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We prove some new results on a family of operations on binary trees, some of which are similar to addition, multipli-
cation and exponentiation for natural numbers. The main result is that each operation in the family is right-cancellable.
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1 Introduction

The product:.b, wherea andb are positive integers, can be expressed as the sunteoins, each being

equal toa. Similarly,a® can be expressed as the produdt factors, each being equal 4o This basically

works well because the sum and product operations for integers are associative; to push this process one
level further (i.e. define a new operation by iterating exponentiation), one needs to decides on how to
order the operations in the expression

atat...ta

(wheret is the exponentiation operation).

One solution is to always perform the operations in a fixed order, usually right-to-left (see Blackley and
Borosh [1] or Knuth [2]). Another, richer solution is to use the structure of a binary tree to set the order,
and use binary trees instead of integers.

Blondel [3, 4] defines a family of operations on binary trees. Each new operation is defined in terms of
the preceding one. The first three operations are generalizations of addition, multiplication and exponen-
tiation for positive integers, while the others have no natural counterpart among positive integers.

The first operation%, is defined in the following way: i andb are binary trees; Ybisthe binary tree
whose left subtree ig, and whose right subtree is Writing trees as parentheses systems, this translates
toa’bh= (ab).

Operatiorf: is defined recursively usirft ':

k
-a-e=4d.

- if b= (brbr), thena®b = (a®b) " "(a"bR).
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Another way of definin& is that the shape of trgeindicates an order in which to compute fhe'-
product ofn copies ofa, n being the number of leaves bf For example,

a((e0)(o(e0))) = ((a""'a)" "} (a" (a1 a)))

Using the number of leaves as the weight, operatiphand? act as the natural operations of addition,
multiplication, and exponentiation, respectively: b| = |a| + |b|, |a*b] = |a|.|b|, and|a * b| = |a|®.
Our main result is the proof of a conjecture given by Blondel, which states that all the opefai@ns

right-cancellablei.e. for any integek and trees:, b ande, a Fh=ckb impliesa = ¢. This resultis easy
to prove fork = 1,2, 3; we show that it holds for akt > 3.

Sect. 2 introduces a few notations, and recalls some definitions and results on the family of operations.
In Sect. 3, the conjecture is reduced to a particular case. The partial ordering defined in Sect. 4 has no
direct use in the proof, but appears to be the best to obtain growth results. Sect. 5 redefines the operations
using the notion of synthetic attributes, and Sect. 6 finally gives the proof of the conjecture.

2 Notation

The weight (number of leaves) of a trewill be written |b|. When dealing with a word, |w| will denote
its length.

b= ((e0)(e(09)))
bi = (o(e(e(v9))))

For any treer, a°b = a® by

Fig. 1: Two trees with weight 5.

Blondel [3] proves several algebraic properties ofttuperations, a few of which are recalled below.

e Only operatiort is associative.
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o No* is commutative.

o a’b depends only on the weight &f not on its shape, which justifies the use of notaﬂ3¢b|.

« All operations® with & > 3 can be defined in terms &fthe following way :a* b = a?(a ox b),
where the natural numbere, b is defined inductively by:

bl [103b:|b|
—aope—=1

- aok(bLbR) = ((1 Ok bL) Ok_l((ll?bR) if &> 3.

¢ Each tree has a unique factorization into an ordérp[bduct ofprimebinary trees, i.e. trees that
cannot be further factorized. Any tree with a prime number of leaves is clearly prime, but the reverse
is not true.

Since operatioﬁ acts somewhat like multiplication, we will write.b for a . Similarly, sincea ? b
does not depend upon the shape of trbat only on its weight, and is only the resultat: . . . a (with ||
factors), we will writea!®! for a” b.

Using these notations, we have the familiar propefty” = a™.a™ (this translates inta 3(b ! ¢) =
(a?b)*(a” ¢), which follows from the definitions of and*).

3 Preliminary Lemma
To prove the conjecture, we will first reduce it to a simpler form using the following lemmas:

Lemmal Leta, b, c andd be four binary trees, witlh # e andc # e, and letk and %’ be integers no
smaller than 3.
Ifa®b=c" d, thenthereisa binary tree and two integersn andrn such thaiu = ™ ande = u™.

Proof. We can rewritea*b = a®°** andc® d = coow 4, so we only need to prove the lemma for
k=Fk =3.

Consider the factorization af andc into products of prime trees, and write them as wotdmdC' on
the (infinite) alphabet of prime trees. The factorizationg’ofndc® are, respectivelyd repeated times,
andC repeated times (writtenA” andC”, but bear in mind thatA”| = r|A|). |A|, here, is the number
of (not necessarily distinct) prime trees involved in the factorization of

Sincea” = b*, the same applies to the word4? = C*. Letg be the gcd ofA| and|C|, andU the
left factor of lengthg of both A andC'. SinceA, repeated times, is the same &S, repeated times, it
follows thatA = U/14179, andC' = /1¢1/9,

ConvertingU back into a binary tree, we get exacdy= u" andb = u™ with n = |A|/g and
m = |C|/g. 0

Using this lemma, we can reduce the conjecture to the case where tirds are powers of a common
treeu, which means we only need to prove that, wheandm are different integergu™) b and(u™) b
are different. In fact, whemn < m, (u™) *b is a vastly larger tree (in most sensible senses of ‘larger,
including the one defined in the next section) titaf) * b, but we will only prove thatu™)* b is a strict
subtree ofu™) * b.
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4 Partial Ordering of Binary Trees

Operatior? can be described geometrically in the following way*:b is obtained by changing every leaf
of b into a copy ofa. Thus, since:”t! = u.u", we can see that successive powers of a singleutare
prefixes of each other, in the sense that a copy*afith the same root is included ir* +1. This property
is not limited to powers of a single tree (the same relationship exists betwaretu .b), but we will only
consider such a situation when defining a partial ordering on the set of binary trees.

Definition 2 Two binary trees: and b are called comparable if there exist a treeand two integers
andm, such thats = ™ andb = «™. We will then writex < bif n < m.

The above definition is correct: if more than one tregan be chosem, andm will always be in the
same order whatever the chosen tree. The defined relation is a partial ordering on the set of binary trees :
since|u™| = |u|™, the relation is the weight semi-ordering, restricted to pairs of trees that are powers of a
common tree.

Leaves ofwf

Fig. 2: The identityu™t! = u.u™.

Using this partial ordering, minimal elements are those trees that are not a power of some other tree.
Each minimal element is comparable only to its powers, and the order is exactly that of the exponents.
Finally, each tree is comparable to exactly one minimal element.

This partial ordering is not explicitly used in the proof of the conjecture. Itis only given here because it
is the underlying ordering that is somewhat compatible WitH?tbperations and related functions (in the
sense that < b implies(a”¢) < (b* cand(c* a) < (¢*b), whenk > 3). Obtaining similar properties
for more ‘natural’ orderings (like those obtained by considering prefix trees, or prime factorizations as
subwords or factors of each other) has proved to be difficult.
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Definition 3 Letk > 3 be an integer, and a binary tree. We defing, ;. as the function of two integer
variablesn andm defined by
fuk(n,m) = (u") og (u™)
or, equivalently,
(u™) ’?(UM) = (u")Fur(nm) — yn-fun(n,m)

Whenk = 3, fu s is simple: f, s(n,m) = |[u™| = |u|™. This function is thus strictly increasing
according tom (as long as: # ), and increasing (in fact, constant) according:toThe proof of the
conjecture is based on proving that, for edch> 3, f, x is strictly increasing according to both its

variables. This translates to the following: operatiomsand’? are compatible with the ordering defined
above as long as their operands are comparable.

Surprisingly enough, havingbe a prefix ob is not sufficient, as can be seen by taking ((e(ee))e)
andb = ((e(e(ee)))e): a is a prefix ofb, buta *(ee) is not a prefix ob *(ee)!.

5 Redefining Operations *

We now show that operatioﬁsand the related, » functions can be defined in terms of a very particular
case of synthetic attributes. Attributes are normally associated to a context-free grammar (see Knuth [5]
for a detailed definition), which is a formal rewriting system used to recursively define the structure of the
combinatorial objects studied. In the case of binary trees, the simplest thing to do is to say that a binary
tree is either the single node either composed of left and right subtrees which themselves are binary
trees. This translates into the formal gramriae o + (7.7"), which is the underlying grammar in all the
attributes defined below.

A synthetic attribute can be defined on a binary tree by choosing a two-variable fufidtioa ‘com-
puting rule’) and a value to be given to each leaf in the tyfeehould be defined oA’ x FE with values
in £, whereFE is some domain including all values given to leaves). This allows us to compute a value
(attribute) for each node in the tree, using the following recurrence rule: if the left and right sons, respec-
tively, of an internal node, have valuesaindg, then the node has valyga, 3). The attribute for the tree
is the value of its root node.

Using this context, the definition far" b can be translated into a synthetic attribute computed on binary
treeb:

e each leaf i has values;

o the computing rule i§~" : if the left and right sons of an internal node have respective values
andv, this node has value® =" v.

This description of corresponds to the fact that, when compuﬁitfg), the shape of treg indicates
exactly how to associate terms in the calculus &F ' a - - -a *~' a (Wwherea appearsb| times), since this
expression is ambiguous whenevef: 3. For example, ib is the tree in Figure 36(= ((ee)e)), a Fbis
(akﬂa) k1o

When computingf, & (n, m), we get : f, x(n, m) is the synthetic attribute value for tre&” when
leaves have valu:|” and the computing rule i, x—_1.

T There is a ‘left, right, right, left, right, right’ path from the rootdn“?’(u), but not inb 33(“)
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Fig. 3: An example of synthetic attribute.

Proposition 4 (Computing f, x(n, m + 1) onu™) f, x(n,m + 1) can be computed as an attribute on
u™ (instead ofu™*1), still using computing ruld, x_1, by giving leaves a value ¢f, x(n, 1) instead of
|ul™.

Proof. Recall thatu™*! is obtained by replacing all leaves of* by copies ofu, so while computing
fuk(n, m+ 1) as an attribute on™*1 all internal nodes that are leaves in the prefix w&e(the roots

of copies ofu) have valuef, x(n,1). Thus, the value of the root node is not changed when these nodes
are considered as leaves with valfye; (n, 1). ]

Given a binary tree of weight and a computing rulé, we can now define a function efvariables as
follows: F'(z1, ..., z,) is the attribute computed with rujeon treeq if the leaves (in prefix or symmetric
order) have respective values, . . ., z,,. We will use two very simple results:

¢ Initial values growth property: assume the computing rufeis weakly increasing with respect to
both its variables; then the resulting functiénis also weakly increasing with respect to all of its
variables. Iff is additionally strictly increasing with respect to its first variable, tlheis strictly
increasing with respect to its first variable fIfs strictly increasing with respect to all its variables,
then so isF'.

e Tree branches growth property: if f is weakly increasing with respect to one of its variables and
strictly increasing with respect to the other, and if for some integere havef(m, m) > m, then
F(z1,...,2,) > min(zy, ..., z,) provided the minimum is at least (which is always true if the
domain forf is restricted to pairs of positive integers).

These results are easily proved by induction on the height ofitree
We are now ready to state and prove the main property:

Proposition 5 Setk > 3 an integer, andu a binary tree,u # e. Then thef, ; function is strictly
increasing with respect to each of its variables.

Proof. The proof is by induction os.

e Assumek = 4, and recall thaf,, 4(n, m) is obtained by computing a synthetic attribute on u&e
with computing rulef, 3 and leaf values all set fa|™. Now f, s(n, m) = |u|™, so this function
is strictly increasing with respect to variabie (and constant with respect to variablg By the
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initial values growth property, we can deduce tfiat, is strictly increasing with respect to variable
n (if n increases, all leaf values increase).

Now recall thatf,, +(n, m 4+ 1) can also be obtained by computing the synthetic attribute on tree
u™, with leaf valuesf, 4(n, 1). Using the tree branches growth property on the computation for
fu,a(n, 1) (which uses treex and leaf valuesgu|™), we havef, 4+(n,1) > |u|?, which in turns
implies (by the initial values growth property) thAt 4(n, m + 1) > f, 4(n, m). This proves that
fu,4 is strictly increasing with respect to both its variables.

e Now setk > 4 such that the stated property holds for- 1. Replacingf, 4+ andf, 3 by f. » and
fu,k—1, respectively, in the above proof, we prove tlfig; is itself strictly increasing with respect
to both its variables, thus ending the proof.

6 Proof of the Conjecture
We will now prove the following:
Theorem 6 (Right-cancellation) Setk > 3 an integer, and:, b, ¢ three binary trees. I ¥b=1c"b, then
a = cC.
Proof. We have already shown that we only need prove this theorem wiaenlc are powers of some
common treeu, i.e. if (u“)’?b = (um)’?b, thenn = m (this is only true ifu # e, but the case when
u = e reduces t@ = ¢ = ¢ anyway).

We will in fact prove thats — (u”) o b is strictly increasing. Recall th@t™) o5 b can be computed as
a synthetic attribute on trée using f., x—1 as the computing rule arjd|” as leaf value. Now, we know

from Proposition 5 thaf,, ,_1 is strictly increasing with respect to both its variables, which is enough to
prove (thanks to the initial values growth property) that) o5 b increases strictly with.

Now since|(u™) ¥ b| = |u|™ (") °x?) this in turns implies thalfu™) * b| increases strictly with, thus
(u™) ¥ b and(u™)* b can only be equal it = m. O
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