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Lozenge tilings with free boundary

Greta Panova1†

1University of Pennsylvania, Philadelphia, PA 19102, USA

Abstract. We study tilings with lozenges of a domain with free boundary conditions on one side. These corre-
spond to boxed symmetric plane partitions. We show that the positions of the horizontal lozenges near the left flat
boundary, in the limit, have the same joint distribution as the eigenvalues from a Gaussian Unitary Ensemble (the
GUE-corners/minors process). We also prove the existence of a limit shape of the height function (the symmetric
plane partition). We also consider domains where the sides converge to ∞ at different rates and recover again the
GUE-corners process.

Résumé. Nous étudions les pavages par losanges d’un domaine dont le bord vertical est “libre”. Nous montrons que
les positions des losanges horizontaux proches du bord gauche ont la même distribution que les valeurs propres de
l’ensemble gaussien unitaire. Nous montrons aussi l’existence d’une limite de la forme de la fonction de hauteur (une
partition plane symétrique). Nous considérons aussi des domaines ou des bords différents convergent vers ∞ des
taux différents et nous retrouvons nouveau les processus EGU au bord.
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1 Introduction
We study lozenge tilings of certain domains with partially free boundary conditions. These are tilings
of a domain on a triangular grid into unit-sided lozenges, see Figure 1. In the particular setting, we are
interested in a half-hexagonal domain, such that on its side corresponding to the main diagonal of the
hexagon, we have free boundary conditions – that is, the “horizontal” lozenges are allowed to cross that
(free) boundary at any place and protrude halfway through. Let m be the length of the vertical side of the
hexagon, let n the other two lengths, and denote by Tf (n,m) the set of all so–described free–boundary
tilings. Reflecting the tiling along the right boundary line of the domain gives a symmetric tiling, which
corresponds to a boxed symmetric plane partition fitting in an m× n× n box (each lozenge represents a
side of a cube).

Lozenge tilings of fixed boundary domains have been studied extensively both as combinatorial objects
corresponding to plane partitions (see e.g. [EC2]) and as integrable models in statistical mechanics, where
the interest has been the limiting behavior as the mesh (triangle) size goes to 0 and the domain has a fixed
boundary. In these cases, most aspects of the limit behavior have been understood – the “frozen regions”
(covered by just one type of tile) bounded by algebraic “arctic curves” (see e.g. [KO], [CLP]), the surface
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as a limit of the height function, also referred to as “limit shape”, (see [BBO, BG, CLP, CKP]), the
fluctuations near the frozen boundary being the Airy process (see [Petrov] and references therein) and
the fact that the positions of the horizontal lozenges near a flat vertical boundary have the same joint
distribution as the eigenvalues of Gaussian Unitary Ensemble (GUE) matrices (see [GP, OR] and works
by [Johansson–Nordenstam],[Nordenstam], [Novak]). Symmetric lozenge tilings (plane partitions) have
also been studied when the symmetry is along the horizontal axis instead of the vertical axis as considered
here (referring to Figure 1), with results by [Forrester-Nordenstam] and in [BG].
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Fig. 1: Top, middle: the half-hexagon domain in the triangular grid, which is tiled with the 3 types of lozenges (on
the right) – the right boundary of the domain (middle dashed line) is allowed to cut a lozenge in half as shown and the
positions of these “cut” lozenges are unrestricted. Left: the positions yk of the horizontal lozenges on vertical line
k of a tiling whose rightmost boundary is given by the partition λ = (5, 4, 3, 1, 0), here k = 3 and y3 = (4, 3, 0).
Right: the corresponding vertically-symmetric boxed plane partition.

Here we study the same aspects for lozenge tilings with free boundaries as the ones studied for fixed
domains, described above. We show that the positions of the horizontal lozenges near the left boundary
have the same distribution as the GUE matrices eigenvalues, see Theorem 4.3. We also prove the existence
of the limit shape of the height function (i.e. the symmetric plane partition) in Theorem 5.3. The existence
of the limit shape was assumed (without proof) in [DR], where the limit shape and arctic curves were
calculated under these assumptions, but the limit shape existence in such tilings has not been studied with
the present variational methods.

Theorem 1.1 Let m/n → a as n,m → ∞. The rescaled height function of the uniformly random
lozenge tilings of a half-hexagon with free right boundary (i.e. the symmetric plane partition) converges
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(in probability) to a unique limit shape, which coincides over the half-hexagon with the limit shape for
the tilings of the full hexagon (fixed boundary) as described in [CLP]. Moreover, the positions of the
horizontal lozenges (shifted by m/2 and rescaled by

√
n(a2 + 2a)/8) on the r-th vertical line from the

left have the same joint distributions as n,m → ∞, which is the distribution of the eigenvalues of r × r
matrices from the Gaussian Unitary Ensemble. Further, the joint distribution of these positions on all lines
1, . . . , k converges to the joint distribution of the collection of the eigenvalues of the principal submatrices
of sizes 1, . . . , k of a GUE matrix, known as the GUE–corners (GUE–minors) process.

Our methods to proving the GUE distribution follow the approach developed in [GP] on asymptotics
of symmetric functions through certain integral representations and steepest descent asymptotic analysis.
There GUE was shown for tilings of fixed boundary domains by using asymptotics of their moment gen-
erating functions, which were certain Schur functions. As it turns out here, the role of Schur functions is
replaced by symplectic characters and so we derive their asymptotics explicitly. The proof of the existence
of the limit shape follows the approach of [BBO] and [BG] with moment generating functions for cer-
tain measures. It relies on some further symmetric function identities and their asymptotics. Finally, the
GUE phenomenon for differently scaledm and n is also shown through asymptotic analysis of symplectic
characters using the exact formulas from [GP] with care on the analysis in the unusual regimes. For the
complete proofs, technical definitions and statements, and the full list of references we refer the reader to
the full version of this paper, available at ARXIV:1408.0417.

2 Preliminaries
Rational irreducible representations of Lie groups are parametrized by their highest weights (also called
signatures or integer partitions when the entries are nonnegative integers) λ – sequences of (half)integers
λ = (λ1 ≥ λ2 ≥ · · · ≥ λN ). Denote the set of highest weights/signatures of length N by GTN . We will
use the characters of these representations. For GLN (C), these are the Schur functions sλ(x1, . . . , xN ),
which can be defined for any sequence λ via Weyl’s character formula, and when λ is an integer partition
these are the generating functions for semi-standard Young tableaux of shape λ, see [EC2, Mac]. The
value of the character of the irreducible representation of the symplectic group Sp2N (C), parameterized
by λ ∈ GTN , on a symplectic matrix with eigenvalues x1, x

−1
1 , . . . , xN , x

−1
N is given by

χλ(x1, . . . , xN ) =
det
[
x
λj+N+1−j
i − x−(λj+N+1−j)

i

]N
i,j=1

det
[
xN+1−j
i − x−N−1+j

i

]N
i,j=1

.

We now repeat definitions, results and setups from [GP] which will be used later. The normalized
Schur function/ symplectic character on k variables are defined as

Sλ(x1, . . . , xk;N) =
sλ(x1, . . . , xk, 1

N−k)

sλ(1N )
Xλ(x1, . . . , xk;N) =

χλ(x1, . . . , xk, 1
N−k)

χλ(1N )
.

Proposition 2.1 (Proposition 3.19 in [GP]) For any signature λ ∈ GT+
N we have

Xλ(x;N) =
2

x+ 1
Sν(x; 2N, 1), (1)

where ν ∈ GT2N is given by νi = λi + 1 for i = 1, . . . , N and νi = −λ2N−i+1 for i = N + 1, . . . , 2N .
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In [GP] explicit asymptotic expansions for the normalized Schur functions Sλ were found, when λ(N)
converges to a limiting profile function f on [0, 1] in the sense of λ(N)i/N → f(i/N) under specific
conditions as N →∞ for i = 1, . . . , N . The precise results and convergence conditions can be found in
[GP] and the full version of this paper, here we just state them informally.

Proposition 2.2 (Proposition 4.3 in [GP]) Suppose that f(t) is piecewise-differentiable, and
λ(N)/N → f as N →∞ in a certain sense (see [GP]). Then for any fixed h ∈ R

Sλ(N)(e
h/
√
N ;N) = exp

(√
NE(f)h+

1

2
S(f)h2 + o(1)

)
as N →∞, where

E(f) =

∫ 1

0

f(t)dt, S(f) =

∫ 1

0

f(t)2dt− E(f)2 +

∫ 1

0

f(t)(1− 2t)dt.

Moreover, the error o(1) is uniform over h belonging to compact subsets of R \ 0.

Proposition 2.3 (Proposition 4.1 in [GP].) For y ∈ R \ {0}, suppose that f(t) is piecewise-continuous,
λ(N)/N → f in a certain sense, and w0 = w0(y) is the (unique) real root of (∂/∂w)F(w; y) = 0,
where F(w; f) =

∫ 1

0
ln (w − (f(t) + 1− t)) dt . If y ∈ R \ {0} id such that w0 is outside the interval

[λN (N)
N , λ1(N)

N + 1] for all N large enough, then

lim
N→∞

lnSλ(N)(e
y;N)

N
= yw0 −F(w0)− 1− ln(ey − 1). (2)

We use the formula for the multivariate symplectic characters from [GP, Theorem 3.17] to derive the
asymptotics for k > 1 out of developed asymptotics for k = 1:

Xλ(x1, . . . , xk;N) =
∆1
s(1

N )

∆1
s(x1, . . . , xk, 1N−k)

×

(−1)(
k
2) det

[(
xi

∂

∂xi

)2(j−1)
]k
i,j=1

k∏
i=1

Xλ(xi;N)
(xi − x−1

i )(2− xi − x−1
i )N−1

2(2N − 1)!
, (3)

where the ∆1
s are Vandermonde-type explicit polynomials.

We use the following crucial formula from [Mac, I.5, Example 16], which we refer to as Macdonald’s
identity, to compute the sum of Schur functions, indexed by partitions λ ⊂ (mn):

φm(x1, . . . , xn) :=
∑

λ∈(mn)

sλ(x1, . . . , xn) =
det[xm+2n−i

j − xi−1
j ]1≤i,j≤n

det[x2n−i
j − xi−1

j ]1≤i,j≤n
. (4)

The right-hand side of (4) is also (a shifted version of) Weyl’s dimensional formula for the character γλ
corresponding to the irreducible representation of highest weight λ = (m/2) of the odd orthogonal group
O2n+1(C).Using a combinatorial interpretation by Seshadri coming from algebraic geometry, Macdon-
ald’s identity (4) is evident in Proctor’s work and further generalized by Krattenthaler. It relies on the
“branching rule” for the restriction of a representation of o(2n + 1) to a subalgebra sl(n). However, no
direct combinatorial proof is known relating the semi-standard Young tableaux of n letters which fit into
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the (mn) rectangle, and the combinatorial interpretation of the orthogonal characters, coming from the
SO2n−1 ↪→ SO2n+1 branching rule, which corresponds to certain “half” Gelfand-Tsetlin triangles.

In order to take advantage of some established relationships between symplectic characters and Schur
functions from [GP], we express (using Weyl’s character formula), φm as a ratio of symplectic charac-
ters. Denote τ r = ((r/2− 1/2)n). After certain algebraic manipulations we derive the special moment
generating function (m.g.f.) for tilings from Tf (n,m), whose role will become evident later:

(�) Φm(x1, . . . , xk;n) =
φm(x1, . . . , xk, 1

n−k)

φm(1n)
=

k∏
i=1

x
m
2
i

Xτm(x1, . . . , xk;n)

Xτ0(x1, . . . , xk;n)
.

3 Asymptotics I: when limn→∞
m
n ∈ (0,+∞)

We derive the asymptotic behavior for the normalized symplectic characters and so via (�) for Φ.

Proposition 3.1 When m
n → a for 0 < a <∞ we have that

Xτm(e
h√
n ;n) = exp

(
1

4
(a2 + a)h2 + o(1)

)
and Xτ0(eh/

√
n;n) = 1 + o(1),

where the error terms o(1) converge to 0 uniformly on compact real domains for h.

Proof sketch: Using Proposition 2.1 we derive asymptotic formulas for Sνm(e
h√
2n ; 2n, 1) when m/n→

a 6= 0,∞ and also when m = 0. In the m 6= 0 case we apply the formula 2.2 directly, in the m = 0
we use the integral formula for the normalized Schur functions from [GP, Section 3.2] to derive that
Sλ(x;N) = Sλ̂(x1/β ;N) for λ̂i = βλi+(β−1)(N − i) and then apply the same analysis with ν̂0 which
now satisfies the conditions in Proposition 2.2. 2

Proposition 3.2 Let {ai}∞i=1, {bi}∞i=1 be sequences of positive real numbers, such that aN → 0 and
bN
N → 0 as N →∞. Suppose that for some number b we have Xλ(N) (eaNy;N) ebNy → g(y) uniformly

on compact subsets of a domain D ⊂ C as N →∞. Then

lim
N→∞

Xλ(N) (ey1aN , . . . , eykaN ;N) ebN (y1+···+yk) = g(y1) · · · g(yk)

uniformly on compact subsets of Dk.

This result will be used primarily for aN = 1/
√
N and bN = 0 in the case when m/n is bounded

nonzero, and later in Section 6 with an =
√
n
m and bn = 0 when m/n → ∞. The proof uses formula (3)

with certain substitutions and bounds on the derivatives, and will be omitted in this abstract.

Proposition 3.3 Suppose that λ(N) is a sequence of signatures, such that
lnXλ(N)(u;N)

N
→

X(u) , as N →∞, where the convergence is uniform in a complex neighborhood of u = 1. Then

lnXλ(N)(u1, . . . , uk;N)

N
→ X(u1) + · · ·+X(uk)

as N →∞, where the convergence is uniform in a neighborhood of (1k) in Ck.
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Proof sketch: The proof uses the observation that

(
∂
∂u

)j
Xλ(u;N)

Xλ(u;N)
∈

Z
[
∂

∂u
lnXλ(u;N), . . . ,

∂j

∂uj
lnXλ(u;N)

]
, i.e. it lhs is a degree j polynomial in the given ring.

This allows us to apply formula (3) with suitable substitutions/normalizations. 2

Applying the asymptotic results above together with equation (�) gives the following.

Theorem 3.4 For any fixed y1, y2, . . . , yk ∈ R we have that

Φm(ey1/
√
n, . . . , eyk/

√
n;n) exp

(
−(

m

2
√
n

)

k∑
i=1

yi

)
→ exp

(
1

16
(a2 + 2a)

∑
i

y2
i + o(1)

)
,

as n→∞, m/n→ a, uniformly over (h1, . . . , hk) belonging to compact domains of (R \ 0)k.

4 Convergence to the GUE–corners process
We now consider the joint distribution of the positions of the horizontal lozenges closest to the left flat
boundary of the domain. Let Y kn,m denote the k−tuple Y kn,m =

(
yk1 , y

k
2 , . . . , y

k
k

)
, where yk = {ykj }

are the positions of the horizontal lozenges on the k-th vertical line a uniformly random tiling T fn,m, as
depicted in Figure 1. We show that the joint distribution of the ensemble [Y 1

n,m, . . . , Y
k
n,m], shifted by

m/2 and rescaled by a factor of
√
n, converges to the GUE–corners process.

In order to prove the convergence to GUE we use moment generating functions. Introduce the multi-
variate normalized Bessel function in (x; y) = (x1, . . . , xk; y1, . . . , yk), defined as

Bk(x; y) =
det [exp(xiyi)]

k
i,j=1∏

i<j(xi − xj)
∏
i<j(yi − yj)

∏
i<j

(j − i) =
sy−δk(ex)

sy−δk(1k)

∆(ex)

∆(x)
,

where δk = (k − 1, k − 2, . . . , 1, 0) and ∆(z) =
∏
i<j(zi − zj) is the Vandermonde determinant.

Let GUEk denote the k eigenvalues ε1 ≥ ε2 ≥ · · · ≥ εk of a random Hermitian k × k matrix from a
Gaussian Unitary Ensemble. The idea is to show that the m.g.f. EBk for the uniformly random lozenge
tilings from Tf (n,m) converges to the corresponding m.g.f. for GUEk, computed in [GP, Prop 5.6] as:

EBk(x;GUEk) = exp

(
1

2
(x2

1 + · · ·x2
k)

)
. (5)

Proposition 4.1 We have that the expectation of Bk(x;Y kn,m), where Y kn,m is the k-tuple of the positions
of the horizontal lozenges at line k of a tiling chosen uniformly from T fn,m, is given by

EBk

(
x;
Y kn,m −m/2√

n

)
=

k∏
i=1

exp(− m

2
√
n
xi)Φm(ex1/

√
n, . . . , exk/

√
n;n)

∆(ex/
√
n)

∆(x/
√
n)
.

Proof: First, we calculate the probability that {ykj } are the positions of the horizontal lozenges on the k-th
vertical line of a uniformly random tiling fromT fn,m. Tilings in T fn,m are in bijection with Gelfand-Tsetlin
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patterns of n rows and entries no larger than m. Those, on the other hand, are in bijection with semi-
standard Young tableaux (SSYT) T filled with the numbers 1, . . . , n and shapes λ (corresponding to the
positions of the right-most horizontal lozenges as in Figure 1) that fit in the mn rectangle, i.e. λ1 ≤ m.
The positions of the horizontal lozenges on the k-th vertical line are simply the entries on the k-th row of
the Gelfand-Tsetlin pattern. These correspond to the sub-tableaux of T occupied by the entries which are
no larger than k. See Figure 2.

2
0 3

0 1 3
0 0 3 3

0 0 3 3 4

⇔ T =
1 1 2 5

3 4 4

5 5 5

Fig. 2: The correspondence between the k-th line of a Gelfand-Tsetlin pattern and sub-tableau of an SSYT consisting
of the entries ≤ k. Here λ = (4, 3, 3, 0, 0) and y3 − δ3 = (3, 1, 0).

The total number of tilings in T fn,m is equal to the total number of SSYTs with entries 1, . . . , n
and shapes fitting inside mn. The number of SSYTs with entries 1, . . . , n of a given shape λ is just
sλ(1, . . . , 1︸ ︷︷ ︸

n

) and so the total number of tilings in T fn,m is exactly φm(1, . . . , 1︸ ︷︷ ︸
n

). The number of tilings

whose horizontal lozenges on the k-th diagonal are at positions yk = (yk1 , . . . , y
k
k), via the bijection with

SSYTs described above, is equal to∑
λ⊂(mn)

syk−δk(1, . . . , 1︸ ︷︷ ︸
k

)sλ/(yk−δk)(1, . . . , 1︸ ︷︷ ︸
n−k

)

and thus the probability of the positions of the horizontal lozenges on the k-th vertical line being yk is just
that last quantity divided by φm(1n). Using the formula for Bk as ratio of Schur functions, we get

Bk(x;
yk − m

2√
n

)
∆(x/

√
n)

∆(ex/
√
n)

=
∏
i

exp(− xim
2
√
n

)syk−δk(E
x1√
n , . . . , e

xk√
n )/syk−δk(1k).

By the combinatorial description of Schur functions, for two alphabets z, w we have that

sα(z, w) =
∑
β

sβ(z)sα/β(w),

which we apply with α = λ, β = yk − δk, w = 1n−k and z = ex/
√
n:

EBk

(
x;
Y kn,m −m/2√

n

)
∆(x/

√
n)

∆(ex/
√
n)

=
∑
yk

Bk(x;
yk − m

2√
n

)

∑
λ⊂(mn) syk−δk(1k)sλ/(yk−δk)(1

n−k)

φm(1n)

=
∑
yk

∏
i

exp(− xim
2
√
n

)
syk(e

x1√
n , . . . , e

xk√
n )

syk−δk(1k)

syk−δk(1k)
∑
λ⊂(mn) sλ/(yk−δk)(1

n−k)

φm(1n)



200 Greta Panova

=
∏
i

exp(− xim
2
√
n

)
1

φm(1n)

∑
λ⊂(mn)

sλ(e
x1√
n , . . . , e

xk√
n , 1, . . . , 1︸ ︷︷ ︸

n−k

) =
∏
i

exp(− xim
2
√
n

)Φm(e
x1√
n , . . . , e

xk√
n ;n).

2

Lemma 4.2 As n,m→∞ with m/n→ a, we have that

EBk

(
x;
Y kn,m −m/2√

n

)
→ exp

(
1/16(a2 + 2a)(x2

1 + · · ·x2
k)
)

Proof: This is a direct consequence of Proposition 4.1, the asymptotics of Φm from Theorem 3.4 and the
fact that ∆(x/

√
n)

∆(ex/
√
n)
→ 1 uniformly on compact neighborhoods of x as n→∞. 2

Theorem 4.3 We have that, as n,m→∞ with m/n→ a for a > 0,

Y kn,m −m/2√
n(a2 + 2a)/8

→ GUEk

in the sense of weak convergence of random variables. Moreover, the so-rescaled positions of the horizon-

tal lozenges on the first k vertical lines, i.e.
{

Y jn,m−m/2√
n(a2+2a)/8

}k
j=1

weakly converge as random variables

to the collection of eigenvalues {εj}kj=1 of the principle submatrices from a k × k matrix from the GUE
ensemble, where {εj} are the eigenvalues of the submatrix formed by the first j rows and columns.

Proof sketch:: It is a classical result, following Lévy’s continuity theorem, that if the moment generating
functions (MGF) E[eXit], i = 1, . . . of a sequence of random variables {Xi}i=1,... converge uniformly
in a compact domain of t to the MGF of a given random variable X , then Xi → X in distribution (i.e.
weakly). This statement easily generalizes when replacing the random variables by vectors of random
variables and MGF by EBk. This fact applies to the sequences Y kn,m since

EBk

(
x;

Y kn,m −m/2√
n(a2 + 2a)/8

)
= EBk

(
x√

(a2 + 2a)/8
;
Y kn,m −m/2√

n

)

→ exp

(
1

2
(x2

1 + · · ·x2
k)

)
= EBk(x;GUEk),

where Bk(x; yα) = Bk(αx; y) for any constant α and Lemma 4.2 gives the asymptotics.

The convergence of the entire collection of horizontal positions
{

Y jn,m−m/2√
n(a2+2a)/8

}k
j=1

to the collection of

eigenvalues of all the principal submatrices follows from the Gibbs property satisfied by both collections:
given the vector Y kn,m, the distribution of the horizontal lozenges on the first k− 1 vertical lines is clearly
uniform subject to the interlacing conditions; the same holds for the eigenvalues {εj}k−1

j=1 given εk, which
are again subject to the interlacing conditions, i.e. εji−1 ≥ εj−1

i−1 ≥ εji (see [Baryshnikov]). 2

We can now compare the results for the free boundary case and the hexagon by comparing with the
results for the hexagon implicit or explict in [GP] and [Johansson-Nordenstam, Nordenstam, Novak],
which proves the first claim of the Main Theorem.
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5 Limit shape
We now show the existence of a limit shape for the height function (alternatively, the symmetric plane
partition) of the tilings with free boundary, which does not follow immediately from other previously
considered cases.

We prove that the positions of the horizontal lozenges at any vertical line x = αn, given by a signature
(partition) µαn, converge to a “limit shape” in the following sense. This means that there is a monotone
piecewise continuous function fα(t) : [0, b]→ R for some sufficiently large b, such that

lim
n→∞

µαni + αn− i
αn

→ f

(
i

αn

)
in probability (see e.g. [KOS, Section 6.2]), where µαn is now a random signature of length αn, according
to some probability measure on signatures. Moreover, the “limit shape” of the random tilings as n → ∞
should be a function H : R2 → R. At a point (α, t), this is H(α, t) = fα(t). For any signature λ of
length N , define the the counting measure

m[λ] =
1

n

N∑
i=1

δ

(
λi +N − i

N

)
,

where δ is the Dirac delta measure. Clearly, m[λ] is a compactly supported probability measure.
As shown in [BBO, Proposition 2.2], if we prove that the sequence of random measures µN converge

to a deterministic probability measure m, this automatically implies the convergence of the limit shape,
which is then simply the distribution function of m. Following ideas from [BG] we now prove such
convergence.

For any real α ∈ (0, 1) and signature λ of n parts, define for any signature µ = (µ1 ≥ · · · ≥ µbαnc) of
bαnc parts, the following probability

Pαm,n(µ) =

∑
λ:λ1≤m sλ/µ(1n−bαnc)sµ(1bαnc)∑

λ:λ1≤m sλ(1n)
. (6)

Combinatorially this is the probability that a random SSYT with at most m columns and N letters will
have the first bαnc letters forming an SSYT of shape µ. Thus, it is evident that summing over all possible
shapes µ, we obtain all SSYT of shape λ and n letters, and thus Pα,λ is a probability measure on the
signatures of length bαnc.

Finally, for any probability measure ρ on the set of signatures of length N , define the GLN -character
generating function

Sρ(u1, . . . , uN ) =
∑

µ:`(µ)=N

ρ(µ)
sµ(u1, . . . , uN )

sµ(1N )
.

Given a probability distribution ρ on signatures λ, we denote (by a slight abuse of notation, to agree with
[BG]) by m[ρ] the random counting measures m[λ], where λ ∼ ρ.

We will apply the following result, proven in [BG] and inspired by [BBO].
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Theorem 5.1 (Theorem 5.1 in [BG]) For each N , let ρN be a measure on the set of signatures of length
N . Suppose that for every k

lim
N→∞

1

N
ln
(
SρN (u1, . . . , uk, 1

N−k)
)

= Q(u1) + · · ·+Q(uk),

where Q is an analytic function in a neighborhood of 1 and the convergence is uniform in an open (com-
plex) neighborhood of (1, . . . , 1). Then the random pushforward measures m[ρN ] converge, as N →∞,
in probability, in the sense of moments, to a deterministic measure M on R, whose moments are given by∫

R
xrM(dx) =

r∑
`=0

(
r

`

)
1

(`+ 1)!

∂`

∂u`
Q(u)

∣∣∣∣∣
u=1

We apply this theorem to the measure ρ = Pαm,n. This measure is the distribution of the partition µ,
which represents the positions (height function) of the horizontal lozenges at the vertical line k = αn,
i.e. yk as in Section 4 (see Figure 1), of a uniformly random lozenge tiling from Tf (n,m). We have that
N = bαnc, and then compute as in Section 4

SPαm,n(u1, . . . , uN ) =
∑

µ:`(mu)=N

Pαm,n(µ)
sµ(u1, . . . , uN )

sµ(1N )

=
∑

µ:`(µ)=N

∑
λ:λ1≤m sλ/µ(1n−N )sµ(1N )∑

λ:λ1≤m sλ(1n)

sµ(u1, . . . , uN )

sµ(1N )
= Φm(u1, . . . , uN ;n)

(7)

Proposition 5.2 Let m,n→∞ with m/n→ a, where a is a positive real number. Then for any fixed k,
we have

lim
n→∞

1

n
ln Φm(u1, . . . , uk;n) = Ψa(u1) + · · ·+ Ψa(uk),

where Ψa(ey) = y a2 + 2φ(y; a)− 2 and φ is defined as follows

h(y) =
1

4

(
(ey + 1) +

√
(ey + 1)2 + (a2 + 2a) (ey − 1)

2

)
φ(y; a) =

(a
4

+ 1
)

ln
(
h(y)−

(a
4

+ 1
)

(ey − 1)
)
−
(
a

4
+

1

2

)
ln

(
h(y)−

(
a

4
+

1

2

)
(ey − 1)

)
+
a

4
ln
(
h(y) +

a

4
(ey − 1)

)
−
(
a

4
− 1

2

)
ln

(
h(y) +

(
a

4
− 1

2

)
(ey − 1)

)
(8)

Proof sketch: Using the formula for Φ in terms of X, we find the asymptotics for X in the given regime.

Using the relationship to S, we first compute lim
N→∞

lnSνm(ey;N)

N
= φ(y; a) − 1. Since both sides are

analytic around y = 0, the equality extends to a neighborhood of 0. In the case of m = 0, i.e. for f0 we

calculate directly using the same methods (also justified in [GP, Example 1]) lim
N→∞

lnSν0(ey;N)

N
= 0.

By Prosition 2.1, the same limits hold when replacing Sν by the corresponding Xτ for one variable.
Proposition 3.3, we obtain the corresponding limit for the multivariate characters Xτm and Xτ0 . 2
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Theorem 5.3 Let n,m ∈ Z, such that m/n → a as n → ∞, where a ∈ (0,+∞). Let H(u, v) be the
height function of the uniformly random lozenge tiling in Tf (n,m) (alternatively, the value of the square
in the corresponding plane partition at position (v, u − v) with (0, 0) at the lower left corner). Then as
n→∞, for all x ∈ (0, 1), y ≥ 0 the normalized 1

nH(nx, ny) converges in probability to a deterministic
function L(x, y), referred to as “the limit shape”.

Moreover, for any fixed x ∈ (0, 1), the function L(x, y) is the distribution function of the limit measure
M whose moments are given by

∫
R
xrM(dx) =

r∑
`=0

(
r

`

)
1

(`+ 1)!

∂`

∂u`
Ψa(u)

∣∣∣∣∣
u=1

,

where Ψa(u) is defined in Proposition 5.2.

Proof: The distribution ρn(µ) = Pαm,n(µ) defined in equation (6) is a probability distribution on the set
of signatures of length bαnc, as explained there. Further, the corresponding GLn-character generating
function Sρn is, by equation (7), equal to Φm. By Proposition 5.2, this Sρn satisfies the conditions of
Theorem 5.1, so the random measures m[µ], defined by the random signatures µ distributed according to
Pαm,n, converge in probability to a deterministic measure M , defined accordingly through its moments.
Finally, Theorem 5.3 applies to this measure M and we obtain the desired limit of the height function
L(x, y), which is given as the distribution function of M . 2

To show the Main Theorem, we can compare this result to the analogous statement for the full hexagon:
either by the same methods show that it’s deterministic measure M has the same moments or compare
with the present results from [BG, CLP, CKP].

6 Asymptotics II: when limn→∞
m
n = 0,∞

So far, for reasons concerning the physics nature of the models, the interest has been in studying the “scal-
ing limits” of lattice models, in which the scaling factors are the same in all directions. Here we consider
other regimes, in which the scalings in the different directions differ in growth order. For example, the
vertical scaling could be proportional to m ∼ √n and the horizontal is n. We consider again the positions
of the horizontal lozenges near the boundary, where now it is not a priori obvious what their correct scal-
ing should be, in order to get a limiting distribution for Y kn,m as m,n → ∞. The following propositions
are complementary to Theorem 4.3.

Proposition 6.1 Suppose thatm,n→∞ with m/n→∞, and suppose that n
2

m = o(1). Then the shifted
rescaled positions (Y kn,m) of the horizontal lozenges on the kth vertical line satisfy:

Y kn,m −m/2
m/
√

8n
→ GUEk

in distribution for all fixed k. The collection {Y
j
n,m−m/2
m/
√

8n
}kj=1 converges to the GUE-corners process.
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Proposition 6.2 Let n,m→∞, such that n/m→∞. Then

Y kn,m −m/2
2
√
m

→ GUEk

and the collection of shifted rescaled positions of the horizontal lozenges on lines 1, . . . , k converges to
the k × k GUE-corners process.
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