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Scaling Limits of Random Graphs from
Subcritical Classes: Extended abstract
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Abstract. We study the uniform random graph Cn with n vertices drawn from a subcritical class of connected graphs.
Our main result is that the rescaled graph Cn/

√
n converges to the Brownian Continuum Random Tree Te multiplied

by a constant scaling factor that depends on the class under consideration. In addition, we provide subgaussian tail
bounds for the diameter D(Cn) and height H(C•n) of the rooted random graph C•n. We give analytic expressions for
the scaling factor of several classes, including for example the prominent class of outerplanar graphs. Our methods
also enable us to study first passage percolation on Cn, where we show the convergence to Te under an appropriate
rescaling.

Résumé. On s’intéresse au comportement asymptotique du graphe aleatoire Cn sur n sommets pris uniformement d’
une classe sous-critique des graphes sur n sommets. Dans cette contribution nous montrons que le graph normalisée
Cn/
√
n converges vers un arbre aleatoire brownien continue Te multiplie par une constante qui depends de la classe

de graphes considérée. Nous calculons l’expression analytique pour cette constante dans plusieurs cas parmi la classe
fameuse des graphes planaire exterieure. En plus, on montre que le diametre D(Cn) et l’hauteur H(C•n) de l’equivalent
racine de Cn sont bornes par des bornes sousgaussiens. Notres méthodes nous permettons aussi de l’etudier la
percolation du premier passage sur Cn. Nous montrons que Te sujet a une changement d’echelle appropriee.

Keywords: Scaling Limits, Random Graphs, Continuum Random Trees

1 Introduction
Let G be a connected graph with vertex set V (G) and edge set E(G). We can associate in a natural way a
metric space (V (G), dG) withG, where dG(u, v) is the number of edges on a shortest path that contains u
and v in G. In this work we study the case where G is a random graph, and we consider several properties
of the associated metric space as the number of vertices of G becomes large.

In the series of seminal papers [3, 4, 5] Aldous studied the fundamental case of G being a critical
Galton-Watson random tree with n vertices, where the offspring distribution has finite nonzero variance.
Among other results, he showed that the asymptotic properties of the associated metric space admit an
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universal description: they can be depicted, up to an appropriate rescaling, in terms of ”continuous trees”
whose archetype is the so-called Brownian Continuum Random Tree (CRT for short). Since Aldous’s
pioneering work, the CRT has been identified as the limiting object of many different classes of discrete
structures, in particular trees, see e.g. Haas and Miermont [16] and references therein, and planar maps,
see e.g. Albenque and Marckert [2], Bettinelli [8], Caraceni [9], Curien, Haas and Kortchemski [10] and
Janson and Stefansson [19].

Although the aforementioned papers identify the CRT as the universal limiting object in various set-
tings, much less is known about the scaling limit of random graphs from complex graph classes. In this
paper we study in a unified way the asymptotic distribution of distances in random graphs from so-called
subcritical classes, where, informally, a class is called subcritical if for a typical graph with n vertices the
largest block (i.e. inclusion maximal 2-connected subgraph) has O(log n) vertices. Random graphs from
such classes have been the object of intense research in the last years, see e.g. [14, 7, 13, 24], especially
because of their close connection to the class of planar graphs. Prominent examples of classes that are
subcritical are outerplanar and series-parallel graphs. However, with the notable exception of [14], most
research on such random graphs has focused on additive parameters, like the number of vertices of a
given degree; the fine study of global properties, like the distribution of the distances, poses a significant
challenge.

In the present paper we study the random graph Cn drawn uniformly from the set of connected graphs
with n vertices of a subcritical class C. Our first main result is Theorem 4.1, which shows that, up to
an appropriate rescaling, the associated metric space converges in distribution to a multiple of the CRT.
Postponing the introduction of the appropriate notation to later sections (see the outline), our main result
asserts that there is a constant s = s(C) > 0 such that

(V (Cn), s n−1/2 dCn
)

(d)−→Te,

where Te is the CRT and convergence is with respect to the Gromov-Hausdorff metric. In particular, this
establishes that the CRT is the universal scaling limit for random graphs from subcritical clases, and it
proves (in a strong form) a conjecture by Drmota and Noy [14], who conjectured distributional conver-
gence for the rescaled diameter D(Cn)n−1/2. We also show exponential tail bounds, see Theorem 4.4. In
particular, we show that there are constants C, c > 0 such that for all n and x ≥ 0

P (D(Cn) ≥ x) ≤ C exp(−cx2/n)

A similar result was shown for critical Galton-Watson random trees by Addario-Berry, Devroye and Jan-
son [1], and our proof of these bounds builds on the methods in that paper. From this we deduce that all
moments of the rescaled height and diameter converge as well. In particular, we obtain the universal and
remarkable asymptotic behaviour

E[D(Cn)] ∼ 23/2

3s

√
πn ∼ 4

3
E[H(C•n)].

with C•n denoting the graph Cn together with a uniformly at random drawn root. This improves the
previously best known bounds c1

√
n ≤ E[D(Cn)] ≤ c2

√
n log n given in [14]. The higher moments

can also be determined. We apply our main theorem to the specific class of outerplanar graphs and give
analytic expression and numerical approximation of the scaling constant.
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In addition to the previous results, we demonstrate that our proof strategy is powerful enough to enable
us to study the far more general setting of first passage percolation: suppose that the edges of Cn are
equipped with independent random “lengths”, drawn from a distribution that has exponential moments,
and let the distance of two vertices u, v be the minimum sum of those lengths along a path that contains
both u and v. We show that again, up to an appropriate rescaling, the associated metric space converges
to a multiple of the CRT.

The present paper is an extended abstract of [25] where further results, detailed proofs and several
examples are given, in particular an extension to disconnected graphs and applications to more specific
examples of minor-closed graph classes.

2 Combinatorial species, R-enriched trees and subcritical graph
classes

2.1 Combinatorial species and classes
We make use of the frameworks of combinatorial species and combinatorial classes. The reader is referred
to the excellent sources Joyal [20], Bergeron, Labelle and Leroux [6] and Flajolet and Sedgewick [15] for
an introduction to the framework of combinatorial classes and generating functions.

2.2 Block-stable graph classes
Any graph may be decomposed into its connected components, i.e. its maximal connected subgraphs.
These connected components allow a block-decomposition which we recall in the following. Let C be a
connected graph. If removing a vertex v (and deleting all adjacent edges) disconnects the graph, we say
that v is a cutvertex of C. The graph C is 2-connected, if it has size at least three and no cutvertices.

A block of an arbitrary graphG is a maximal connected subgraphB ⊂ G that does not have a cutvertex
(of itself). It is well-known, see for example [12], that any block is either 2-connected or an edge or
a single isolated point. Moreover, the intersection of two blocks is either empty or a cutvertex of a
connected component of G. If G is connected, then the bipartite graph whose vertices are the blocks and
the cutvertices of G and whose edges are pairs {v,B} with v ∈ B is a tree and called the block-tree of G.

Let G denote a subspecies of the species of graphs, C ⊂ G the subspecies of connected graphs in G and
B ⊂ C the subspecies of all graphs in C, that are 2-connected or consist of only two vertices joined by
an edge. We say that G or C is a block-stable class of graphs, if B 6= 0 and G ∈ G if and only if every
block ofG belongs to B or is a single isolated vertex. The block-tree construction allows for the following
combinatorial specifications that can be found for example in Joyal [20], Bergeron, Labelle and Leroux
[6] and Harary and Palmer [17]:

G ' SET ◦ C and C• ' X · (SET ◦ B′ ◦ C•). (1)

The first correspondence expresses the fact that we may form any graph on a given vertex set U by
partitioning U and constructing a connected graph on each partition class. The specification for rooted
connected graphs, illustrated in Figure 1, is based on the construction of the block-tree. By the rules for
computing the generating series of species we obtain the equations

G(z) = exp(C(z)) and C•(z) = z exp(B′(C•(z))). (2)
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Fig. 1: Decomposition of a rooted graph from C• into a X · (SET ◦ B′ ◦ C•) structure. Labels are omitted and the
roots are marked with squares.

2.3 R-enriched trees
The class A of rooted trees(i) is known to satisfy the decomposition A ' X · SET(A). More generally,
given a speciesR the class AR ofR-enriched trees is defined by the combinatorial specification

AR ' X · R(AR).

In other words, an R-enriched tree is a rooted tree such that the offspring set of any vertex is endowed
with anR-structure. Natural examples are labeled ordered trees, which are SEQ-enriched trees, and plane
trees, which are unlabeled ordered trees. Ordered and unordered tree families defined by restrictions on
the allowed outdegree of internal vertices also fit in this framework. R-enriched trees were introduced by
Labelle [21] in order to provide a combinatorial proof of Lagrange Inversion. They have applications in
various fields of mathematics, see for example [23, 11, 22].

The combinatorial specification (1) together with Joyal’s Implicit Species Theorem allows us to identify
a block-stable graph class C• with the class R-enriched trees where R = SET(B′), that is, rooted trees
from A where the offspring set of each vertex is partitioned into nonempty sets and each of these sets
carries a B′-structure. Compare with Figure 2.
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Fig. 2: Correspondence of the classes C• and SET(B′)-enriched trees.

Corollary 2.1 Let C be a block-stable class of connected graphs, B 6= 0 its subclass of all graphs that
are 2-connected or a single edge. Then there is a unique isomorphism between C• and the class ASET◦B′

of pairs (T, α) with T ∈ A and α a function that assigns to each v ∈ V (T ) a (possibly empty) set α(v) ∈
(SET ◦ B′)[Mv] of derived blocks whose vertex sets partition the offspring set Mv of v.

(i) Arborescence is the French word for rooted tree, hence the notationA.
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2.4 Subcritical graph classes
Let C be a block-stable class of connected graphs and B 6= 0 its subclass of all graphs that are 2-connected
or a single edge with its ends. We assume in the following that B and C are analytic and denote by ρ and
R the radii of convergence of the corresponding exponential generating series C(z) and B(z). Note that
any graph of the class B has at least 2 vertices, hence the generating seriesB′(z) has the form

∑
k≥1 bkz

k

with bk 6= 0 for at least one integer k ≥ 1. Since C•(z) = z exp(B′(C•(z))) the nonnegativity of all
coefficients implies that ρ, y = C•(ρ) and λ = B′(y) are finite quantities. The following proposition
provides a coupling of a Boltzmann-distributed random graph drawn from the class C with a Galton-
Watson tree, that is based on the decomposition developed in the previous section. This sampler is in
some sense one of the main contributions of the present paper, as it allows us to build on results for
branching processes in order to study random graphs from the classes under consideration.

Proposition 2.2 Let C• denote a random rooted graph drawn from the set∪nC•n according to a Boltzmann
distribution with parameter ρ, i.e. the distribution of C is given by P (C = C•) = ρn/(yn!) for any rooted
graph C• ∈ C•n. Let (T, α) denote the SET ◦ B′-enriched tree corresponding to C. Then the rooted
labeled unordered tree T is distributed like the outcome of the following process:

1. Draw a Galton-Watson tree with offspring distribution ξ given by the probability generating func-
tion ϕ(z) = exp(B′(yz)− λ).

2. Distribute labels uniformly at random.

3. Discard the ordering on the offspring sets.

Let ξ denote the offspring distribution given in Proposition 2.2. Its average value is given by E[ξ] =
ϕ′(1) = yB′′(y) = B′•(y).

The following definition of subcritical classes is slightly more general as the traditional one given
in [13], as we do not require aperiodicity of the series B′(z). This requirement is usually made, as it
simplifies the application of analytic methods such as singularity analysis of generating functions and most
interesting classes such as series-parallel graphs and outerplanar graphs satisfy this condition anyway.
However, with the branching-processes methods employed in the present paper there is no need to make
this extra requirement, as it does not simplify the arguments used in the following.

Definition 2.3 The block-stable class of connected graphs C is termed subcritical, if the series B′(z) is
analytic at the point y and yB′′(y) = 1.

In our framework, this is equivalent to the offspring distribution ξ having average value 1 and exponential
moments, i.e. if the probability generating function E[zξ] has radius of convergence greater than 1.

Prominent examples of subcritical graph classes are trees, outerplanar graphs and series-parallel graphs;
the class of planar graphs is block-stable but not subcritical [13, 7]. Thus, if the offspring distribution ξ
has average value 1, then its variance is given by σ2 = 1 +B′′′(y)y2.

The span of the random variable ξ is the smallest positive integer d such the support {k | P (ξ = k) >
0} is a subset of x + dZ for some x ∈ Z. Proposition 2.2 allows us to apply standard results for con-
ditioned Galton-Watson trees to obtain the following corollary, which was shown in [13] under stronger
assumptions.
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Corollary 2.4 Let C be an analytic block-stable class, and let ξ be the distribution from Proposition 2.2.
Suppose thatB′•(y) = 1 andB′′′(y) <∞, i.e. ξ has finite variance. Then, as n ≡ 1 mod span(ξ) tends
to infinity,

|Cn| ∼
yspan(ξ)√

2πE[|ΓB′•(y)|]
n−5/2ρ−nn!.

3 A size-biased random R-enriched tree
Let C be an analytic block-stable class of connected graphs and B 6= 0 its subclass of graphs that are
2-connected or a single edge. As before we let ρ denote the radius of convergence of the exponential
generating series C(z) and set y = C•(ρ). Recall that by Corollary 2.1 the class C• may be identified
with the class of R-enriched trees with R := SET ◦ B′, i.e. pairs (T, α) with T ∈ A a rooted labeled
unordered tree and α a function that assigns to each v ∈ V (T ) a (possibly empty) set α(v) of derived
blocks whose vertex sets partition the offspring set of the vertex v.

An important ingredient in our forthcoming argumets will be an accurate description of the distribution
of the blocks on sufficiently long paths in random graphs from C. In order to study this distribution we
will make use of a special case of a size-biased random R-enriched tree. This construction is based on
the size-biased Galton Watson tree introduced in [1] and has several other applications and implications.

Recall thatAR has the decompositionAR ' X ·R(AR). By the rules governing operations on species
we obtain algebraically

A•R ' AR + X · R′(AR) · A•R
' AR + X · R′(AR) · AR + (X · R′(AR))2 · A•R
. . .

'
∑
`≥0

(X · R′(AR))`AR.

The above calculation corresponds to taking a direct limit in the category of species, either directly or
alternatively by application of Joyal’s Implicit Species Theorem. Here A(`)

R := (X ·R′(AR))`AR corre-
sponds to the subspecies of all enriched trees (T, α) with a distinguished vertex r such that r has height
` in T . It follows from the definition of the Boltzmann distribution that for any pointed enriched tree
(A, r) ∈ A(`)

R we have that

P
(

ΓA
(`)
R (ρ) = (A, r)

)
= (ρR′(y))

−` P (ΓAR(ρ) = A) . (3)

Translating the combinatorial specification for A(`)
R into a Boltzmann sampler ΓA

(`)
R (ρ) yields the fol-

lowing procedure which we call the size-biased R-enriched tree (see also Figure 3). Any vertex is either
normal or mutant, and we start with a single mutant root. Normal vertices have an independent copy of
ΓR(y) as offspring. Mutant nodes have an independent copy of ΓR•(y) as offspring and the root in the
R• object is declared mutant, unless it is the `th copy of ΓR•(y). By the theory of recursive Boltzmann
samplers obtained from combinatorial specifications this procedure terminates almost surely. The sampler
ΓA

(`)
R (ρ) is obtained by additionally distributing labels uniformly at random.
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Fig. 3: Illustration of the sampler for the size-biasedR-enriched tree.

We call the path connecting the inner root with the outer root in an A•R-object the spine. Note that the
R-objects along the spine of the random enriched tree ΓA

(`)
R (ρ) are drawn according to ` independent

copies of ΓR•(y).
In our setting we have that R = SET ◦ B′, where B 6= 0 denotes the subclass of blocks of the block-

stable class C. It follows that
R• ' (SET ◦ B′) · B′•

and the sampler ΓR•(y) is given by independent calls of Γ(SET ◦ B′)(y) and ΓB′•(y). Hence the blocks
along the spine are drawn according to ` independent copies of ΓB′•(y).

Equation (3) allows us to relate properties of ΓA
(`)
R (ρ) to properties of a uniformly random chosen

enriched tree of a given size. We are going to apply the following general lemma in Section 4 in order to
show that the blocks along sufficiently long paths in random graphs behave asymptotically like the spine
of ΓA

(`)
R (ρ) for a corresponding `.

Lemma 3.1 Let E be a property of pointed R-enriched trees (i.e. a subset of A•R) and let n ∈ N be such
that AR[n] is nonempty. Consider the function

f : AR[n]→ R, A 7→
∑
v∈[n]

1(A,v)∈E

counting the number of “admissible” outer roots with respect to E . Let An ∈ AR[n] be drawn uniformly
at random. Then

E[f(An)] = P (|ΓAR(ρ)| = n)
−1

n−1∑
`=0

(ρR′(y))
` P
(

ΓA
(`)
R (ρ) has size n and satisfies E

)
.

Proof: First, observe that
n∑
v=1

P ((An, v) ∈ E) =

n−1∑
`=0

∑
(A,r)∈E∩A(`)

R [n]

P (An = A) .

By (3) we have for all (A, r) ∈ E ∩ A(`)
R [n] that

P (ΓAR(ρ) = A | |ΓAR(ρ)| = n) = (ρR′(y))
` P
(

ΓA
(`)
R (ρ) = (A, r)

)
P (|ΓAR(ρ)| = n)

−1
.

This proves the claim. 2
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4 Convergence Towards the CRT
Let C be an analytic block-stable class of connected graphs and B 6= 0 its subclass of all graphs that are
2-connected or a single edge. We let ρ > 0 denote the radius of convergence of the exponential generating
series C(z) and set y = C•(ρ). As before we identify C• with the class AR of R-enriched trees with
R = SET ◦ B′. By Proposition 2.2 we know that if we draw an R-enriched tree (T, α) according
to the Boltzmann distribution with parameter ρ, then T is distributed like a ξ-Galton-Watson tree with
ξ := |Γ(SET ◦ B′)(y)|, relabeling uniformly at random and discarding the ordering on the offspring sets.

Throughout this section let n ≡ 1 mod span(ξ) denote a large enough integer such that the probability
of a ξ-GWT having size n is positive. Let Cn ∈ Cn be drawn uniformly at random and generate C•n ∈ C•n
by uniformly choosing a root from [n]. We let (Tn, αn) be the corresponding enriched tree.

For any pointed derived block B ∈ B′• we let sp(B) := dB(∗, root) denote the length of a shortest
path connecting the ∗-vertex with the root. In this section we prove our main result:

Theorem 4.1 Let C be a subcritical class of connected graphs. Then

σ

2κ
√
n
C•n

(d)−→Te and
σ

2κ
√
n
Cn

(d)−→Te

with respect to the (pointed) Gromov-Hausdorff metric. The constants are given by σ2 = E[|B|] and
κ = E[sp(B|] with B ∈ B′• a random block drawn according to the Boltzmann distribution with parameter
y = C•(ρ), and in particular σ2 = 1 +B′′′(y)y2.

As an example, we apply our main theorem to the class of connected outerplanar graphs and obtain the
following numeric approximations and analytic expressions for the relevant constants:

Proposition 4.2 For the class of outerplanar graphs the constant y is the unique positive solution to
zB′′(z) = 1, where B′(z) = (z +D(z))/2 with D(z) = 1

4 (1 + z −
√
z2 − 6z + 1). Moreover,

κ =
y

2
+
(

1− y

2

) 8w4 − 16w3 + 4w − 1

(4w3 − 6w2 − 2w + 1) (2w − 1)
≈ 5.0841 with w = D(y)

and σ2 = 1 +B′′′(y)y2 ≈ 95.3658.

As a consequence of Theorem 4.1 we obtain the limit distributions for the height and diameter of C•n.

Corollary 4.3 Let C be a subcritical class of connected graphs. Then the rescaled height σ
2κ
√
n

H(C•n)

and diameter σ
2κ
√
n

D(Cn) converge in distribution to H(Te) and D(Te), i.e. for all x > 0, as n tends to
infinity

P
(

H(C•n) >
2κ
√
n

σ
x

)
→ 2

∞∑
k=1

(4k2x2 − 1) exp(−2k2x2),

P
(

D(Cn) >
2κ
√
n

σ
x

)
→

∞∑
k=1

(k2 − 1)

(
2

3
k4x4 − 4k2x2 + 2

)
exp(−k2x2/2).

Moreover, all moments converge as well. In particular

E[D(Cn)] ∼ 25/2κ

3σ

√
πn ∼ 4

3
E[H(C•n)].
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Of course, in order to obtain converge of higher moments of the rescaled diameter we need to check
uniform integrability, which is why we provide the following tail-bounds.

Theorem 4.4 Let C be a block-stable class of connected graphs. Suppose that C satisfies B′•(y) = 1 and
the offspring distribution ξ has finite variance, i.e. B′′′(y) < 1. Then there are C, c > 0 such that for all
n, x ≥ 0

P (D(Cn) ≥ x) ≤ C exp(−cx2/n) and P (H(C•n) ≥ x) ≤ C exp(−cx2/n).

Proofs of Theorem 4.4 and Proposition 4.2 are not part of this extended abstract but given in [25]. We
do outline in the following a proof of our main result Theorem 4.1. The idea is to show that the pointed
Gromov-Hausdorff distance of C•n and κTn is small with high probability and use the convergence of Tn
towards a multiple of the CRT Te.
Definition 4.5 Let C ∈ C. For any x, y ∈ V (C) set d̄C(x, y) := dT (x, y) with (T, α) the enriched tree
corresponding to (C, x), i.e. C rooted at the vertex x.

Less formally speaking, d̄C(x, y) denotes the minimum number of blocks required to cover the edges of
a shortest path linking x and y. It takes a moment to see that if (T, α) corresponds to the rooted graph
(C, z), then d̄C(x, y) ≤ dT (x, y) ≤ d̄C(x, y) + 1 for all x, y ∈ V (C). In particular, d̄C is a metric: the
triangle inequality holds since dT is a metric and

d̄C(x, y) ≤ dT (x, y) ≤ dT (x, z) + dT (y, z) = d̄C(x, z) + d̄C(y, z).

In the following lemma we apply the results on pointed enriched trees of Section 3.

Lemma 4.6 Let C be a subcritical class of connected graphs and set κ = E[sp(ΓB′•(y))]. Then for
all s > 1 and 0 < ε < 1/2 with 2εs > 1 we have with high probability that all x, y ∈ V (Cn) with
d̄Cn(x, y) ≥ logs(n) satisfy |dCn(x, y)− κd̄Cn(x, y)| ≤ d̄Cn(x, y)1/2+ε.

Proof: We denote Ln = logs(n) and t` = `1/2+ε. Let E ⊂ A•R ' C•• withR = SET ◦B′ denote the set
of all bipointed graphs or pointed enriched trees ((C, x), y) ' ((T, α), y), where we call x the inner root
and y the outer root, such that

dT (x, y) ≥ L|T | and |dC(x, y)− κdT (x, y)| > tdT (x,y).

We will bound the probability that there exist vertices x and y with ((Cn, x), y) ∈ E . First observe that∑
x,y∈[n]

P (((Cn, x), y) ∈ E) =
∑

((C,x),y)∈E
P (Cn = C) = n

n∑
y=1

P ((C•n, y) ∈ E) .

By assumption we may apply Corollary 2.4 to obtain P (|ΓC•(ρ)| = n) = Θ(n−3/2). Moreover,B′•(y) =
1 since C is subcritical and thus

ρR′(y) = ρB′′(y)eB
′(y) = yB′′(y) = 1.

Hence, by applying Lemma 3.1 we obtain that

P (((Cn, x), y) ∈ E for some x, y) ≤ O(n5/2)

n−1∑
`=Ln

P
(

ΓA
(`)
R (ρ) has size n and satisfies E

)
.
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The height of the outer root in the bipointed graph corresponding to ΓA
(`)
R (ρ) is distributed like the sum

of ` independent random variables, each distributed like the distance of the ∗-vertex and the root in the
corresponding derived block of Γ(SET ◦ B′)•(y). Since (SET ◦ B′)• ' (SET ◦ B′) · B′•, these variables
are actually sp(ΓB′•(y))-distributed. Hence

P
(

ΓA
(`)
R (ρ) ∈ E , |ΓA(`)

R (ρ)| = n
)
≤ P (|η1 + . . .+ η` − `E[η1]| > t`)

with (ηi)i i.i.d. copies of η := sp(ΓB′•(y)). Clearly we have that η ≤ |ΓB′•(y)|. Since C is subcritical it
follows that there is a constant δ > 0 such that E[eηθ] <∞ for all θ with |θ| ≤ δ. Hence we may apply a
moderate deviation inequality for one-dimensional random walk to obtain for some constant c > 0

P (((Cn, x), y) ∈ E for some x, y) ≤ O(n7/2) exp(−c(log n)2sε) = o(1).

2

It remains to clarify what happens if d̄Cn
is small. We prove the following statement for random graphs

from block-stable classes that are not necessarily subcritical.

Proposition 4.7 Let C be a block-stable class of connected graphs. Suppose that B′•(y) = 1 and the
offspring distribution ξ has finite second moment, i.e. B′′′(y) < ∞. Let lb(Cn) denote the size of the
largest block in Cn,

1. For any x, y ∈ Cn we have dCn
(x, y) ≤ d̄Cn

(x, y)lb(Cn).

2. If the offspring distribution ξ is bounded, then so is lb(Cn). Otherwise, for any sequence Kn we
have P (lb(Cn) ≥ Kn) = O(n)P (ξ ≥ Kn).

Proof: We have that dCn
≤ d̄Cn

(lb(Cn) − 1) and lb(Cn) = lb(C•n) ≤ ∆(Tn) + 1 with ∆(Tn) denoting
the largest outdegree. Recall that ∆(Tn) is distributed like the maximum degree of a ξ-Galton-Watson
tree conditioned to have n vertices. By assumption, the offspring distribution ξ has expected value E[ξ] =
B′•(y) = 1 and finite variance.

If ξ is bounded then so is the largest outdegree of Tn. Otherwise, as argued in the proof of [18, Eq.
(19.20)], for any sequence Kn

P (∆(Tn) ≥ Kn) ≤ (1 + o(1))nP (ξ ≥ Kn) . (4)

Applying (4) yields P (∆(Tn) ≥ Kn) ≤ (1 + o(1))nP (ξ ≥ Kn) for any sequence Kn. 2

Note that if C is subcritical then this implies that lb(Cn) = O(log n) with high probability: the definition
of the Boltzmann model and the fact that y is smaller than the radius of convergence of B(z) guarantee
that there is a constant β < 1 such that

P (ξ = k) = P (|Γ(SET ◦ B′)(y)| = k) = O(βk).

Combined with the bounds of Lemma 4.6 this yields the following concentration result.

Corollary 4.8 Let C be a subcritical class of connected graphs. Then for all s > 1 and 0 < ε < 1/2 with
2εs > 1 we have with high probability that for all vertices x, y ∈ V (Cn)

|dCn
(x, y)− κd̄Cn

(x, y)| ≤ d̄Cn
(x, y)1/2+ε +O(logs+1(n)).
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We may now prove the main theorem.

Proof of Theorem 4.1: Recall that d̄Cn ≤ dTn ≤ d̄Cn + 1. By Corollary 4.8, it follows that with high
probability we have the following bound for the Gromov-Hausdorff distance

dGH(C•n/(κ
√
n),Tn/

√
n) ≤ D(Tn)3/4/

√
n+ o(1).

Using the tail bounds [1] for the diameter D(Tn) we obtain that dGH(C•n/(κ
√
n),Tn/

√
n) converges in

probability to zero. Recall that the variance of the offspring distribution ξ is given by σ2 = E[|ΓB′•(y)|].
By [5] we have that σ

2
√
n
Tn

(d)−→Te and thus σ
2κ
√
n
C•n

(d)−→Te. 2

5 First Passage Percolation
Let ω > 0 be a given random variable such that there is a δ > 0 with E[eθω] < ∞ for all θ with |θ| ≤ δ.
For any graph G we may consider the random graph Ĝ obtained by assigning to each edge e ∈ E(G) a
weight ωe that is an independent copy of ω. The dĜ-distance of two vertices a and b is then given by

dĜ(a, b) = inf
{ ∑
e∈E(P )

ωe | P a path connecting a and b in G
}
.

Let κ̂ := E[sp(B̂)] with B drawn according to the Boltzmann sampler ΓB′•(y) and sp(B̂) denoting the
dB̂-distance from the ∗-vertex to the root vertex. Our main result may be extended as follows.

Theorem 5.1 Let C be a subcritical class of connected graphs. We have that

σ

2κ̂
√
n
Ĉ•n

(d)−→Te and
σ

2κ̂
√
n
Ĉn

(d)−→Te

with respect to the (pointed) Gromov-Hausdorff metric.
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