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Abstract. We present a new method to obtain the generating functions for directed convex polyominoes according to
several different statistics including: width, height, size of last column/row and number of corners. This method can
be used to study different families of directed convex polyominoes: symmetric polyominoes, parallelogram polyomi-
noes. In this paper, we apply our method to determine the generating function for directed k-convex polyominoes.
We show it is a rational function and we study its asymptotic behavior.

Résumé. Nous présentons une nouvelle méthode générique pour obtenir facilement et rapidement les fonctions
génératrices des polyominos dirigés convexes avec différentes combinaisons de statistiques : hauteur, largeur, longueur
de la dernière ligne/colonne et nombre de coins. La méthode peut être utilisée pour énumérer différentes familles de
polyominos dirigés convexes: les polyominos symétriques, les polyominos parallélogrammes. De cette façon, nous
calculons la fonction génératrice des polyominos dirigés k-convexes, nous montrons qu’elle est rationnelle et nous
étudions son comportement asymptotique.

Keywords: Parallelogram polyomino, directed convex polyomino, degree of convexity, tree, path, generating func-
tion.

1 Introduction
In the plane Z× Z a cell is a unit square and a polyomino is a finite connected union of cells (see Fig. 1).
Polyominoes are defined up to translations. We assume without loss of generality that the south-west
corner of its minimal bounding rectangle is placed at (0, 0). A column (row) of a polyomino is the
intersection of the polyomino and an infinite strip of cells whose centers lie on a vertical (horizontal) line.
A polyomino is said to be column-convex (row-convex) when its intersection with any vertical (horizontal)
line is connected. A polyomino is convex if it is both column- and row-convex (see Fig. 1(b)). The semi-
perimeter of a polyomino is naturally defined as half the perimeter. As a matter of fact, the semi-perimeter
of a convex polyomino is given by the sum of the number of its rows and its columns.

In [11] the authors propose a classification of convex polyominoes in terms of paths internal to poly-
ominoes. A convex polyomino is said to be k-convex if every pair of its cells can be connected by a path,
internal to the polyomino, with at most k changes of direction. For k = 1, we have L-convex polyomi-
noes, which have been studied by several points of view [11, 12, 13]. In particular in [12] it is shown that
the generating function of L-convex polyominoes according to the semi-perimeter is rational. For k = 2
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we have the Z-convex polyominoes, which instead have an algebraic generating function [14]. The meth-
ods applied for the enumeration of L-convex and Z-convex polyminoes are not easily extendable to the
general case, and, as a matter of fact, the enumeration of k-convex polyominoes is an open problem, for
k > 2. Thus, in order to simplify the enumeration problem, the authors of [3] provide a general method
to enumerate an important subclass of k-convex polyominoes, that of k-parallelogram polyominoes, i.e.
k-convex polyominoes which are also parallelogram.

Let us recall some basic defintions: a polyomino is said to be directed when each of its cells can be
reached from a distinguished cell, called the root (denoted by S), by a path which is contained in the
polyomino and uses only north and east unit steps. A polyomino is directed convex if it is both directed
and convex. The number of directed convex polyominoes with semi-perimeter n+ 2 is known to be equal
to
(

2n
n

)
[5, 6, 15]. We recall that a parallelogram polyomino is a polyomino whose boundary can be

decomposed in two paths, the upper and the lower paths, which are comprised of north and east unit steps
and meet only at their starting and final points. It is clear that parallelogram polyominoes are also directed
convex polyominoes, while the converse does not hold. It is known that the number of parallelogram
polyominoes with semi-perimeter n+ 1 is the nth Catalan number [17].

In this paper we present a new bijection between directed convex polyominoes and triplets (Fe, Fs, λ),
where Fe and Fs are forests of trees, and λ is a lattice path made of two types of steps, satisfying special
constraints. This bijection allows to express the convexity degree of the polyomino in terms of the heights
of the trees of Fe and Fs. Basing of this bijection, we develop a new method, for the enumeration of
directed convex polyominoes, which allows us to control several statistics, including the semi-perimeter,
the degree of convexity, the width, the height, the size of the last row/column and the number of corners.
Our method eventually let us determine the generating function of directed k-convex polyominoes, for
any k ≥ 1. This is a rational function, and it can be suitably expressed using the Fibonacci polynomials
[10]. Moreover, we provide the asymptotic behavior for the number of directed k-convex polyominoes.

While in the last years a growing interest was shown in the combinatorial properties of k-convex poly-
ominoes, as certified by [8, 9, 16], the general enumeration problem remains open. Thus we believe that
our approach can be used to develop a bijective method for the solution of the problem of enumerating
k-convex polyominoes.

For brevity sake, some of the proofs will be omitted. We point out that the full version of the paper
containing all the definitions and proofs, with several examples is on the ArXiv [7].

2 Notation and preliminaries
Let P be a convex polyomino whose minimal bounding rectangle has dimension l1×l2. We number the l1
columns and the l2 rows from left to right and from bottom to top, respectively.

Fig. 1: A path connecting two cells of the poly-
omino with two changes of direction; a mono-
tone path between two cells of the polyomino
with two changes of direction.

Thus, we consider the bottom (resp. top) row of P as its first
(resp. last) row, and the leftmost (resp. rightmost) column
of P as its first (resp. last) column. By convention, we will
often write (i, j) to denote the cell of P , whose north-west
corner has coordinates equal to (i, j). With that convention,
the cell is at the intersection of the i-th column and the j-th
row. A path is a self-avoiding sequence of unit steps of four
types: north n = (0, 1), south s = (0,−1), east e = (1, 0),
and west w = (−1, 0). A path connecting two cells, b and
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c, of a convex polyomino P , is a path, entirely contained in P , which starts from the center of b, and
ends at the center of c (see Fig. 1). A path is said to be monotone if it is comprised only of steps of
two types (see Fig. 1). Let p = p1 . . . pj be a path, each pair of steps pipi+1 such that pi 6= pi+1,
1 ≤ i < j, is called a change of direction (see Fig. 1). Given k ∈ N, a convex polyomino is said
to be k-convex if every pair of its cells can be connected by a monotone path with at most k changes
of direction [11]. For the sake of clarity, we point out that a k-convex polyomino is also h-convex for
every h > k. We define the degree of convexity of a convex polyomino P as the smallest k ∈ N such
that P is k-convex. Figure 1 shows a convex-polyomino with degree of convexity k = 2. In this paper
we will deal with the class D≤k (resp. P≤k) of directed k-convex polyominoes (resp. k-parallelogram
polyominoes), i.e. the subclass of k-convex polyominoes which are also directed convex polyominoes
(resp. parallelogram polyominoes). Given a directed convex polyomino D with a minimal bounding
rectangle of size l1 × l2, we define PD to be the parallelogram polyomino obtained from D, extending
the side of D with ordinate equal to l2 in the east direction to the point with coordinate (l1, l2) and
extending the side ofD with abscissa equal to l1 in north direction to the point with coordinate (l1, l2)(see
Fig. 2). Let b = (i, j), c = (i′, j′) be two cells of D. Without loss of generality, we can suppose that
i ≤ i′. Now if j′ < j, since D is a directed convex polyomino, we can always join b and c by means
of a monotone path with at most one change of direction. Therefore, from now on, we will consider the
case where j′ ≥ j. Let us define the bounce paths joining b to c as the two monotone paths internal to
D starting at (i − 3

2 , j −
1
2 ) (resp. at (i − 1

2 , j −
3
2 )) with an east (resp. north) unit step and ending

at the center of c, denoted by rb,c (resp. ub,c), where every side has maximal length (see Fig. 3(a)).

Fig. 2: A directed convex polyomino D and its
associated parallelogram polyomino PD .

We observe that the bounce paths joining two cells b and
c are slightly different from the paths from b to c, due to the
presence of the tails. This is just a precaution to ensure that
the two bounce paths are always different, and it will not af-
fect the computation of the degree of convexity. The minimal
bounce path joining b to c (denoted by mb,c) is the bounce
path joining b to c with the minimal number of changes of
direction. If the two bounce paths joining b to c have the
same number of changes of direction, by convention we de-
fine the minimal bounce path joining b to c to be the bounce
path rb,c.

Proposition 1 Let D be a directed convex polyomino. Given k ≥ 1, then D is a directed k-convex
polyomino if and only if S can be connected to each cell of D by means of a path having at most k
changes of direction.

Therefore, it is worth defining the degree of a cell b of a directed convex polyomino as the number of
changes of direction of the minimal bounce path joining S to b.

Given a parallelogram polyomino P , we denote by E rightmost cell of the top row of P . We define the
bounce paths of P to be the two bounce paths joining S to E and we will denote by r(P ) (resp. u(P ))
the bounce path rS,E (resp. uS,E) (see Fig. 3(b), (c)). Henceforth, if no ambiguity occurs, we will write
u (resp. r) in place of u(P ) (resp. r(P )). The minimal bounce path of P (denoted by m(P ) or m) is the
minimal bounce path joining S to E. The following lemma explains that the minimal bounce path retains
all information about the degree of convexity of a parallelogram polyomino.
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Lemma 2 The degree of convexity of a parallelogram polyomino is equal to the number of changes of
direction of the minimal bounce path m of the parallelogram polyomino.

b

c

(a)

r(P)

u(P)

(b)

u(P)

r(P)

(c)

Fig. 3: (a) The bounce paths joining two cells of a directed convex polyomino; (b), (c) The bounce paths of a
parallelogram polyomino.

We now introduce another class of objects, which will be useful in this paper. An ordered tree is a rooted
tree for which an ordering is specified for the children of each vertex. In this paper we shall say simply
tree instead of ordered tree. The size of a tree is the number of nodes, and the height is the number of
nodes on a maximal simple path starting from the root. Given a tree T , we denote the height of T by h(T ).
Now, let tn,≤k be the number of trees of size n and height less than or equal to k. In [10] the generating
function T≤k of trees with height less than or equal to k is proved to be: T≤k =

∑
j≥0 tj,≤kz

j = zFk

Fk+1

where Fk are the Fibonacci polynomials, defined by the following recurrence relation: F0 = 0, F1 = 1
and Fk+2 = Fk+1− zFk for k ≥ 0. We define by T=k the generating function of trees with height equals
to k. In [10], we can find that T=k = zk

FkFk+1
. We recall that an ordered forest (briefly a forest) is a t-uple

of ordered trees. The size of a forest is the sum of the sizes of its trees. It is known that the forests of size
n are in bijection with the trees of size n + 1: to obtain a forest from a tree, we just need to remove the
root of the tree.

3 The k-parallelogram polyominoes
In the literature there are several bijections between ordered trees and parallelogram polyominoes (see, for
instance, [17]). Here we present yet another map Φ, which builds a pair of trees from a given parallelogram
polyomino, and is borrowed from [1]. In a parallelogram polyomino P , let VP be the set of dots defined
as follows:
• we enlighten P from east to west and from north to south;
• we put a dot in the enlightened cells of P except for the cell E.

We define the pair of trees Φ(P ) = (T1, T2) using the following rules:
• the nodes of T1 and T2 are VP ∪ {s1, s2} and the roots of T1 and T2 are respectively s1 and s2;

nodes may refer to a dot of P or to the corresponding node in T1 or T2;
• in a row (resp. column) of P , except for the top row and the rightmost column, the rightmost (resp.

topmost) node is the father of each other node in the same row (resp. column), and these nodes are
brothers ordered from east to west (resp. north to south);
• the root s1 of T1 (resp. s2 of T2) is the father of all nodes of the rightmost (resp. top) column (resp.

row) of P , excluding s2 (resp. s1).
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Figure 4 shows an example of Φ. Let the size of a pair (T1, T2) of trees be given by the sum of the sizes
of T1 and T2.

Proposition 3 The map Φ is a bijection between parallelogram polyominoes with semi-perimeter n and
pairs of trees with size n.

Proof: By definition of Φ, each node x 6= s1, s2 has exactly one father, in fact:

• if x is one of nodes of the top (resp. rightmost) row (resp. column) then its father is s2 (resp. s1);
• otherwise, by construction, there is exactly one topmost node in the same column of x or one

rightmost node in the same row of x, but not both at the same time.

Since a father always lies above or to the right of its sons, there is no cycle in the graph obtained by means
of Φ and the only two nodes without fathers are s1 and s2 and hence, Φ produces two ordered trees T1 and
T2. The size of (T1, T2) is equal to the number of dots enlightened in the parallelogram polyomino plus
two (the roots s1 of T1 and s2 of T2), which is exactly equal to the semi-perimeter of the parallelogram
polyomino. Now we will prove that Φ is injective. Let P1 and P2 be two parallelogram polyominoes such
that P1 6= P2. Since P1 is different from P2 then there exists a first step of the lower path (or the upper
path) of P1 different to the corresponding step in P2 and so in one of the two trees of Φ(P1) (or of Φ(P2))
we can find a father with more sons that the corresponding father in the corresponding tree of Φ(P2) (or of
Φ(P1)). We deduce that Φ(P1) 6= Φ(P2). To show surjectivity, we first prove that pairs of trees with size
n are bijective to trees with size n. In fact we can define a bijection Ψ which builds, starting from a pair
of trees (T1, T2) a tree T , obtained from T1 by adding T2 as its subtree, with the rule that s2 is the first son
of s1 (see Fig. 4). Since it is known that parallelogram polyominoes and ordered trees are equinumerous
[17], we can conclude that Φ is a bijection. 2

Φ←−−→ Ψ←−−→

Fig. 4: The bijections Φ and Ψ.

Let r and u be the two bounce paths of a parallelogram polyomino P . At every change of direction the
path r (resp. u) individuates an enlightened cell. The sequence of these cells determines a path dr (resp.
du) in T1 or T2 (see Figure 5). We observe that the last node of this path is s1 or s2 and that its length is
not necessarily maximal. By l(dr) (resp. l(du)) we denote the length of dr (resp. du) and we note that
l(dr)− 1 (resp. l(du)− 1) is the number of changes of direction of r (resp. u).

Lemma 4 Let P be a parallelogram polyomino and Φ(P ) = (T1, T2). The following equivalences hold:
i. h(T1) = h(T2)⇔ dr and du are chains of different trees⇔ l(dr) = l(du);
ii. h(T1) > h(T2)⇔ dr and du are chains of T1 ⇔ |l(dr)− l(du)| = 1 and dr, du ∈ T1;
iii. h(T2) > h(T1)⇔ dr and du are chains of T2 ⇔ |l(dr)− l(du)| = 1 and dr, du ∈ T2.

Proposition 5 Let P be a parallelogram polyomino, and Φ(P ) = (T1, T2). The degree of convexity of P

is equal to max(h(T1), h(T2))−
{

1 if h(T1) = h(T2);
2 otherwise.
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Φ←−−−−→

Φ←→

Fig. 5: The simple paths dr and du associated with the bounce paths r(P ) and u(P ) respectively.

We are now ready to calculate the generating function for k-parallelogram polyominoes, which was
determined for the first time in [3], by using a purely analytic method. The following proposition provides
a bijective proof of this enumerative result.

Proposition 6 ([3]) The generating function of k-parallelogram polyominoes with respect to the semi-

perimeter is given by P≤k = z2
(
Fk+2

Fk+3

)2

− z2
(
Fk+2

Fk+3
− Fk+1

Fk+2

)2

, where Fk are the Fibonacci polynomi-
als.

Proof: As already mentioned, the function f = z2
(
Fk+2

Fk+3

)2

is the generating function of pairs of trees
with height less than or equal to k + 2 with respect to their size. According to Proposition 5, to obtain

P≤k we need to remove from f the generating function z2
(
Fk+2

Fk+3
− Fk+1

Fk+2

)2

of pairs (T1, T2) of trees with
height exactly equal to k + 2 with respect to their size. 2

4 Directed k-convex polyominoes
Given a parallelogram polyomino P , we denote by α(P ) (resp. β(P )) the number of cells in the top row
(resp. rightmost column) of P minus one. A monotone path starting with an east step and ending with
a south step is said to be a cut of P if the number of east steps is equal to α(P ) + 1 and the number of
south steps is equal to β(P ) + 1. We can easily check that in a directed convex polyomino D, the path λD
starting from the leftmost corner of the top row (with an east step) and following clockwise the boundary
of D until it reaches the lowest corner of the rightmost column (with a south step) is a cut of PD. For
instance, D being the directed convex polyomino in Fig. 2, λD = e2se2se2s3.

Proposition 7 The directed convex polyominoes of semi-perimeter n + 2 are in bijection with triplets
(Fe, Fs, λ) such that Fe and Fs are forests and λ is a monotone path, starting with an east step and
ending with a south step, and having me + 1 east steps and ms + 1 south steps. The integers me and ms

are respectively the numbers of trees in Fe and Fs. The sum of the sizes of Fe and of Fs is equal to n.
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Proof: (sketch) A directed convex polyomino D is uniquely determined by PD and λD, whereas Fe and
Fs are obtained from Φ(PD) = (T1, T2) by removing the roots of T1 and T2 (see Fig.6). 2
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 Fe =

1 2 3 4 5

4 5 6 7

7 8 9

, Fs =
1 2 3

6 , λ = e2sese3s2



Fig. 6: A directed convex polyomino with the corresponding triplet (Fe, Fs, λ).

4.1 k-convexity constraint
Let b and c be two cells of a given parallelogram polyomino P . There may exist a cell starting from
which the two paths rb,c and ub,c are superimposed. In this case, we denote such a cell by Jb,c (J is for
“joining”). Clearly Jb,c may even coincide with b and if such cell does not exist, we assume that Jb,c
coincides with c. We denote by J or J(P ) the cell JS,E .

h=0

h=1

h=2

h=3

h=4

h=5 h>5

0

1

2 3

4 5

h=0

h=1

h=2

0

1

2

h>2

Fig. 7: The degrees of the cells in a flat and a non flat parallelogram poly-
omino.

Let D be a directed convex
polyomino; a sequence of cells
of PD is naturally determined
by the points where the bounce
paths r(PD) and u(PD) cross
each other. The sequence of these
cells (denoted by Lh = (ih, jh))
starts from S and ends with J .
Let M be the index such that
LM = J . We extend (Lh)h to
a new sequence (Ih)h by defin-
ing Ih≤M = Lh, and Ih>M by
the cells where the two superim-
posed bounce paths change direc-
tion. Each cell Ih will be labelled
by h. From now on, we will refer to the set of directed convex polyominoes such that J(PD) = E, as flat
directed convex polyominoes.

Corollary 8 Let D be a directed convex polyomino such that the degree of convexity of PD is k. The
sequence (Ih)h has length k. If D is flat then Ik = E; otherwise Ik 6= E and Ik is the cell where the
minimal bounce path m of PD has the last change of direction.

Proposition 9 Let D be a directed convex polyomino. Let us consider the cells Ih−1 = (ih−1, jh−1) and
Ih = (ih, jh). Then we have:
1) each cell (i, j) of PD (resp. D) with ih−1 < i ≤ ih and jh−1 < j has degree h;
2) each cell (i, j) of PD (resp. D) with jh−1 < j ≤ jh and ih < i has degree h;
3) each cell (i, j) of PD (resp. D) with ih < i and jh < j has degree greater than h.
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The content of Proposition 9 is illustrated by Figure 7. Now, given a parallelogram polyomino P with
degree of convexity equal to k, we define RP as the set of cells c = (i, j) of P such that ik−1 < i and
jk−1 < j.

Corollary 10 Let D be a directed convex polyomino such that PD has degree of convexity k. Then the
cells of RPD

(resp. RPD
∩D) are the only cells with degree k in PD (resp. D).

Lemma 11 If D is a flat directed convex polyomino, then RPD
is a non empty rectangle.

Let P be a flat parallelogram polyomino with degree of convexity k. Let a and b be the width and the
height of RP , respectively. We denote by λRP

the cut eeα(P )−asbeasβ(P )−bs of P , which is precisely
the cut of the directed convex polyomino obtained removing RP from P .

4.2 Enumeration of directed k-convex polyominoes
Now we present a general method, based on Proposition 7, to enumerate several statistics on families of
directed convex polyominoes. This method contains 3 steps:

Step 1: Determine a combinatorial characterization of the cut λ and the two forests Fe and Fs associ-
ated with the considered class C of directed convex polyominoes;
Step 2: Determine the generating functions with respect to the studied statistics for all the cuts λ, and
for all the trees of Fe and Fs associated with the class C;
Step 3: The generating function of the class C is then obtained by performing the composition of the
generating function of the cuts with all the generating functions of the trees of Fe and Fs.

This method is generic and very simple, and it allows us to obtain generating functions for several
subclasses of directed convex polyominoes according to several different parameters, such as: the semi-
perimeter, the degree of convexity, the width, the height, the size of the last row/column and the number
of corners in D/PD. Let us begin with a classical example. We will count directed convex polyominoes
according to semi-perimeter, width and height. We point out that these results were first discovered by K.
Y. Lin and S. J. Chang in [15] and then by M. Bousquet-Mélou in [6].

Proposition 12 ([15, 6]) The generating function of directed convex polyominoes according to the semi-
perimeter, the width and the height of the polyominoes is xyz2√

(1−(x+y)z)2−4xyz2
.

Proof: Let z, x, y take into account the semi-perimeter, the width and the height of the polyominoes,
respectively. Let us apply the 3 steps of our method:
Step 1: According to Proposition 7, directed convex polyominoes are in bijection with triplets (Fe, Fs, λ)
where: to each east step of λ is bijectively associated a tree of Fe, except for the last east step of λ, and
to each south step of λ is associated a trees of Fs, except for the first south step. There is no constraint on
the trees of Fe and Fs.
Step 2: The width (resp. height) of D is given by the number of cells of PD which are enlightened
from north to south (resp. from east to west). By construction of Φ, the cells contributing to the width
(resp. height) of D are associated with the nodes having an odd (resp. even) height in Fe (resp. Fs)
and with the nodes having an even (resp. odd) height in Fs (resp. Fe). So we need the two generating
functions Te and Ts for the trees of Fe and Fs, respectively. The nodes at odd (resp. even) height in
Te (resp. Ts) are labelled by xz and the nodes at even (resp. odd) height are labelled by yz. The two
generating functions are obtained by solving the following system: Te = xz

1−Ts and Ts = yz
1−Te , from
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which Te(x, y) =
1+(x−y)z−

√
(1+(x−y)z)2−4xz

2 and Ts(x, y) = Te(y, x). The generating function for the
cut is G(e, s, ze, zs) = xzeyzs

1−(e+s) , where zs and ze represent the first south step and the last east step of the
cut, while e and s represent all the other east and south steps of the cut.
Step 3: The final generating function is : G(Te, Ts, z, z) = xyz2√

(1−(x+y)z)2−4xyz2
. 2

The following statement gives a characterization of the class D≤k, which will lead us to the desired
generating function.

Proposition 13 Every directed k-convex polyominoD is uniquely determined by one of the two (mutually
exclusive) situations:
1) a k-parallelogram polyomino P and a cut λ, which is a cut of P , or,
2) a flat k+1-parallelogram polyomino P , with degree of convexity k + 1, and a cut λ, which is a cut

of P such that λ ⊆ λRP
, where the notation λ ⊆ λRP

is used to mean that the path λRP
is weakly

above λ.

Our aim is to use the three steps of our method to obtain the generating function of directed k-convex
polyominoes. However, since the characterization of the cut turns out to be quite complex, it will be easier
to obtain the desired generating function by difference.

Let D−≤k be the class of directed convex polyominoes which are bijective to triplets (Fe, Fs, λ) where
λ is a generic cut, and Fe and Fs are forests with heights less than or equal to k, according to the mapping
described in Proposition 7. Proposition 13 and the bound on the height of the forests ensure that D−≤k is
included in D≤k. Now FD=k is the set of the flat directed convex polyominoes with degree of convexity
k. The following result can be proved using Proposition 13 and the bijection Φ.

Proposition 14 For any integer k ≥ 1, we have D−≤k+1 = D≤k t FD=k+1 where t is the disjoint union.

We just need to determine the generating functions for D−≤k+1 and FD=k+1.

Proposition 15 For any integer k ≥ 1, the generating function for D−≤k is z2 Fk+1

Fk+2−zFk
where z takes into

account the semi-perimeter.

Proof: The g.f. for the cut is G(e, s) = z2

1−(s+e) . Then, the desired result is G(T≤k, T≤k). 2

Proposition 16 For any k ≥ 1, the generating function for FD=k+1 according to the semi-perimeter is

z2 ·
(
zk+1

F2k+3

)2

· Fk+2

(Fk+3 − zFk+1)
.

Proof: We will detail the 3 steps of our method:
Step 1: Let D be a flat directed polyomino with degree of convexity equal to k. Let us describe the trees
of Fe and Fs of PD. From Lemma 11 we know that RPD

is a non empty rectangle and Ik = E. Let R
(resp. C) be the row (resp. column) containing the cell Ik−1. By construction of Φ, the roots of Fe (resp.
Fs) are associated with the cells of the topmost (resp. rightmost) row (resp. column) of PD. Hence, the
height of the trees depends on the position of their roots:
• if the root is on the left (resp. above) of C (resp. R) the height of the tree is less than or equal to k;
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• if the root belongs to C (resp. R), the height is exactly equal to k + 1 (the two bounce paths have
k + 1 changes of direction and are the image through φ−1 of chains dr and du of Fe and Fs);
• if the root is on the right (resp. left) of C (resp. R), the height is less than equal to k + 1.

Let us now give a characterization of the cuts. In the cuts, we will label the east steps by e1 (resp.
e2) if they are mapped onto trees with height less than or equal to k (resp. k + 1). Similarly, we will
label the south steps by s1 (resp. s2) if they are mapped onto trees with height less than or equal to
k (resp. k + 1). Moreover, the first south (resp. last east) step of the cut is labelled s2 (resp. e2).
Since these two steps are not mapped onto a tree, at the end of the process, we will obtain a bad gen-
erating function G′ for the cut. The correct generating function is then obtained by multiplying G′ by
zezs
e2s2

. We can use this trick because all the cuts have at least one south step and one east step. Since
D is flat, the cut contains two special steps ue and us in the columns C and R, respectively. As D
is exactly k + 1-convex, from Corollary 10 we have that RPD

∩ D is non empty. We also observe
that in the cut ue precedes us. Let pl, τ and pr be 3 paths such that pl · ue · τ · us · pr is the cut λ.

Fig. 8: A directed convex polyominoD where the paths pl, τ and pr of λD

are highlighted.

The path pl can be empty or it starts
with an east step followed by any
sequence of east/south steps. East
steps are mapped onto trees hav-
ing height less then or equal to k,
so they are labelled by e1. South
steps are mapped onto trees having
height less then or equal to k+1, so
they are labelled by s2. So, an un-
ambiguous regular expression de-
scribing pl is 1 + e1(e1 + s2)∗. For
similar argument, a regular expression for pr is 1+s1(s1 +e2)∗. Consider now τ : all south and east steps
are mapped onto trees with height less then or equal to k + 1, so τ is a word in e2 and s2. Previously we
have seen that there is at least one cell in RPD

∩D, so τ should contain at least an occurrence of e2 and
s2. An unambiguous regular expression for τ is s∗2e2(e2 + s2)∗s2e

∗
2. Now we just have to remark that the

steps ue and us are mapped onto trees having an height exactly equal to k + 1.
Step 2: The generating function G(e1, s1, e2, s2, ue, us, ze, zs) for the cut pl · ue · τ · us · pr is

zezs
e2s2

·
[(

1 +
e1

1− e1 − s2

)
· ue ·

e2s2

(1− e2) · (1− e2 − s2) · (1− s2)
· us ·

(
1 +

s1

1− s1 − e2

)]
,

which is equal to 1
1−e1−s2 ·

zezsueus

1−e2−s2 ·
1

1−s1−e2 . The generating function for the trees associated with s1

and e1 (resp. s2 and e2) is T≤k (resp. T≤k+1), and the generating function for the trees associated with ue
and us is T=k+1.
Step 3: The final generating function is G(T≤k, T≤k, T≤k+1, T≤k+1, T=k+1, T=k+1, z, z) and is equal to(

T=k+1

1−T≤k−T≤k+1

)2

· z2

1−2T≤k+1
= z2 ·

(
zk+1

F2k+3

)2

· Fk+2

(Fk+3−zFk+1) . 2

As a consequence of Propositions 14, 15 and 16 we have

Proposition 17 For k = 0 the generating function for directed k-convex polyominoes is equal to z2·(1+z)
1−z ,

while for any k ≥ 1, the generating function for directed k-convex polyominoes according to the semi-

perimeter is equal to z2 ·
(
Fk+2

F2k+3

)2

· F2k+2.
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Proof: We just observe that directed 0-convex polyominoes are precisely vertical and horizontal bars. For
k ≥ 1, the result can be obtained as the difference of the generating functions of D−≤k+1 and FD=k+1. 2

5 Asymptotic behavior
It is now interesting to study some facts about the asymptotic behavior of the sequence (dn,≤k)n,k of
directed k-convex polyominoes with semi-perimeter n.

Proposition 18 The number dn,≤k of directed k-convex polyominoes with semi-perimeter n grows like
Ck ·

(
4 cos2(π/2k + 3)

)n · n , where Ck is a k-dependent constant.

Proof: Since D≤k(z) = z2 (Fk+2)2 (F2k+2)
(F2k+3)2 is a rational function, it is known that the asymptotic form of

the coefficients is dn,≤k = [zn]D≤k(z) ∼ Ck ·µ(k)n ·nwhereCk is a k-dependent constant, µ(k) is given
by 1/d2k+3, where d2k+3 is the smallest real root of F2k+3. The fact that there is a double pole in D≤k is
responsible for the factor n. In [10] the authors observe that the roots of Fk(z) = 0 are (4 cos2(jπ/k))−1,
for 1 ≤ j < k/2. In particular the reciprocals of the roots of F2k+3(z) = 0 are (4 cos2(jπ/2k + 3)), for
1 ≤ j ≤ k + 1. With basic calculus one can easily prove that the biggest reciprocal occurs for j = 1, and
so µ(k) = 4 cos2(π/2k + 3). 2

Proposition 19 Let D≤k and D be the generating functions of directed k-convex polyominoes and of
directed convex polyominoes with respect to the semi-perimeter, respectively. Then, limk→+∞D≤k = D.

6 Conclusions and further work
In this paper we present a general method to calculate generating functions for different families of di-
rected convex polyominoes with respect to several statistics, including the degree of convexity. This
allows to solve the problem of enumerating directed k-convex polyominoes, which was presented in [3]
as an open problem.

Our idea is that, for any statistic on directed convex polyominoes that can be read on the associated
trees or on the cut, then our method can suitably be applied to obtain a generating function according to
these parameters. We believe that our method can be applied in several different enumeration problems
related with directed convex polyominoes, mainly because in Proposition 7 the sets of trees and the cut are
not constrained. Moreover, Proposition 7 can be used to write out efficient algorithms to generate directed
convex polyominoes with different combinations of fixed constraints. As a matter of fact, we used our
method to implement a code (i) in the open-source software Sage [18, 19] for the enumeration of directed
convex polyominoes. The code will be soon available in a future Sage release.

Moreover, we would like to point out that the main bijection and the general approach can be expressed
using the formalism of the theory of Species [4]. For example, by using our bijection, we can define the
species of directed convex polyominoes by X2 ·

∑
k≥0(AL + AL)k where X , and AL are respectively

the species of singletons and trees.
There are several guidelines for further research. One is to study the probability distributions of the

convexity degree for directed convex polyominoes with a fixed semi-perimeter. Moreover, directed convex
polyominoes can be seen as special kind of tree-like tableaux and the cut represents the states of the PASEP
(i) An implementation of k-directed polyominoes in Sage: http://trac.sagemath.org/ticket/17178 .

http://trac.sagemath.org/ticket/17178
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(cf. [2] for tree-like tableaux context and definitions). So, our aim is to generalize Proposition 7 for tree-
like tableaux. In tree-like tableaux T associated with directed convex polyominoes, the area counts the
number of some patterns in the permutation associated with T . We can try to obtain some generating
function counting the area statistic.
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