ(λ)| = 0
otherwise. Finding a more direct way to generateSδ(λ), however, is an open problem.

In order to apply the theory of dual equivalence graphs toP̃µ(X ; t) andRγ,δ(X), we need the fol-
lowing important result about their associated signed colored graphs.

Theorem 3.4. If γ and δ are any diagrams such thatγ ⊂ δ, thenRγ,δ andPδ are dual equivalence
graphs.

Proof: We only sketch the proof here. Using Definition 2.10, it suffices to only considerδ such that
|δ| = 6. Since the action ofDδ

i is determined by the pistols ofδ considered as subsets of the indices of
permutations, we may reduce our consideration to the finitely many ways thatδ may define these subsets
of indices. We may then use a computer to classify a finite listof components ofHδ that are not dual
equivalence graphs. By analyzing this finite list, it is straight forward to show that ifv is a vertex of a
component ofHδ that is not a dual equivalence graph, then invδ(v) > 0. Hence,v is not a vertex ofPδ.

Proof of Theorem 1.1: ExpressingRγ,δ(X) andP̃δ(X ; t) as in (15) and (16), the result follows from
(11), Theorems 3.4, Corollary 3.2, and the fact that the majδ statistic is constant on components ofPδ.

We conclude this section with a discussion of some computational considerations. Using the results
of this paper, we may computẽPµ(X ; t) by making a tree — proceeding as mentioned in Part 1 of
Remark 2.2 by fillingµ in reverse row reading order and checking that there are no inversions, that we
still have a Yamanouchi word, and that no pistol is jammed with the addition of each new entry. In
fact, it is readily shown that upon filling the bottom three rows, such a tableau must be one of the three
possibilities in Figure 9. That is, the bottom row must be all1’s, the second row starts withk many 2’s
followed by all 1’s, and then the third row hasj ≤ k many 3’s followed by one of three options. Either
the rest of the third row is 1’s, there or arek − j 1’s followed by all 2’s, or the rest may be all 2’s if the
result is still a Yamanouchi word. It is, in theory, possibleto precompute more rows in this fashion at the
expense of more complicated rules. In this way, we may skip the creation of the beginning of the tree, and
save computation time.

3 3 1 1 1 1 1
2 2 2 2 1 1 1
1 1 1 1 1 1 1

3 3 1 1 2 2 2 2
2 2 2 2 1 1 1 1
1 1 1 1 1 1 1 1

3 3 2 2 2 2 2
2 2 2 2 1 1 1
1 1 1 1 1 1 1

Fig. 9: The three types of tableaux of the first three rows ofµ when generating̃Pµ(X; t).
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It should be noted that the tree described above may still have dead ends. In that respect, a key
open problem is to find an algorithm that avoids any dead ends in order to maximize efficiency. Such
an algorithm was provided for the Littlewood-Richardson coefficients in Remmel and Whitney (1984),
suggesting that it may be possible in this case as well.

4 Further Applications to Symmetric Functions
In this section, we build on the results of Section 3. In particular, we can now explicitly answer the ques-
tion of Garsia mentioned in Section 1. We also provide the analogous result for Macdonald polynomials.
In the following two results, notice that we have shifted ourfocus from Yamδ(λ) to Yam(λ).

Corollary 4.1. Given a partitionµ, the following equality holds if and only ifµ does not contain(3, 3, 3)
as a subdiagram.

P̃µ(X ; t) =
∑

λ⊢|µ|

∑

w∈Yam(λ)
invµ(w)=0

tmajµ(w)sλ. (19)

Proposition 4.2. Given a partitionµ, the following equality holds if and only ifµ does not contain(4) or
(3, 3) as a subdiagram.

H̃µ(X ; q, t) =
∑

λ⊢|µ|

∑

w∈Yam(λ)

qinvµ(w)tmajµ(w)sλ. (20)

We now turn our attention toRγ,δ(X). In particular, we analyze whenRγ,δ(X) = 0 and find the
leading term of the Schur expansion ofRγ,δ(X). In order to do this, we will need the following definition.

Definition 4.3. Given diagramsγ andδ such thatγ ⊂ δ, γ is afillable subsetof δ if the following hold.

1. If (x, y) ∈ γ, then(x, y − 1) ∈ δ,
2. If x1 < x2 are any integers andI is any integer interval such that(x1, I \ max(I)) ⊂ δ and

(x2,min(I)) /∈ γ, then|γ ∩ (x1, I)| ≥ |γ ∩ (x2, I)|.

•
•

• •

• •
•

• •

•
• •
•

•
• •
• •

• •
• •

Fig. 10: Diagrams with bullets representingγ and boxes representingδ. From the left, three examples whereγ is not
a fillable subset ofδ, then three examples whereγ is a fillable subset ofδ.

Proposition 4.4. Given diagramsγ andδ, thenRγ,δ(X) = 0 if and only ifγ is not a fillable subset ofδ.

Definition 4.5. Given diagramsγ andδ such thatγ is a fillable subset ofδ, define theleading Yamanouchi
word of Rγ,δ(X) as the row reading word of the tableau of shapeδ achieved by placing a 1 in all cells in
δ \ γ and defining the values inγ as one larger than the the value in the cell immediately belowit in δ.

Notice that the leading Yamanouchi word ofRγ,δ(X) is indeed a Yamanouchi word. We can then use the
leading Yamanouchi word to provide the leading term in the expansion ofRγ,δ(X) into Schur functions.
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Proposition 4.6. Given diagramsγ andδ such thatγ be a fillable subset ofδ, letRγ,δ(X) =
∑

cλsλ for
some nonzero integerscλ, and letw ∈ Yam(µ) be the leading Yamanouchi word ofRγ,δ(X), then

1. cλ = 1 if λ = µ,
2. cλ = 0 if λ > µ in lexicographic order.
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