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Controllability of affine right-invariant systems
on solvable Lie groups
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The aim of this paper is to present some recent results on contliofla right-invariant systems on Lie gups.
From the Lie-theoretical point of view, we study conditions under which subsemigroups generated bgriesfip
the Lie algebra of a Lie group coincide with the whole Lie group.
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1 Introduction

First we recall defiions and state our problem.
Let G be areal connected Lie group be its Lie algebra (i.e. the set of all right-invariant vector fields
onG). ForanyA, By, ..., B,, € L we consider the correspondiaffine right-invariant system

T={A+> wBi|ViucR}

i=1

The attainable setA for the systerml” is a subsemigroup aff generated by one-parameter semigroups
{exp(tX) | X €T, t > 0} The systenT is calledcontrollableif A = .

We seek conditions which characterize controllability of the sydtemterms of the Lie groug/, Lie
algebral and vector fieldsi, By, ..., B,.

Invariant control systems on Lie groups were first considered in 1972 by Brockett [11 and .Jurdievic and
Sussmann [2] for the following reasons:

¢ Some mechanical systems evolve naturally on Lie groups, e.g. the grqap iS@ state space for
a rigid body rotating around its centre of mass.
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¢ Invariant systems generate control systems on the homogenemessuf Lie gpups. IfI" is an
invariant system on a Lie grouf, G/ H is a homogeneous space@f andr : G — G/H is
a natural projection, then we can defingT') — a control system o6:/ H which is a projection
of I'. It is well known that controllability ofl’ on ¢ implies controllability ofr.(T') on G/ H.
For example, ifG C GL(n) is a Lie group acting transitively oR™ \ {0}, then we can take
G/H = R"\ {0}, and~.(T') is a bilinear system

i‘:Al‘—I—ZuZ’Bil‘, u; € R, l’ERH\{O}

i=1

The structure of this paper is as follows. In Sect. 2 we recall sonogvRiresults hout invariant
systems on Lie groups. In Sect. 3 we give a controllability test for the hypersurface invarigmhsys
And in Sects. 4 and 5 we present and discuss controllability results fariamt svstems on solvable Lie
groups. The complete proofs of the theorems of Sects. 3-5 are given elsewhere [3, 4].

2 Known Results
2.1 Rank Condition

The basic properties of attainable sets for invariant systems were shydkgidjevic and Sussmann [2].
Here we recall some of them.

The systenT is said to satisfy theank controllability conditionif the Lie algebra generated by the
system coincides witlh:

Lie(l') = Lie(A, By, ..., Bn) =L
The important role of this condition is established by the following theorem.

Theorem 2.1 (Theorem 7.1 [2|)The rank controllability condition is@cessary for controllability of.
If G is compact or ifl" is homogeneous.e. A = 0), this condition is also sufficient.

Unfortunately, in the general case the rank condition is not sufficiemhatrollability, and substantial
work was performed to obtain controllability conditions for invariant systems on various particul@asclass
of Lie groups.

2.2 Lie Saturation

In 1981, Jurdjevic and Kupka [5] proposed an efficient method of investigation of controllability, and ap-
plied it to invariant systems on simple and semi-simple Lie groups. This méthaded on the technique
of Lie saturation, which may be stated as follows.

Given an invariant system, there is defined a new system(IS called Lie saturation of:

LS(I) = Lie(l)N{X € L |exp(tX) €A Vt >0}

A sufficient controllability condition in terms of Lie saturation was given:
Theorem 2.2 (Proposition 6 [5])f LS(T') = L, thenl is controllable.
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There is no algorithm to construct [15), but several nice properties are established which make it
possible to extendl and construct a chain of lower estimates of LS

rcr,c...cywc...CcLS() C L
These properties are as follows (Proposition 5 [5]):
e LS(T) is a convex closed cone i
o if X, +Y € LS(I), then+[X,Y] € LS(T);
o if £X,Y € LS(T), thenexp(sadX)Y € LS(T) forall s € R;
o if X € LS(I') and one-parameter subgro{ixp(¢X) | t € R} is periodic, then- X € LS(T).

Thus, if we manage to construct an extension of the systenT' such thatl'y = L, then we can
conclude that LE') = Z, andT is controllable.

Extensive controllability conditions for invariant systems on simple and semi-simple Lie groups were
obtained with the help of the Lie saturation technique by Jurdjevic and Kupka [5], and in sutiseque
papers ky Gauthier and Bornard [6], Gauthaeal. [7] and Assoudi and Gauthier [8, 9].

2.3 Systems on Nilpotent Groups

There were almost no results on invariant systems on Lie groups different fromesamglsemi-simple
groups. One of the possible reasons is that there is little known about the structure of Lie algebras except
for simple and semi-simple algebras.

Ayala and Vergara [10] introduced the notion of a symplectic vector, and gave ssagcesntrolla-
bility condition in terms of this notiori. Ayala Bravo [11] applied this condition and obtained a complete
characterization of controllability for affine systems on nilpotent simply connected Lie groups:

Theorem 2.3 (Theorem 3.6 [11]Let G be a nilpotent simply connected Lie group. Then the sytesn
controllableiffLie (By,..., By) = L.

3 Hypersurface Systems

The main aim of this paper is to study invariant systems on solvable Lie groups.evdgwve first
consider a particular class of invariant systems — hypersurface systems. Controllability corfidittbiss
class are given in Theorem 3.1; they are important in themselves, and will becipgpbbtain necessary
controllability conditions for systems on solvable Lie groups (Corollary 3.1).

A nonlinear control system on a smooth manifaid

pIE i‘:A(x)—i—ZuiBi(x), yER zeM

i=1
is called ahypersurfacéf we have

dimLie(By,...,Bn)(z) =dimM -1 Vee M
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Roughly speaking, hypersurface systems Have 1) independent inputs and-dimensional state space.
Such systems received a substantial attention (see, for example, Bamoib$tefani [12], Hunt [13,
14] and Basto Goncalves [15]). The main idea is that for a hypersurface systdma state space
M is stratified into codimension one foliation by the maximum integral manifoldhefdistribution
Lie(Bi,..., Bn)(%).

Now let us consider a hypersurface invariant sysieni.e. we suppose that the Lie algebta =
Lie(By,..., Bn) is a codimension one subalgebral/of Denote by7, the connected Lie subgroup of
G corresponding td.,. It follows from the right-invariance of the fieldd(z) and Bi(z), ..., By ()
that the fieldA(xz) does not interseat’, in both directions. This idea makes it possible to obtain a
controllability test for hypersurface invariant systems:

Theorem 3.1 Suppose thatim Lg = dim L — 1.

1. If Gy is closed inG, thenl is controllable iffA ¢ Lo andG /Gy = S*.

2. If Gy is not closed i, thenT is controllable iffA ¢ L.

Remark. This theorem generalizes an analogous result obtairied by Ayala Bravo [11] under the additional
assumption thak; is an ideal ofl. (Proposition 3.3 [11).

It easily follows from the above theorem that hypersurface systems cannot be controfiatieply
connected Lie groups. The reason is that a simply connected Lie group is separatedidisjoint
components by the codimension one laggr If we take any invariant systeiih on a simply connected
Lie group and manage to extend it to a hypersurface sybtem I', thenlI' is not controllable.

Corollary 3.1 LetG be simply connected. Suppose that there exists a codimension one subalgebra of
containingLy. Then the systeiis not controllable.

The idea of search for a hypersurface extension is a key one in the subsequent necessap<tordit
systems on solvable simply connected Lie groups.

4 Completely Solvable Lie Groups

First we consider invariant systems on a subclass of solvable Lie groups appropriate fafigeinen of
the test of Ayala Bravo [11] for nilpotent groups (Theorem 2.3). The sense of this test ihehdtift
term A cannoi fieip io conirol the systeim= { A+ 5" u; B; }, i.e. the systent' is controllable if and
only if the system without drift terity = { Z;”Il u; B; } is controllable. The ‘if’ part is obvious: we can
take sufficiently great; for the systenl® and move almost along the trajectories of the sydtgno the
nontrivial part of the proof is the ‘only if’ part.

A (real) Lie algebra. is calledcompletely solvabléfor any X ¢ L the adjointoperatorad : L — L
has only real eigenvalues. Any completely solvable Lie algebra is solvablee éraup with completely
solvable Lie algebra is called completely solvable.

Theorem 4.1 Suppose that' is completely solvable and simply connected. Then

I' is controllable onG iff Lie (B, ..., Bn) = L (%)



Controllability of affine right-invariant systems on solvable Lie groups 243

The main idea of the proof of this theorem is that in a completely solvable Labedd. any proper
subalgebra can be extended to a codimension one subalgebraldénce, any affine system can be
extended to a hypersurface system (which is noncontrollable by Corollary 3.1).

Examplel. Let T(n) denote the Lie group af x n triangular matrices with positive diagonal entries.
T (n) is connected, simply connected, and completely solvable. So Theorem 4.1 appheariant
systems on Tr) or any connected subgroups ofT).

Remark. Consider the following increasing chain of classes of Lie groups:
CommutativeC Nilpotent ¢ Completely solvableZ Solvable

Suppose that Lie grouf is connected and simply connected. Itis obvious that the property (*) is satisfied
for commutativeG. Theorem 2.3 establishes that (*) holds for nilpoténtand Theorem 4.1 states that
(*) is true for completely solvablé&’. The results of the following section (in particular, Example 2) imply
that (*) is not valid for general solvabtg.

5 General Solvable Lie Groups
Now we restrict ourselves by the single-input systems
r={A+uB|lueR}

as the case of general solvable Lie groups is much more complicated. It turns out thaxisestrong
necessary conditions for the systéhto be controllable on solvable simply connected Lie groups (see
Theorem 5.1 below). And if these necessary conditions are satisfied, there exist gefficient condi-
tions which guarantee controllability (Theorem 5.2).

5.1 Notation

To state the controllability results precisely we need some notation.
Derived subalgebra and the second derived subalgebra:

L) — (L, L], L2 — [L(l)
Complexifications of., L(1), andL(2):
L.=LoC, W=1WgcC, ¢

Adjoint representations:
ad: L — End(L), ad, : L. — End(L.)

Spectrum of ad3 in L(Y) :
Sp!) = {a e C|Ker(ad.B|, ¢ —ald) # {0} }
Spectrum of ad3 in L(?) :

Sp? ={aeC| Ker(ad. B, —ald) # {0} }
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5.2 Necessary Conditions

The necessary controllability conditions are obtained with the help of Corollary 3.1. Solvable Lie algebra
possess a great number of codimension one subalgebras, and it is often possible to exjetentiiets
a hypersurface system and show noncontrollability .of

Theorem 5.1 Suppose that is solvable and simply connected. Let the spectBghY be simple. I is
controllable, then:

1. dim LM =dim L — 1;

2. B¢ LW,

3.5 N =spg? nRr.
5.3 Sufficient Conditions

We obtain sufficient controllabilty conditions with the help of the Lie saturation technique. To show
that LST') = L we consider the eigenvectors of the operatoBggd:, and construct a chain of these
eigenvectors which generaté!) step-by-step.

Theorem 5.2 Suppose that; is solvable. Let the spectrusp'") be simple and all necessary conditions
of Theorem 5.1 be satisfied. Suppose also that:

1. vectorA has nonzero components in all eigenspacesdd|; ..);
2. sp c {Rez > 0} or SpV c {Rez < 0} or SPY N = .

Then the systei is controllable.

Example2. Let G = E(2) be the Euclidean group of motions Bf. E(2) is connected but not simply
connected. It can be represented as a grodp-08 matrices of the form

cin ciz by b
Co1 €329 bz s C = (C”) € Sq2), b= ( bl ) € ]Rz
0 0 1 2

where(' is the rotation matrix and is the translation vector. The corresponding matrix Lie algébia
spanned by the matrice, = E13, Ay = Fo3 andAs = Fyy — E12. We haveL (") = sparf4,, A,) and
L) = {0}; therefore,L is solvable.

Consider the systerfi = { A + uB | u € R} onE(2) — the simply connected covering of B. A
complete characterization of controllability Bfon E(?) with the help of the above results:

Proposition 5.1 The systert is controllable orE(Q) if and only if vectors4, B are linearly independent
andB ¢ spar{A;, As).

Really, if B € sparfA;, A2), then the systerfi can be extended to a hypersurface system
I ={A4+viA;1 +v2A3 | v1,v2 €R}

sol is noncontrollable by Corollary 3.1. If the vectotsand B are linearly dependent, then L(id, B) #
L, the rank controllability condition is violated, ardtlis noncontrollable by Theorem 2.1. Finally, if
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B ¢ spar{4;, A2) and vectors4, B are linearly independent, then all conditions of Theorem 5.2 are
satisfied, henc€ is controllable orE(2).

It would be interesting to compare controllability conditions E(Q) with the following conditions
for E(2) (these conditions are easily obtained with the help of the controllability teshdivTheorem
1[16)):

Proposition 5.2 The systerll is controllable orE(2) if and only if vectors4, B are linearly independent
andspartA, B) ¢ sparfA;, As).

6 Final Remarks

In addition to the papers cited in this paper, there are very interesting resutentrollability of inva-
riant systems on nilpotent and solvable Lie groups obtained via Lie semigroups methods by édilger
al. [17] and Lawson [18]. These results cover general systems, but for affine ogeatothet imply the
detailed theory presented in this work. Recently, the author eghgtiis theory to obtain a classification
of controllable systems on small-dimensional simply connected solvable Lie grou9d]19,
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