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Gallery Posets of Supersolvable
Arrangements

Thomas McConville∗

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Abstract. We introduce a poset structure on the reduced galleries in a supersolvable arrangement of hyperplanes.
In particular, for Coxeter groups of type A or B, we construct a poset of reduced words for the longest element
whose Hasse diagram is the graph of reduced words. Using Rambau’s Suspension Lemma, we show that these posets
are homotopy equivalent to spheres. We furthermore conjecture that its intervals are either homotopy equivalent to
spheres or are contractible. One may view this as a analogue of a result of Edelman and Walker on the homotopy type
of intervals of a poset of chambers of a hyperplane arrangement.

Résumé. Nous introduisons une structure d’ensemble ordonné sur les galeries réduites dans un arrangement d’hyperplans
supersolvable. En particulier, pour les groupes de Coxeter de type A ou B, nous construisons un ensemble ordonné
de mots réduits pour l’élément le plus long dont le diagramme de Hasse est le graphe de mots réduits. En utilisant le
lemme de suspension de Rambau, nous montrons que ces ensembles ordonnés sont homotopiquement équivalents a
des sphères. Nous conjecturons en outre que ses intervalles sont soit homotopiquement équivalents a des sphères ou
bien ils sont contractile. On peut considérer cela comme un analogue d’un résultat d’Edelman et Walker sur le type
d’homotopie d’intervalles d’un ensemble ordonné des chambres d’un arrangement d’hyperplans.

Keywords: Suspension Lemma, Supersolvable Arrangement, Higher Bruhat, Generalized Baues Problem

1 Introduction
This article is about the topology of some posets associated to real hyperplane arrangements. Throughout,
the topology attached to a poset P is that of its order complex ∆(P ), the simplicial complex of chains
x1 < x2 < · · · < xk of P . If P is a bounded poset, its proper part P is the same poset with those bounds
removed.

A reduced gallery of a real central arrangement A is a sequence of chambers c0, c1, . . . , cm such that
adjacent chambers are separated by exactly one hyperplane, and c0 and cm are separated by m hyper-
planes. For any codimension 2 subspace X ∈ L(A), a gallery between opposite chambers c0,−c0 can
cross the hyperplanes containing X in two ways. We introduce a poset R(A, r0) of reduced galleries
r ordered by single-step inclusion of sets of codimension 2 subspaces separating r from r0. The Hasse
diagram of this poset is the usual graph of reduced galleries. An example is shown in Figure 1
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Fig. 1: (Left) An arrangement A of three lines in R2. (Center) The poset of chambers of A with base chamber c0.
(Right) The poset of galleries with base gallery r0.

When A is supersolvable and r0 is incident to a modular flag, the poset was essentially shown to be
bounded by Reiner and Roichman [10]; see Section 4 for details. In this situation, we prove R(A, r0) is
homotopy equivalent to a (rkA− 3)-sphere.

For a face F and a chamber c of A, there is a unique chamber F ◦ c incident to F that is closest to c. A
cellular string is a sequence of faces (X1, X2, . . . , Xm) in L(A) such that X1 ◦ c0 = c0, Xm ◦ (−c0) =
−c0 and

Xi ◦ (−c0) = Xi+1 ◦ c0 (∀i).

The poset ω(A, c0) of cellular strings is ordered by refinement. Our main result is the following.

Theorem 1.1 Let A be a real supersolvable hyperplane arrangement with chamber c0 and gallery r0
both incident to a modular flag. Let x = (X1, X2, . . . , Xm) ∈ ω(A, c0) be a cellular string of A. The set
of galleries incident to x forms a closed interval of R(A, r0) whose proper part is homotopy equivalent
to S

∑m
i=1 codim(Xi)−m−2.

We conjecture that all other intervals are contractible.
The motivation for this work primarily comes from two sources: the parameterization of noncon-

tractible intervals in the chamber poset of an arrangement A proved by Edelman and Walker [7], and
a conjecture by Reiner on the noncontractible intervals of the Higher Bruhat orders [11]. We hope to
derive new instances of the generalized Baues problem posed by Billera, Kapranov, and Sturmfels via
these posets [2]. We summarize the relevant results below.

Two posets naturally arise from a rank d real central hyperplane arrangement A: the poset of faces
L(A) ordered by reverse inclusion and the poset of chambers P(A, c0) ordered by separation from some
base chamber c0. These posets are reviewed in Section 3. Restricting A to the unit sphere gives a cellular
decomposition of Sd−1. This implies L(A) is homeomorphic to a (d − 1)-sphere. In [7], Edelman and
Walker use a recursive coatom ordering on an auxiliary poset to prove P(A, c0) is homotopy equivalent
to Sd−2. Moreover, they show the noncontractible open intervals of P are parameterized by the elements
of L.

Theorem 1.2 (Edelman, Walker [7]) LetA be a real hyperplane arrangement with base chamber c0. The
set of chambers incident to a face F ∈ L(A) forms a closed interval [c, d] in P(A, c0) such that (c, d) is
homotopy equivalent to ScodimF−2. Every other open interval of P(A, c0) is contractible
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This theorem establishes an isomorphism between L and the poset Intnonc(P) of noncontractible in-
tervals of P , ordered by inclusion. For an arbitrary bounded poset P , the full interval poset Int(P ) has
a deformation retract to its subposet of proper noncontractible intervals. Furthermore, Int(P ) is homeo-
morphic to the suspension of P . Thus, EW’s theorem may be viewed as an explanation of the homotopy
equivalence

L(A) ' susp(P(A, c0)).

In [5], Björner applied Theorem 1.2 to compute the homotopy type of a poset ω(A, c0) of cellular
strings of A.

Theorem 1.3 (Björner [5]) The poset of cellular strings ω(A, c0) of a rank d arrangement A with base
chamber c0 is homotopy equivalent to Sd−2.

Björner’s proof uses the identification of ω(A, c0) with the poset ∆H(P(A, c0)) of chains 0̂ = x0 <
x1 < · · · < xm = 1̂ of P for which each interval (xi, xi+1) is noncontractible. Once again a general
argument shows that ∆H(P) is homotopy equivalent to ∆(P).

Theorem 1.3 as stated above is a special case of the theorem of Billera, Kapranov, and Sturmfels on
the homotopy type of a poset of cellular strings in a polytope [2]. However, Björner’s argument has a
wide-reaching generalization to the cellular string posets of duals of shellable CW-spheres [1].

The paper is structured as follows. The above theorems are interpreted for Coxeter groups in Section
2. Some notation for hyperplane arrangements is given in Section 3. In Section 4 we define the poset
of galleries for supersolvable arrangements. In Section 5, we recall the Suspension Lemma and use it to
compute the homotopy type of the proper part of R. Theorem 1.1 is proved in Section 6. In Section 7,
we draw a parallel between the poset of galleries for supersolvable arrangements and the Higher Bruhat
orders. This connection will be developed further in future work.

2 Coxeter Groups
A finite Coxeter system (W,S) is a finite group W with a presentation of the form

W = 〈S | (st)mst = 1 (s, t ∈ S)〉

where mst = 1 if s = t and mst = mts ∈ Z≥2 otherwise. For example, if S = {s1, . . . , sn−1} with
msi,sj = 3 when |i − j| = 1 and msi,sj = 2 when |i − j| > 1, then W is isomorphic to the symmetric
group Sn.

A parabolic subsystem (WJ , J) is a subgroup WJ generated by a subset J ⊆ S. The collection of left
cosets of parabolic subgroups

L(W ) = {wWJ | w ∈W, J ⊆ S}

may be viewed as a poset ordered by inclusion.
Let T = {wsw−1 | s ∈ S, w ∈ W} denote the set of reflections of W . Define the length l(w) of

w ∈ W to be the smallest value for which w equals s1 · · · sl(w) for some si ∈ S. The (right) inversion
set Inv(w) of w ∈ W is {t ∈ T | l(wt) < l(w)}. The weak Bruhat order P(W ) is the set W ordered by
inclusion of inversion sets; see Figure 2.

An interesting relationship between the posets P and L was discovered by Björner.
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Fig. 2: (Left) The weak order for the type A2 Coxeter group. (Right) The parabolic cosets ordered by inclusion.

Theorem 2.1 (Björner [4]) Let (W,S) be a finite Coxeter system. The coset wWJ ∈ L(W ) forms
a closed interval [x, y] of P(W ) such that (x, y) is homotopy equivalent to S|J|−2. Every other open
interval of P(W ) is contractible.

Any finite Coxeter group has an associated reflection arrangement A and canonical isomorphisms
L(A) ∼= L(W ) and P(A, c0) ∼= P(W ) for any choice of base chamber c0. Thus, Theorem 2.1 is a
direct consequence of Theorem 1.2.

In this article, we describe a lifting of Theorem 2.1 to the intervals of a poset of galleries in a super-
solvable hyperplane arrangement. We begin by describing the Coxeter case.

For a finite Coxeter system (W,S) there is a unique element w0 ∈ W with Inv(w0) = T . Let R(W )
denote the set of reduced words s1s2 · · · sl(w0) for w0. The set R(W ) forms a graph where two reduced
words are adjacent if they differ in a single braid move:

s1 · · · sk(stst · · · )sk+mst+1 · · · sl ←→ s1 · · · sk(tsts · · · )sk+mst+1 · · · sl.

The connectivity ofR(W ) for arbitrary finite Coxeter groups was originally shown by Tits. Athanasiadis,
Edelman, and Reiner showed this graph is (|S| − 1)-connected in [1].

In [10], Reiner and Roichman give a lower bound for the diameter of R(W ) by defining a set-valued
metric on the graph of reduced words. When W is a Coxeter group of type A or B they show this lower
bound is achieved by constructing a bounded graded poset whose Hasse diagram is an orientation of
R(W ). This construction is recalled in Section 4; see Example 4.1. For the remainder of this article
R(W ) will denote this poset.

For J ⊆ S, let w0(J) denote the longest element of the subsystem (WJ , J). The poset of cellular
strings ω(W ) is the set of words (J1, J2, . . . , Jm) where ∅ 6= Ji ⊆ S for all i and

w0(S) = w0(J1)w0(J2) · · ·w0(Jm), l(w0(S)) =

m∑
i=1

l(w0(Ji)).

The cellular strings are ordered by refinement, i.e. (I1, . . . , Il) ≤ (J1, . . . , Jm) if there is are indices
0 = α1 < · · · < αt < l such that

w0(Jk) = w0(Iαk+1)w0(Iαk+2) · · ·w0(Iαk+1
) l(w0(Jk)) =

αk+1−αk∑
i=1

l(w0(Iαk+i)).
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Fig. 3: (Left) R(W ) for type A2. (Center) R(W ) for type A3. (Right) A bad geodesic order on graph of reduced
words for the longest element in type A3.

Theorem 2.2 Let (W,S) be a Coxeter system of type A or B. The set of reduced words for w0 refining a
cellular string (J1, . . . , Jm) forms an interval [x, y] in R(W ) such that (x, y) is homotopy equivalent to
S
∑

i |Ji|−m−2.

We conjecture that these are the only noncontractible intervals ofR(W ).
The weak order on W may be defined by setting u ≤ v if there exists a geodesic from e to v passing

through u in the Cayley graph of W with respect to the generating set S. If the base point in the geodesic
order is changed from e to some other element ofW , an isomorphic poset is obtained sinceW acts simply
transitively on its Cayley graph.

Similarly, R(W ) may be defined by fixing a reduced expression r0 and ordering by geodesics in the
graph of reduced words for w0. However, different choices of r0 yield nonisomorphic posets, many of
which fail to be bounded or fail to satisfy Theorem 2.2, even in types A and B; see Figure 3. For type A,
the base word is

r0 = s1(s2s1)(s3s2s1) · · · ,

while in type B, the base is
r0 = s0(s1s0s1)(s2s1s0s1s2) · · · .

At this time it is unclear whether a good choice of r0 exists for every finite Coxeter group.

3 Hyperplane Arrangements
Let A be an oriented real central hyperplane arrangement in Rd. Its lattice of flats L(A) consists of the
subspaces H1 ∩ · · · ∩Hk for {Hj}kj=1 ⊆ A ordered by reverse inclusion. The rank i elements Li(A) are
the subspaces of codimension i.

Each hyperplane H in A divides Rd into three connected sets H+, H−, H0, where H+ is the positive
halfspace defined by H , H− = −H+, and H0 = H . The face poset L(A) is the set of nonempty cells
of the form

⋂
H∈AH

ε(H) where ε is a sign vector in {0,+,−}A, ordered by reverse inclusion of their
closures. If F is a face defined by εF ∈ {0,+,−}A, set F 0 = {H ∈ A | εF (H) = 0}. The map F 7→ F 0
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is an order-preserving map L(A)→ L(A). The set L(A) is closed under ◦ where

εF◦G(H) =

{
εF (H) if εF (H) 6= 0

εG(H) else
.

The chambers ofA are the d-dimensional faces in L(A). The L1-separation set L1(c, d) of two cham-
bers c, d is the set of hyperplanes separating c and d. If c is fixed then d is determined by L1(c, d) by
reversing the halfspaces of L1(c, d) in the sign vector for c.

Fixing a base chamber c0, the poset of chambers P(A, c0) is the set of chambers ofA ordered by c ≤ d
if L1(c0, c) ⊆ L1(c0, d).

4 Gallery poset
A gallery is a sequence of chambers c0, c1, . . . , cm such that

∅ = L1(c0, c0) ⊂ L1(c0, c1) ⊂ L1(c0, c2) ⊂ · · · ⊂ L1(c0, cm) |L1(c0, ci) \ L1(c0, ci−1)| = 1.

Unless otherwise specified, we will assume the gallery connects an antipodal pair of chambers c0,−c0.
For a fixed base chamber c0, a gallery is determined by the order in which the hyperplanes are crossed.
The set of galleries admits a free involution r 7→ −r when |A| > 1, where −r is the gallery from c0 to
−c0 which crosses the hyperplanes of A in the reverse order of r.

For a subspace X ∈ L(A), the localization AX of A at X is {H ∈ A | H ⊇ X}. If c is a chamber
of A, set cX to be the chamber of AX containing c. If r = c0, c1, . . . ,−c0 is a gallery, then rX is the
sequence (c0)X , (c1)X , . . . , (−c0)X with repetitions removed, which is a gallery of AX .

The L2-separation set L2(r, r′) is {X ∈ L2(A) | rX 6= r′X}. Given a base gallery r0, R(A, r0) is
the poset of galleries between c0 and −c0 ordered by single-step inclusion of the sets L2(r0, ·). That is,
r ≤ r′ if there exists a sequence r = r1, r2, . . . , rm = r′ such that

L2(r0, r1) ⊂ L2(r0, r2) ⊂ · · · ⊂ L2(r0, rm) |L2(r0, ri) \ L2(r0, ri−1)| = 1.

Any gallery r is determined by its L2-separation set L2(r0, r) from some fixed gallery r0. This follows
since the relative order of any two hyperplanes H,H ′ in the total order on A induced by r is the same as
their relative order in rH∩H′ .

The Hasse diagram ofR(A, r0) is an orientation of the graph of reduced galleries from c0 to−c0 inA.
One of the reasons for studying the posetR is to deduce properties of this graph from those ofR.

A flat X ∈ L(A) of a hyperplane arrangement A is modular if X + Y ∈ L(A) for all Y ∈ L(A).
A hyperplane arrangement A is supersolvable if its lattice of flats L(A) contains a maximal chain of
modular elements Rd = X0 < X1 < · · · < Xd = 0, Xi ∈ Li(A). For our purposes, it will be useful to
define a maximal chain of faces F0 < F1 < · · · < Fd = 0, Fi ∈ Li(A) to be a modular chain if the flats
F 0
i are all modular.
A gallery r from c to d is incident to a face F ∈ L(A) if r contains the chambers F ◦ c and F ◦ d. A

gallery is incident to a subspace X ∈ L(A) if it is incident to some face spanning X . We say a gallery r
is incident to a modular flag c0 = F0 < F1 < · · · < Fd = 0 if it contains Fi ◦ c0 and Fi ◦ (−c0) for all i.
Intuitively this means r first crosses F1, then wraps around F2, then around F3, and so on.
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Example 4.1 The type An−1 reflection arrangement A is the set

{Hij = ker(xi − xj) ⊂ Rn}1≤i<j≤n.

Its intersection lattice L(A) is in natural correspondence with set partitions of [n]:

{B1, B2, . . . , Bm} ←→
m⋂
k=1

⋂
{i,j}⊂Bk

Hij ∈ L(A).

Similarly, the face poset L(A) is in correspondence with set compositions of [n]:

B = (B1, B2, . . . , Bm) ←→
⋂

1≤i<j≤n

H
εB(i,j)
ij ∈ L(A),

where

εB(i, j) =


0 if B(i) = B(j)

− if B(i) < B(j)

+ if B(i) > B(j)

.

The face poset L(A) contains a modular chain

(1, 2, 3, 4, . . . , n) > (12, 3, 4, . . . , n) > (123, 4, . . . , n) > · · · > (1234 · · ·n)

Any gallery incident to this flag must contain the chambers

(1, 2, 3, 4, . . . , n), (2, 1, 3, 4, . . . , n), (3, 2, 1, 4, . . . , n), . . . , (n, . . . , 4, 3, 2, 1).

It is clear that there is a unique gallery r0 containing these chambers: starting from the base chamber
(1, 2, . . . , n), the 2 is pushed to the front, then the 3, then the 4, etc. In Coxeter notation, r0 corresponds
to the reduced word s1(s2s1)(s3s2s1) · · · (sn−1sn−2 · · · s1).

A simple way to show R(A, r0) is bounded and graded by r 7→ |L2(r0, r)| is via wiring diagrams;
see Figure 4. Given the wiring diagram corresponding to some gallery r, one can remove elements in the
L2-separation set by slowly “pulling” the n-th wire so it crosses all of the other wires at the end. Each
triple {ijn} or 2-pair {ij, kn} involving wire n on which r0 and r disagree is resolved by this procedure
without affecting other elements of L2(A). Inducting on n, we conclude that r0 ≤ r as desired.

In [10], Reiner and Roichman generalized the idea of “pulling out the n-th wire” for arbitrary supersolv-
able arrangements to prove that R(A, r0) is a bounded, graded poset. The key property of supersolvable
arrangements is the linearity of the fibers of the localization map at a modular line, as described in the
following Proposition.

Proposition 4.2 (RR [10]) Assume that l is a modular ray in L(A). Let cl ∈ P(Al, (c0)l) be a chamber
of the localized arrangement Al. Let π : P(A, c0)→ P(Al, (c0)l) be the localization map.

1. There exists a linear order on the fiber π−1(cl) = {c1, c2, . . . , ct} such that c1 is incident to l and
the separation sets L1(c1, ci) are nested:

∅ = L1(c1, c1) ⊂ L1(c1, c2) ⊂ · · · ⊂ L1(c1, ct) = A \ Al
This induces a linear orderH1, H2, · · · onA\Al such thatHi is the unique hyperplane separating
ci and ci+1.
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Fig. 4: The inversions in the left wiring diagram containing 5 may be removed by a sequence of elementary flips
without introducing new inversions.

2. Using the linear order on A \ Al from part (1), if i < j < k and if the chamber c incident to l is
also incident to l +Hi ∩Hk then Hj ⊇ Hi ∩Hk.

The next proposition says that the fibers of the localization map are bounded.

Proposition 4.3 (RR [10]) Assume that l is a modular ray and let c0 be a chamber incident to l. Let π
denote the function r 7→ rl sending galleries of A from c0 to −c0 to galleries of Al. Given a reduced
gallery rl ∈ Al, let r1 be the unique gallery incident to l in the fiber π−1(rl) defined by Proposition
4.2(1). If r1 6= r2 ∈ π−1(rl) there exists X ∈ L2(r1, r2) incident to r2.

Inducting on the rank ofA, Reiner and Roichman conclude that if r0 is incident to a modular flag ofA,
thenR(A, r0) is a bounded graded poset.

Björner, Edelman, and Ziegler proved that the chamber poset P(A, c0) of a supersolvable arrangement
is a lattice if c0 is incident to a modular flag [3]. In contrast, the gallery poset R(A, r0) is not a lattice in
general; see Example 4.1.

The gallery poset R(A, r0) is defined by measuring the “difference” between two galleries with a
set L2(r, r′) and ordering the galleries by single-step inclusion of the sets L2(r0, r). Ordering instead by
ordinary inclusion defines a posetR⊆(A, r0). We do not know whether these posets are ever distinct when
r0 is incident to a modular flag of A. When A is the type A braid arrangement, this question resembles a
question about two versions of the second Higher Bruhat orders, B(n, 2) and B⊆(n, 2). These two posets
were shown to be the same by Felsner and Weil [8].

5 Homotopy type of the gallery poset
Theorem 5.1 Let r0 be a gallery incident to a modular flag of a rank d supersolvable arrangement A.
The proper part of the poset of reduced galleriesR(A, r0) is homotopy equivalent to a (d− 3)-sphere.



Gallery Posets of Supersolvable Arrangements 823

The main topological result we use to prove the theorem is Rambau’s Suspension Lemma [9].

Lemma 5.2 (Rambau) Let P,Q be bounded posets with 0̂Q 6= 1̂Q and distinguished order ideal J ⊆ P .
Let f : P → Q be a surjective order-preserving map with order-preserving sections i, j : Q → P .
Assume that

1. i(Q) ⊆ J and j(Q) ⊆ P \ J

2. (∀p ∈ P ) (i ◦ f)(p) ≤ p ≤ (j ◦ f)(p)

3. f−1(0̂Q) ∩ J = {0̂P } and f−1(1̂Q) ∩ (P \ J) = {1̂P }

Then P is homotopy equivalent to the suspension of Q.

Figure 5 shows an application of the Suspension Lemma to the gallery poset of the four coordinate
hyperplanes in R4.

Proof: (of theorem) We begin by defining the maps and objects in the Suspension Lemma 5.2.
Let F be a modular flag of faces

F : c0 = F0 < F1 < · · · < Fd = 0, Fi ∈ L(A),

and set l = Fd−1. Let r0 be the unique gallery incident to F .
Define gallery posets P = R(A, r0), Q = R(Al, (r0)l), and let f : P → Q be usual localization map

removing hyperplanes not containing l.
Define a section i : Q→ P by lifting a gallery rl in Q along l to a gallery from l ◦ c0 to l ◦ (−c0) and

completing it in the unique way described in Proposition 4.2. We similarly define a section j : Q→ P by
lifting along −l.

Let (H,H ′) be the unique pair of adjacent hyperplanes in r0 such that H ⊇ l and H ′ + l. We claim
that X0 = H ∩ H ′ is the unique codimension 2 subspace incident to r0 not containing l. Uniqueness
holds since any Y ∈ L2(A) \ L2(Al) contains some hyperplane of Al by the modularity of l, but the
hyperplanes in Al appear in r0 before those of A \ Al. Incidence at X0 follows from Proposition 4.2(2).
Let J denote the order ideal {r ∈ P | X0 /∈ L2(r0, r)}.

With this setup, we verify the three properties in Lemma 5.2. (1) is clear since L2(r0, i(r)) is a subset
of L2(Al) and L2(r0, j(r)) is a superset of L2(A) \L2(Al). Proposition 4.3 implies i(r) is the minimum
element of the fiber f−1(r). Dually, j(r) is the maximum element of f−1(r). This verifies (2). Finally,
(3) follows from the uniqueness of X0. 2

The proof of Theorem 5.1 applies to R⊆ with little variation, so we do not repeat it here. An alternate
proof using the Crosscut Lemma also computes the homotopy type of R⊆, but that argument does not
suffice forR.

6 Main Theorem
Theorem 6.1 LetA be a supersolvable arrangement with chamber c0 and gallery r0 incident to a modu-
lar flag. Let x = (X1, X2, . . . , Xm) ∈ ω(A, c0) be a cellular string of A. The set of galleries incident to
x forms a closed interval ofR(A, r0) whose proper part is homotopy equivalent to a sphere of dimension∑m
i=1 codim(Xi)−m− 2.
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f

Fig. 5: The suspension lemma applies to this map f̃ : P → (Q × 2) where P and Q are gallery posets of the
coordinate hyperplanes in R4 and R3, respectively. The map restricts to the proper parts of P and Q× 2. The fibers
f̃−1(Q× 2≥x) are principal upper order ideals, hence contractible. Quillen’s fiber lemma (Theorem 10.5 [6]) implies
P ' suspQ.

To decompose the set of galleries incident to a cellular string into a product of bounded posets, we make
use of the following simple lemma.

Lemma 6.2 Assume A is supersolvable with modular flag of faces F : F0 < F1 < · · · < Fd = 0. If
X ∈ L(A) then the localized arrangement AX is supersolvable with modular flag

FX : (F0)X ≤ (F1)X ≤ · · · ≤ (Fd)X = 0.

If r0 is the unique gallery incident to F , then (r0)X is the unique gallery incident to FX .

Proof: (of theorem) For each i,Ri := R(AXi
, (r0)Xi

) is a poset of galleries of a supersolvable arrange-
ment with base gallery incident to a modular flag. By Theorem 5.1, the proper part of Ri is homotopy
equivalent to ScodimXi−3.

A gallery ri in Ri can be viewed as a gallery between Xi ◦ c0 and Xi ◦ (−c0) in the arrangement A.
Since x is a cellular string, any sequence (ri ∈ Ri)i can be patched together to a gallery between c0 and
−c0 in A. Consequently, the galleries incident to x may be indentified with the product poset

R(AX1
, (r0)X1

)× · · · × R(AXm
, (r0)Xm

).

In general, if bounded posets P,Q are homotopy equivalent to spheres Sp,Sq , respectively, then P ×Q
is homotopy equivalent to Sp+q+2. Applying this fact to the above product completes the proof. 2

Example 6.3 Continuing Example 4.1, the cellular strings ω(A, c0) may be identified with wiring dia-
grams where multiple wires may cross at a vertical section. The set of galleries incident to a given cellular
string x are the simple wiring diagrams obtained by resolving multiple crossings in the diagram associ-
ated to x. The incident galleries form an interval in R(A, r0) whose minimum element resolves multiple
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1

2

3

4

5

234 25 14|35 15 13|45 12

(34−24−23)−25−(35−14)−15−(45−13)−12

(23−24−34)−25−(14−35)−15−(13−45)−12

Fig. 6: (Left) A cellular string of the type A4 reflection arrangement. (Right) The interval of the gallery poset
corresponding to this string. Its proper part is homeomorphic to S1.

crossings in colexicographic order and whose maximum element resolves in reverse colexicographic or-
der. Figure 6 shows an example.

7 Generic lifting spaces
The chamber and gallery posets have a common generalization to a poset G(M,N ) of generic single-
element liftings of an oriented matroid. The precise definition is rather technical and will be described in a
separate paper. Roughly speaking, G(M,N ) consists of generic affine slices ofM with some prescribed
boundary. When M is realizable as a hyperplane arrangement, the rank 2 slices can be identified with
galleries.

Special cases of these posets were called uniform extension posets by Ziegler [13]. Ziegler observed
that these posets tend to be poorly behaved. However, when the base extension is an alternating matroid,
one obtains a bounded graded poset known as a Higher Bruhat order. We are interested in finding other
cases where G(M,N ) is a bounded graded poset with nice topology. We summarize the main results
about the Higher Bruhat orders here.

A set family U ⊆ 2( [n]
k+1) is consistent if for any (k+ 2)-subset P = {i0 < i1 < · · · < ik+1} of [n], the

intersection U ∩
(
P
k+1

)
is either {P \ ik+1, P \ ik, . . . , P \ it} or {P \ i0, P \ i1, . . . , P \ it} for some

t. The Higher Bruhat order B(n, k) is the collection of consistent set families U ⊆ 2( [n]
k+1) ordered by

single-step inclusion.
In [13], Ziegler proved that B(n, k) is isomorphic a poset of generic single-element liftings of the rank

k alternating matroidM(n, k) on [n]. In a way similar to the gallery posets, the single-element liftings are
ordered by single-step inclusion of a difference set from the affine alternating matroidM(n+ 1, k + 1).
Ziegler proved that B(n, k) is a bounded, graded poset. He also observed that choosing a different base
lifting can determine an unbounded poset. In future work, we explain the relevance of the alternating
matroid by showing it is “incident” to a modular flag ofM(n, n).

Rambau showed that B(n, k) is homotopy equivalent to Sn−k−2 [9]. Analogous to our conjecture on
the intervals of the gallery posets, Reiner conjectured that the set of noncontracible intervals of B(n, k)
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is naturally parameterized by the full lifting space ω(n, k) ofM(n, k) (Conjecture 6.9(a) [11]). Just as in
the discussion following Theorem 1.2, this connection would imply the previous result of Sturmfels and
Ziegler that ω(n, k) is homotopy equivalent to Sn−k−1 [12].
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