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A factorization formula in Z[[x]]
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Abstract. Given an odd prime p, we give an explicit factorization over the ring of formal power series with integer
coefficients for certain reducible polynomials whose constant term is of the form pw with w > 1. Our formulas are
given in terms of partial Bell polynomials and rely on the inversion formula of Lagrange.

Résumé. Donné un nombre premier impair p, nous donnons une factorisation explicite sur l’anneau des séries
formelles à coefficients entiers pour certains polynômes réductibles dont le terme constant est de la forme pw avec
w > 1. Nos formules sont donnés en termes de polynômes partiels de Bell et comptent sur la formule d’inversion de
Lagrange.
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1 Introduction
The divisibility theory of commutative rings is a fundamental and persisting topic in mathematics that
entails two main aspects: determining irreducibility and finding a factorization of the reducible elements
in the ring. Prominent examples are the ring of integers Z and the ring of polynomials Z[x]. It is then
natural to investigate the arithmetic properties of Z[[x]], the ring of formal power series with integer
coefficients. While polynomials in Z[x] can be seen as power series over the integers, the factorization
properties over Z[x] and over Z[[x]] are in general unrelated; cf. [3]. In [4], the authors studied this
factorization problem exhaustively. In particular, for a class of polynomials parametrized by a prime p,
a connection between reducibility in Z[[x]] and the existence of a p-adic root with positive valuation was
established. Whereas this connection can be certainly explained in structural terms, the role of the root in
the factorization process is not obvious.

Motivated by this factorization problem the main goal of this paper is to give a factorization in Z[[x]]
of certain reducible polynomials whose constant term is of the form pw with p prime and w > 1. Our
formulas are given in terms of partial Bell polynomials and rely on the inversion formula of Lagrange.

For the reader’s convenience, a short appendix with some of the basic properties and identities for the
partial Bell polynomials is included. We finish by observing that most of the results presented here may
be applied to polynomials and power series over other commutative rings.

A full version of this extended abstract, including a discussion on Hensel lifts of polynomial roots
modulo p, has been submitted elsewhere. A preprint is available via the math arxiv, cf. [6].
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2 Factorization of polynomials over Z[[x]]
Let f(x) = f0 + f1x + f2x

2 + . . . be a formal power series in Z[[x]]. It is easy to prove that f(x) is
invertible in Z[[x]] if and only if |f0| = 1. A natural question, initially discussed in [3], is whether or
not a non-invertible element of Z[[x]] can be factored over Z[[x]]. In recent years, this question has been
investigated by several authors, leading to sufficient and in some cases necessary reducibility criteria, see
e.g. [2, 4, 9]. In particular, [9] deals with the factorization of formal power series over principal ideal
domains.

For the case at hand, the following elementary results are known. The formal power series f(x) =
f0 + f1x + f2x

2 + . . . is irreducible in Z[[x]] if |f0| is prime, or if |f0| = pw with p prime, w ∈ N, and
gcd(p, f1) = 1.

On the other hand, if f0 is neither a unit nor a prime power, then f(x) is reducible. In this case,
the factorization algorithm is simple and relies on a recursion and a single diophantine equation, see [3,
Prop. 3.4].

Finally, in the remaining case when f0 is a prime power and f1 is divisible by p, the reducibility of
f(x) in Z[[x]] is linked to the existence of a p-adic root of positive valuation. The goal of this paper is to
give an explicit factorization over Z[[x]] for reducible polynomials of the form

f(x) = pw + pmγ1x+ γ2x
2 + · · ·+ γdx

d, m ≥ 1, w ≥ 2, d ≥ 2, (2.1)

where γ1, . . . , γd ∈ Z and gcd(p, γ1) = 1. This is the only type of polynomial for which the reducibility
and factorization over Z[[x]] is not straightforward.

Let Zp denote the ring of p-adic integers.

Theorem 2.2 Let p be an odd prime and let f(x) be a polynomial of the form (2.1). Assume that f has a
simple root r ∈ pZp with vp(r) = ` ≤ m and r = p`(1 +

∑∞
j=1 ejp

`j) with ej ∈ Z. Then f(x) admits
the factorization

f(x) =

(
p` − x− x

∞∑
n=1

anx
n

)(
pw−` + (pw−2` + pm−`γ1)x+ x

∞∑
n=1

bnx
n

)
,

where the coefficients an are given by (2.5), and bn = b̂n/p
`n with b̂n as in (2.12).

Remark 1 (i) As shown in Lemma 2.13, b̂n is divisible by p`n, so bn ∈ Z for every n.

(ii) If r ∈ pZp is a root of f with vp(r) = ` ≤ m, then 2` ≤ w.

(iii) If w ≤ 2m and f has a root r ∈ pZp, then vp(r) = ` ≤ m holds. If w > 2m, then 0 lifts to a
p-adic root of f , but it is not necessarily true that f has a root of valuation less than or equal to m.
This property depends on the coefficients γ2, γ3, . . . . However, even if that condition fails, f(x) is
still reducible and a factorization can be obtained through the algorithm given in [4, Prop. 2.4].

(iv) A p-adic integer r with vp(r) = ` can always be written as r = p`(e0+
∑∞
j=1 ejp

`j) with e0 ∈ Z∗p.
For factorization purposes, we can assume without loss of generality e0 = 1. Otherwise, consider
g(x) = f(x/e∗0), where e∗0 is such that e0e∗0 = 1 (mod p`).

(v) As discussed in [4], the existence of a root in pZp is in many cases (e.g. when d ≤ 3) a necessary
condition for the polynomial (2.1) to factor over Z[[x]].
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Remark 2 If f has a multiple root in pZp, then f(x) admits the simpler factorization

f(x) = G(x)fred(x),

where G(x) = gcd(f(x), f ′(x)) ∈ Z[x] and fred(x) = f(x)/G(x).

The proof of the above theorem relies on the following consequence of the inversion formula of La-
grange for formal power series. For a detailed proof and other applications, we refer the reader to [8,
Section 3.8] or [7, Section 11.6]. In what follows, Bn,j(x1, x2, . . . ) denotes the (n, j)-th partial Bell
polynomial, see the appendix.

Lemma 2.3 (cf. [7, Corollary 11.3]) If φ(t) is a power series of the form

φ(t) = t

(
1 +

∞∑
r=1

αr
tr

r!

)
,

then its formal inverse is given by

φ−1(u) = u

(
1 +

∞∑
n=1

βn
un

n!

)
,

where

βn =

n∑
j=1

(−1)j (n+ j)!

(n+ 1)!
Bn,j(α1, α2, . . . ).

Proof of Theorem 2.2
Let r = p`

(
1 +

∑∞
j=1 ejp

`j
)

be the p-adic root of f and define

φ(x) = xE(x) with E(x) = 1 +

∞∑
j=1

ejx
j . (2.4)

Thus r = φ(p`) in Zp and therefore p` = φ−1(r). Define A(x) = p` − φ−1(x). So A(r) = 0 in Zp, and
by Lemma 2.3, we have

A(x) = p` − φ−1(x) = p` − x
(
1 +

∞∑
n=1

anx
n
)
,

where

an =
1

n!

n∑
k=1

(−1)k (n+ k)!

(n+ 1)!
Bn,k(1!e1, 2!e2, . . . ) ∈ Z. (2.5)

Our goal is to find B(x) ∈ Z[[x]] such that f(x) = A(x)B(x). For convenience, consider

f̂(x) = p−2`f(p`x) and Â(x) = p−`A(p`x).

Thus

Â(x) = 1− x− x
∞∑
n=1

p`nanx
n.
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Proposition 2.6 The reciprocal of Â(x) is a power series in Z[[x]] of the form

Â(x)−1 =
1

Â(x)
= 1 + x+ x

∞∑
n=1

tnx
n

with

tn = 1 +

n∑
k=1

p`k
n+ 1− k

k!

k∑
j=1

(−1)j (n+ j)!

(n+ 1)!
Bk,j(1!e1, 2!e2, . . . ) ∈ Z. (2.7)

Proof: As an application of Faà di Bruno’s formula (cf. Theorem B in [8, Section 3.5]), and using basic
properties of partial Bell polynomials, we have

Â(x)−1 = 1 + x+

∞∑
n=2

n∑
k=1

k!

n!
Bn,k(1, 2!a1p

`, 3!a2p
2`, . . . )xn

= 1 + x+

∞∑
n=2

n∑
k=1

k!

( k∑
j=0

n!

(n− k)!j!
Bn−k,k−j(1!p

`a1, 2!p
2`a2, . . . )

)
xn

n!

= 1 + x+

∞∑
n=1

1 +

n∑
k=1

(n+1−k∑
j=1

(n+ 1− k)!
k!(n+ 1− k − j)!

p`kBk,j(1!a1, 2!a2, . . . )

)xn+1

= 1 + x+ x

∞∑
n=1

1 +

n∑
k=1

p`k

k!

( k∑
j=1

(n+ 1− k)!
(n+ 1− k − j)!

Bk,j(1!a1, 2!a2, . . . )

)xn.

In the last step, we declare the interior sum to be zero if j > min(k, n+ 1− k). Thus

tn = 1 +

n∑
k=1

p`k

k!

k∑
j=1

(n+ 1− k)!
(n+ 1− k − j)!

Bk,j(1!a1, 2!a2, . . . )

= 1 +

n∑
k=1

p`k
n+ 1− k

k!

k∑
j=1

(
n− k
j − 1

)
(j − 1)!Bk,j(1!a1, 2!a2, . . . )

Now, if we write k!ak as

k!ak =

k∑
j=1

(
k + j

j − 1

)
(j − 1)!Bk,j(−1!e1,−2!e2, . . . ),
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then by means of Theorem 15 in [5] we get

k∑
j=1

(
n− k
j − 1

)
(j − 1)!Bk,j(1!a1, 2!a2, . . . )

=

k∑
j=1

(
n+ j

j − 1

)
(j − 1)!Bk,j(−1!e1,−2!e2, . . . )

=

k∑
j=1

(−1)j (n+ j)!

(n+ 1)!
Bk,j(1!e1, 2!e2, . . . ).

In other words, tn has the form claimed in (2.7). 2

Now, motivated by (2.7), for n ≥ 1 we consider

Tn(x) = 1 +

∞∑
k=1

n+ 1− k
k!

( k∑
j=1

(−1)j (n+ j)!

(n+ 1)!
Bk,j(1!e1, 2!e2, . . . )

)
xk.

Lemma 2.8 With E(x) as in (2.4), we have

Tn(x) = E(x)−n−2
(
E(x) + xE′(x)

)
.

Proof: Fix n ≥ 1 and denote

τk =
1

k!

k∑
j=1

(−1)j (n+ j)!

n!
Bk,j(1!e1, 2!e2, . . . ).

Then

Tn(x) = 1 +

∞∑
k=1

(
1− k

n+ 1

)
τkx

k = 1 +

∞∑
k=1

τkx
k − 1

n+ 1

∞∑
k=1

kτkx
k.

Using again Theorem B in [8, Section 3.5], it follows that 1 +
∑∞
k=1 τkx

k = E(x)−n−1. Therefore,

Tn(x) = E(x)−n−1 − 1

n+ 1
x
d

dx

(
E(x)−n−1

)
= E(x)−n−1 + xE(x)−n−2E′(x) = E(x)−n−2

(
E(x) + xE′(x)

)
.

2

As a direct consequence of this lemma we get the recurrence relation

Tn−1(x) = E(x)Tn(x),

which can be used to define T0(x) and T−n(x) for n ≥ 1. More precisely, we let

T0(x) = E(x)T1(x) and T−n(x) = E(x)n+1T1(x) for n ≥ 1.
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Given that

f̂(x) = p−2`f(p`x) = pw−2` + pm−`γ1x+

d∑
n=2

p`(n−2)γnx
n, (2.9)

the relation Tn−j(x) = E(x)jTn(x) gives

pw−2`Tn(x) + pm−`γ1Tn−1(x) +

d∑
j=2

p`(j−2)γjTn−j(x) = f̂(E(x))Tn(x). (2.10)

Moreover, since E(x) is a unit in Z[[x]], for every ν ∈ Z the function Tν(x) is in Z[[x]] and so Tν(p`) ∈
Zp.

Lemma 2.11 For ν ≥ −1, the p-adic numbers Tν(p`) satisfy

Tν(p
`)− tν ≡ 0 (mod p`(ν+2))

with tν as in (2.7) for ν > 0 and t0 = t−1 = 1.

Proof: For ν = n ≥ 1 the statement is a consequence of the fact that tn is the n-th partial sum of Tn(p`)
and the coefficient of xn+1 in Tn(x) is zero. Further, given that

E(p`) = 1 + p`e1 +O(p2`) and T1(p
`) = 1− p`e1 +O(p2`),

we have
T0(p

`) =
(
1 + p`e1 +O(p2`)

)(
1− p`e1 +O(p2`)

)
≡ 1 (mod p2`).

This implies T0(p`)− t0 ≡ 0 (mod p2`).
Finally, since T−1(p`) = E(p`)2T1(p

`), and becauseE(p`)2 and T1(p`) are both of the form 1+O(p`),
we get T−1(p`) ≡ 1 (mod p`), hence T−1(p`)− t−1 ≡ 0 (mod p`). 2

Using f̂(x) as in (2.9), we now define

B̂(x) = f̂(x)Â(x)−1 =
(
pw−2` + pm−`γ1x+

d∑
n=2

p`(n−2)γnx
n
)(

1 + x+ x

∞∑
n=1

tnx
n
)
,

and write it as

B̂(x) = pw−2` + (pw−2` + pm−`γ1)x+ x

∞∑
n=1

b̂nx
n

with

b̂n = pw−2`tn + pm−`γ1tn−1 +

d∑
j=2

p`(j−2)γjtn−j ∈ Z, (2.12)

where tn is given by (2.7), t0 = t−1 = 1, and t−n = 0 for n > 1.

Lemma 2.13 The coefficients b̂n are divisible by p`n.



A factorization formula for power series 941

Proof: First of all, since p−`r = E(p`) is a p-adic root of f̂ , identity (2.10) implies

pw−2`Tn(p
`) + pm−`γ1Tn−1(p

`) +

d∑
j=2

p`(j−2)γjTn−j(p
`) = 0 in Zp.

Therefore, for n ≥ d− 1,

b̂n = pw−2`tn + pm−`γ1tn−1 +

d∑
j=2

p`(j−2)γjtn−j

= pw−2`
(
tn − Tn(p`)

)
+ pm−`γ1

(
tn−1 − Tn−1(p`)

)
+

d∑
j=2

p`(j−2)γj
(
tn−j − Tn−j(p`)

)
,

which by Lemma 2.11 is congruent to 0 mod p`n. Similarly, for 1 ≤ n < d− 1,

b̂n = pw−2`tn + pm−`γ1tn−1 +

n+1∑
j=2

p`(j−2)γjtn−j

≡ −
d∑

j=n+2

p`(j−2)γjTn−j(p
`) ≡ 0 (mod p`n).

2

Finally, defining B(x) = p`B̂(x/p`), we arrive at the factorization f(x) = A(x)B(x).

Remark 3 It is worth mentioning that our method for factorization in Z[[x]] is not restricted to polyno-
mials and can be applied to power series. As an example, consider

f(x) = 9 + 12x+ 7x2 + 8x3
∞∑
k=0

xk = 9 + 12x+ 7x2 +
8x3

1− x
,

discussed by Bézivin in [2]. This series is reducible in Z[[x]] and factors as

f(x) =
(3− x)2(1 + x)

1− x
.

The reader is invited to confirm that the power series version of Theorem 2.2 gives the factorization
f(x) = A(x)B(x) with A(x) = 3− x and B(x) = (3−x)(1+x)

1−x .
An interesting feature of this example is that the partial sums fd(x) = 9 + 12x + 7x2 + · · · of f(x)

of degree d ≥ 2 are all irreducible in Z[[x]]. This fact was proved in [2, Prop. 8.1], but it can also be
derived from Proposition 3.4 of [5] together with the observation that for d ≥ 2, the polynomial fd(x)
has no roots in pZp.
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Appendix: Some properties of Bell polynomials
Throughout this paper, we make extensive use of the well-known partial Bell polynomials. For any
sequence x1, x2, . . . , the (n, k)-th partial Bell polynomial is defined by

Bn,k(x) =
∑

i∈π(n,k)

n!

i1!i2! · · ·

(x1
1!

)i1 (x2
2!

)i2
· · · ,

where π(n, k) is the set of all sequences i = (i1, i2, . . . ) of nonnegative integers such that

i1 + i2 + · · · = k and i1 + 2i2 + 3i3 + · · · = n.

Clearly, these polynomials satisfy the homogeneity relation

Bn,k(abx1, ab
2x2, ab

3x3, . . . ) = akbnBn,k(x1, x2, x3, . . . ).

Here are other elementary identities (cf. [8, Section 3.3]) needed in this paper:

Bn,k(
x2

2 ,
x3

3 , . . . ) =
n!

(n+ k)!
Bn+k,k(0, x2, x3, . . . ), (A.1)

Bn,k(x1 + x′1, x2 + x′2, . . . ) =
∑
κ≤k
ν≤n

(
n

ν

)
Bν,κ(x1, x2, . . . )Bn−ν,k−κ(x

′
1, x
′
2, . . . ), (A.2)

Bn,k(0, . . . , 0, xj , 0, . . . ) = 0, except Bjk,k =
(jk)!

k!(j!)k
xkj . (A.3)

Also of special interest is the identity

Bn,k((a)1, (a)2, . . . ) =
1

k!

k∑
j=0

(−1)k−j
(
k

j

)
(ja)n, (A.4)

where (a)n = a(a− 1) · · · (a− n+ 1). This is a special case of [10, Example 3.2].
For more on Bell polynomials and their applications, see e.g. [1, 7, 8, 10].
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