Discrete Mathematics and Theoretical Computer Sciehd®98, 35-47

Lower bounds for sparse matrix vector
multiplication on hypercubic networks

Giovanni Manzini

Dipartimento Scienze e Tecnologie Avanzate, 1-15100 Alessandria, Italy and Istituto di Matematica Computazionale,
CNR, 1-56126 Pisa, Italy.
E-mail: manzi ni @fn. al . uni pm. it

In this paper we consider the problem of computing on a local memory machine the pyoeuctx, whereA is
arandomn x n sparse matrix witl®(n) nonzero elements. To study the average case communication cost of this
problem, we introduce four different probability measures on the set of sparse matrices. We prove that on most local
memory machines witp processors, this computation requiféqn/p) log p) time on the average. We prove that

the same lower bound also holds, in the worst case, for matrices witl2ardy3n nonzero elements.

Keywords: Sparse matrices, pseudo expanders, hypercubic networks, bisection width lower bounds

1 Introduction

In this paper we consider the problem of computing: Ax, whereA is a random: x n sparse matrix

with ©(n) nonzero elements. We prove that, on most local memory machineg piititessors, this com-
putation require$2((n/p) log p) time in the average case. We also prove that this computation requires
Q((n/p) logp) time in the worst case for matrices with orfly nonzero elements and, under additional
hypotheses, also for matrices with nonzero elements. We prove these results by considering only the
communication cost, i.e. the time required for routing the componentsmtheir final destinations.

The average communication cost of computing= Ax has also been studied in [10] starting from
different assumptions. In [10] we restricted our analysis to the algorithms in which the components of
andy are partitioned among the processors according to a fixed scheme not depending on thd.matrix
However, it is natural to try to reduce the cost of sparse matrix vector multiplication by finding a ‘good’
partition of the components of andy. Such a partition can be based on the nonzero structure of the
matrix A which is assumed to be known in advance. This approach is justified if one has to compute
many products involving the same matrix, or involving matrices with the same nonzero structure. The
development of efficient partition schemes is a very active area of research; for some recent results see [3,
4,5, 14, 15].

In this paper we prove lower bounds which also hold for algorithms which partition the components of
x andy on the basis of the nonzero structuresfFirst, we introduce four probability measures on the
class ofn x n sparse matrices witB(n) nonzero elements. Then, we show that with high probability
the cost of computing = Ax on ap-processor hypercube§¥((n/p) log p) for everydistribution of the

1365-805@0 1998 Maison de I'Informatique et des Mathématiques Discrétes (MIMD), Paris, France

36 Giovanni Manzini

components ok andy among the processors. Since the hypercube can simulate with constant slowdown
any O(p)-processor butterfly, CCC, mesh of trees and shuffle exchange network, the same bounds hold
for these communication networks as well (see [7] for descriptions and properties of the hypercube, and
of the other networks mentioned above).

Our results are based on the expansion properties of a bipartite graph associated with thel matrix
Expansion properties, as well as the related concept of separators, have played a major role in the study of
the fill-in generated by Gaussian and Cholesky factorization of a random sparse matrix (see[1, 8, 11, 12]),
but to our knowledge, this is the first time they have been used for the analysis of parallel matrix vector
multiplication algorithms.

We establish lower bounds for the hypercube assuming the following model of computation. Processors
have only local memory and communicate with one another by sending packets of information through
the hypercube links. At each step, each processor is allowed to perform a bounded amount of local com-
putation, or to send one packet of bounded length to an adjacent processor (we are therefore considering
the so-called weak hypercube).

This paper is organized as follows. In section 2 we introduce four different probability measures on the
set of sparse matrices, and the notion of the pseudo-expander graph. We also prove that the dependency
graph associated with a random matrix is a pseudo-expander with high probability. In section 3 we
study the average cost of sparse matrix vector multiplication, and in section 4 we prove lower bounds for
matrices with3n and2n nonzero elements. Section 5 contains some concluding remarks.

2 Preliminaries

LetX = {z1,...,z,},andY = {y1,...,y,}. Given am x n matrix A, we associate with a directed
bipartite graph7(A), called thedependency graphrhe vertex set of(A4) is X UY, and(z;, y;) is an
edge ofG(A) if and only if a;; # 0. In other words, the vertices 61(A) represent the componentssof
andy, and the edgéz;, y;) € G(A) if and only if the valuey; depends upon;.

Definition 2.1 Let0 < « < 1, 8 > 1 andag < 1. We say that the grapfi(A) is an(«, £, n)-pseudo-
expandeif for each set/ C X the following property holds:

= <1< na = |Adj(U)] > B|U|

Note that we must haves < 1, since each set afn vertices can be connected to at mostertices.

The notion of a pseudo-expander graph is similar to the well known notion of an expander graph [2]. We
recall that a graph is afw, 8, n)-expander ifi | < na implies|Adj (U) | > g|U| (hence, all expanders
are pseudo-expanders).

The average case complexity of sparse matrix vector multiplication will be obtained combining two
basic results: in this section, we prove that a random sparse matrix is a pseudo-expander with probability
very close to one, in the next section we prove that computing Ax on ap-processor hypercube
requires2((n/p) log p) time if G(A) is a pseudo-expander.

To study the average cost of a sparse matrix vector multiplication, we introduce four probability mea-
sures on the set of x n sparse matrices. Each measure represents a different type of sparse matrix
with ©(n) nonzero elements. Although the nonzero elements can be arbitrary real numbers, we assume
the behaviour of the multiplication algorithms does not depend upon their numerical values. Hence, all
measures are defined on the set of 0—1 matrices, wihegresents a generic nonzero element.

Sparse matrix vector multiplication 37

1. Let0 < d; < n such thatd;n is an integer. We denote byt; the probability measure such that
Pr{A} # 0 only if the matrixA has exactly/; n nonzero elements; moreover, éﬂn) matrices
with d;n nonzero elements are equally likely.

2. Let0 < dy < n, p= d2/n. We denote by\, the probability measure such that for each entry
Pr {a;; # 0} = p. Hence, we hav®r {A} = p*(1 — p)"2_k, wherek is the number of nonzero
elements ofd.

3. Letds be an intege® < d3 < n. We denote by\1; the probability measure such tHat {A} # 0
only if each row ofA contains exactly/s nonzero elements; moreover, QA)" matrices withds
nonzero elements per row are equally likely.

4. Letd, be an integed < d4 < n. We denote by\ 4 the probability measure such tHat {A} # 0
only if each column of4 contains exactlyl, nonzero elements; moreover, é\a[!l)” matrices with
d4 nonzero elements per column are equally likely.

The above measures are clearly related since they all represent unstructured sparse matrices. We have
chosen these measures since they are quite natural, but of course, they do not cover the whole spectrum

of ‘interesting’ sparse matrices. In the following, the expression ‘random matrix’ will denote a matrix
chosen according to one of these probability measures.
Given a random matri¥ we want to estimate the probability that the grapi) is a pseudo-expander.
In this section we prove that for the measures—M 4 previously defined such probability is very close
to one (Theorem 2.6). In the following, we make use of some well known inequalitie$. €dr < n,

)<
(1 - l) <ot 2)

In addition, a straightforward computation shows that for any triplet of positive integgetsp such that

m + p < n we have
(a7 G) =6y ®

Lemma 2.2 Let A be a random matrix chosen according to the probability meaddie: = 1,... 4.
IfU C X,V CY we have

and, for any real numbar > 1,

2N\ 1NV

Pe{adi () =4} < (1-%) @)
Proof. We consider only = 1, 3, since the caseis= 2,4 are similar. LetQ = {a;;|z; € U,y; € V}.
We have|Q| = |U||V] and Adj(U) NV = ¢ ifand only if a;; = 0 for all a;; € Q. For the probability
measureM,, using (3) we get

Pr{Adj (U)NV = ¢} = <n2 - |Q|) (dnlzn)_l . (1 ~ ﬂ)lUllvl

din n

38

Giovanni Manzini
not contain nonzero elements in ti€] columns corresponding . By (3) we get

Pr{Adi (U) NV = ¢} = [(” — vl

W)

Lemma 2.3 LetU C X, |U| = k, and assumé4) holds. If

For the probability measuré1s; we have Adj{U) NV = ¢ only if the |V| rows corresponding t& do

VI

n

wl1vi
<(-%)

]
0< A<, O;—ngkgan,
then

©)
g\ F=BR)(1=X)
Pr{ladi ()| < k) < (1- %)
Proof. First note that

n

n

Pr{|Adj (U)| < Bk} = Pr{|Adj (U)| < [Bk]}
We have tha{Adj (U) | < |Bk] only if there exists a se¥ C Y, with |[V| = n — | 8k], such that
Adj (U)NV = ¢. Since there arén_L

PE]

) setsV’ of sizen — |3k, if (4) holds, we have
Pe{ladi ()| <) < (]

n
By (1) we have

n

Pr{|Adj (U)[< Bk}

IN A\
TN TN
3 3
[|
= o
» |3
>~ =
~— T
S N~
' 3
= I
x> —
- 2
TN —
-
| —_
EN
~—— 3|
x>
S =
5}
|
=
Z
v
TN
—
|
e
3
|
=
i
-
|
>

Hence, we need to show that

kX
en d;
1—-— 1
n— K () -
Sincena/2 < k < na, using (2) we get

kX
en 1_@ < en
n—/?’k< n)

an) d;) a
A R
n — naf n 1—ap
This completes the proof since the hypothesis (59, 0implies that
1_dida
e 2z <l—-apf

Sparse matrix vector multiplication 39
Lemma 2.4 Suppose that the hypotheses of Lemma 2.3 hold. If

4 1
2 (4108 3) ©

then the probability that there exists a $6tC X with |U| = & such thafAdj (U) | < Sk is less than
27k,

Proof. The probability that a set of siZeis connected to less thatk vertices is given in Lemma 2.3.
Since there exist}) of such sets, we have

k n

\ k(n—BR)(1=1)
() (-%)

N (n=Bk)(1=-2)
T(1-2) <s)

N £\ Fe=aR)(1-2)
Pr {30 such tha{Adj (U) | < gk} < <) (1 — —Z)

Therefore, we need to prove that

Since™* < k < na, we have

en i\ (PRI 9% g\ "(1=eB)(1-23)
297 = 20-)

k n o n
2
< Eel—dl(l—a,@)(l—)\) (8)

From (6) we have A
log = + 1 —d;(1—af)(1 - A) <0
04

hence 4
Zelmd(-ef)(1-2) <
The Lemma follows by comparing thi:Iast inequality with (7) and (8). |
Note that Lemma 2.4 holds only if both (5) and (6) hold. That/janust satisfy
diZmax{i[l—log(l—a[}’)],<1+logé) ;} 9)
al a) (1=X)(1—-ap)

for somed < A < 1. Itis easy to verify that by taking

7 with v = 2(1 — ag) [1 — log (1 — af)]

A= ,
v+ a(l+log?)

the two arguments of theax function in (9) are equal. By substitutingwith), we obtain that (9) is
equivalent to
1+1logd
d; > 7+ %8 o
- 1—ap

+ % [1—log(1—apB)]

40 Giovanni Manzini
Lemma 2.5 Let A be ann x n random matrix for whict{4) holds. If

1+log 2
4o Ltiont
- 1—ap

+ 211~ log (1 - ag)] (10)

the graphG (A) is an(a, 3, n)-pseudo-expander with probability greater thams- 21~ %*

Proof. The graphz(A) is notan(«a, 3, n)-pseudo-expander only if there exists aldet X with na/2 <
|U| < na such thajAdj (U) | < g|U|. By Lemma 2.4, we know that

lna]
Pr{G(A) is not a pseudo-expandgr Z 27k

k=[na/2]
Therefore,
Pr {G(A) is a pseudo-expander 1 — 27 [%] (Z 2‘i) >1—2!=%
i=0
O
Theorem 2.6 Let A be a random matrix chosen according to the probability meaduie: = 1, ... ,4.
If
4> L tlosg 211 Zlog (1 — af 11
Z_W+E —log (1 — af)] (11)
the graphGG(A) is an(a, 3, n)-pseudo-expander with probability greater than- 21~ %*
Proof. The proof follows by Lemmas 2.2 and 2.5. O

As an example, for = %, 8= % inequality (11) becomes; > 13.65. ... Theorem 2.6 tells us that,
under this assumptioity(A) is an(3, 12, n)-pseudo-expander with probability— 2'~%. Similarly, if
d; > 15.08... G(A) isa(Z, 2, n)-pseudo-expander with probability greater than 2!~ %

If G(A) is an(a, 3, n)-pseudo-expander, then, givenC X such thatha/2 < |U] < na there are
more thang|U| valuesy; that depend on the values € U. Similarly, if G(AT) is an(«, 3, n)-pseudo-
expander, givel¥ C Y, a/2 < |V| < «, the valueg); € V depend upon more tha#{V| valuesz;. By

symmetry considerations we have the following corollary of Theorem 2.6.

Corollary 2.7 Let A be a random matrix chosen according to the probability meaddiei = 1, ... 4.
If d; satisfieg11), then the graph(A7T) is an («, 3, n)-pseudo-expander with probability greater than
1—21-% 0

3 Study of the Average Case Communication Complexity

Let A be ann x n sparse matrix, and let < n. In this section we prove a lower bound on the average
case complexity of computing the prodygct= Ax on ap-processor hypercube. Our analysis is based on
the cost of routing the componentsxfto their final destination. That is, we consider only the cost of

Sparse matrix vector multiplication 41

routing, to the processor that compuigsthe values:;’s for all « such thaiz;; # 0. A major difficulty
for establishing a lower bound is that we can compute partial gyms a;;, z;, + - - - + a;;, 2, during
the routing process. In this case, by moving a single vajuge can ‘move’ severat;’s. However, since
thea;;’s can be arbitrary, we assume that the partial gyre= a;;, z;, + - - - + a;i, ;, can be used only
for computing thej-th componeny;.

In the previous section, we have shown that a random matrix is a pseudo-expander with high probability.
Therefore, to establish an average case result it suffices to obtain a lower bound for this class of matrices.

In the following, we assume that there exist two functiépsF, mapping{1,2,... ,n}into{0,... ,p—
1} such that
1. fori =1,...,n, the valuez; is initially containedonly in processor number, (i);
2. forj = 1,...,n, at the end of the computation the valyeis contained in processor number
Fy(3)-

In the following, F,;-! (k) will denote the sef{z; |F,(i) = k}, that is, the set of all components »f
initially contained in processdr. Similarly, Fy—l(k:) will denote the components gf contained in pro-
Cessolk.

Theorem 3.1 Let A be a matrix such that/(A) is an(«, 3, n)-pseudo-expander with = 1/2, 2 < 8 <
2. If conditions 1-2 hold, and fdr < h < p, |Fy—1(h)| = |n/p| or [n/p], any algorithm for computing
the producty = Ax on ap-processor hypercube requir€q(n/p) logp) time.

Proof. The two functionsF;, F, define a mapping of the vertices 6f(4) into the processors of the
hypercube. If the edgér;, y;) belongs ta/(A) (that is,a;; # 0) the valuey; depends uponr;. Hence,
the valuer; has to be moved from process8y(7) to processoF, (j).

For1 < k < logp we consider the set of dimensidnlinks of the hypercube (that is, the links
connecting processors whose addresses differ irkitiebit). If the dimensionk links are removed,
the hypercube is bisected into two séfs, H, with p/2 processors each. From the hypothesigprit
follows that at the end of the computation each set contains at(m5t[n/p] < 2n/3 valuesy;’s.

We can assume thaf; initially contains at least/2 valuesz;’s (if not, we exchange the roles &f,
andHs,). Avaluexz; € H; can reachH either by itself or inside a partial suin a;,z,. Note that a
valuez; that reaches/, by itself can be utilized for the computation of seveygk, but we assume that
each partial sum can be utilized for computing only gne

Let n; denote the number of values € H; that traverse the dimensidninks by themselves, and let
ns be the numEer of partial sums that traverse the dimenisiotks. We claim thainax(ni, ns) > en

wheres = %.

If n; < en, we consider the set; of the values:; € H thatdo nottraverse the dimensidalinks by
themselves. We have

|X1|>§—n1>.——6n:7 (12)

42 Giovanni Manzini

we have that more thag’2™— — 22 valuesy; € H, depend on the values € X;. We have
B+1) 3 J

75n 2n 6—-4(8+1)
—— =n———————~ = ¢n

6(8+1) 3 6(3+1)

that is, more thaan valuesy; € H- depend upon the values € X;. Moreover, the values; € X; can
reachH, only inside then, partial sums that traverse the dimensiolinks. Since each partial sum can
be utilized for the computation of only ong, we have that, > en as claimed.

This proves thaf2(n) items must traverse the dimensibrinks. Since the same result holds for all
dimensions, the sum of the lengths of the paths traversed by the dafalisg p). Since at each step at
mostp links can be traversed, the computatiorycf Ax requires2((n/p) logp) time. O

Theorem 3.2 Let A be a matrix such that/(A”) is an (a, 3, n)-pseudo-expander with = 1/2, 2 <
B < 2. If conditions 1-2 hold, and, fat < h < p, |F; (k)| = |n/p] or [n/p], any algorithm for
computing the produgt = Ax on ap-processor hypercube requir€q(n/p) log p) time.

Proof. Let H,, H, denote the sets obtained by removing the dimengibnks of the hypercube. From
the hypothesis ot,; follows that initially each set contains at m@gy2) [n/p] < 2n/3 valuesz;'s. We
can assume that at the end of the computalierrontains at least/2 valuesy;’s (if not we considerH).
Letnq, ng 3be gefined as in the proof of Theorem 3.1. Clearly, it suffices to proverthafn,, ns) > en

with ¢ = %

If ny < en, we consider the sét, of the valuegy; € H, that are computed entirely insid&,. That is,
yn € Ys only if no partial sump _ ap;z; traverses the dimensidnlinks. We have

|~ > n S . n
- Z = ——
=g Ty 6(3+1)
SinceG(AT) is a pseudo-expander, the valyese V> depend on more th Tﬂn — 22 valuesr; € H;.

By construction, these values's must traverse the dimensiérlinks by themselves. Hence

7 2
n1>¢——n:6n

6(8+1) 3
O
By combining Theorems 3.1 and 3.2 with a result on the complexity of balancing on the hypercube,

it is possible to prove that the computationyof= Ax requiresQ((n/p) logp) time even if there are
processors containin@(n/p) components ok ory.

Lemma 3.3 Suppose that items are distributed over theprocessors of a hypercube, and tetbe the
maximum number of items stored in a single processor. There exists an alg8nttwnCE that redis-
tributes the items so that each processor contéityg| or |n/p| items. The running time BALANCE

isO ('m logl/2 p + log? p) .

Proof. See [13, Theorem 5]. O

Sparse matrix vector multiplication 43

We also need the converse of this lemma. Given a distributionitdms overp processors with no
more thann items per processor, there exists an algorithRBRLANCE that constructs such distribution
starting from an initial setting in which each processor contgity®] or [n/p| items. The algorithm
UNBALANCE is obtained by executing the operations of the algorithanB\NCE in the opposite order,

hence its running time is aga([h(m log!/? p + log® p) :
In the following we use the notatiof{n) = o(g(n)) to denote that for any > 0, there exists:, such
thatf(n) < cg(n) forall n > ng.

Theorem 3.4 Let A be a matrix such tha€i(A) is an («, 3, n)-pseudo-expander with = 1/2, <
B < 2. If conditions 1-2 hold, and, fob < h < p, |F; (k)| = O((n/p)log” p) with 0 < w <
1/2, plogp = o(n), any algorithm for computing the produgt = Ax on ap-processor hypercube
requires2((n/p) log p) time.

Proof. Assume by contradiction that there exists an algoritrrr&S EPROD for computingy = Ax such
that:

(@) the running time of BARSEPROD S t(n, p) With t(n, p) = o((n/p) log p),
(b) at the end of the computation each processor con@is/p) log” p) componentg;'s.

Clearly, using the procedureaBANCE, we can transform SARSEPROD into an algorithm in which at
the end of the computation each processor confairig] or [n/p| components of. The running time
of this new algorithm is

0 ((n/p) log® plog'/? p+log” p + t(n, p))
that by hypothesis is((n/p) log p). This is impossible by Theorem 3.1. a
Using the procedure NBALANCE and Theorem 3.2, it is straightforward to prove the following result.

Theorem 3.5 Let A be a matrix such that:(AT) is an(a, 3, n)-pseudo-expander with = 1/2, 3 <
B < 2. If conditions 1-2 hold, and, fod < h < p, |F; (k)] = O((n/p)log® p) with 0 < w <
1/2, plogp = o(n), any algorithm for computing the produgt = Ax on ap-processor hypercube
requiresQ((n/p) log p) time. O

We can summarize the results of this section as follows: if the components of one of the xemtgrs
are distributed ‘evenly’ (in the sense of Theorems 3.4 and 3.5) among the processors, the data movement
required for computing = Ax takesQ((n/p) log p) time with high probability. The result holds for the
weak hypercube and,fortiori, for the hypercubic networks that can be emulated with constant slowdown
by the hypercube.

Note that no hypothesis has been made on how the nonzero entriesrefstored. That is, all lower
bounds hold even if each processor contains in its local memory all nonzero elements of thedmatrix
Moreover, since these results hold for any pair of functian F,,, we have that the knowledge of the
nonzero structure ot does not help to reduce the average cost of the computation.

4 Matrices with 3n and 2n Nonzero Elements

In the previous section we have shown thatdihas©(n) nonzero elements, computigg= Ax on
a p-processor hypercube tak¢(n/p) logp) time with high probability. It is interesting to investigate

44 Giovanni Manzini

what is the minimum number of nonzero elementsidbr which this property holds. In this section we
give a partial answer to this question.

Definition 4.1 Let 1 < g < 2. Given a matrix4, we say that the grapfi(A) is a 3-weak-expandeif
for each set/ C X the following property holds:

U= [n/2] = |Adj(U)]|> pIU|

Obviously, all(«, 4, n)-pseudo-expanders with > 1/2 are weak-expanders but the converse is not true.
As we will see, weak-expanders can be still used to get lower bounds for matrix vector multiplication. In
addition, the next lemma shows that there exist matrices with Zmlgonzero elements whose depen-
dency graph is a weak-expander.
Lemma 4.2 For all n > 5, there exists am x n matrix A such that

1. A = m + 7y + 73, Wherer,, 7o, 75 are permutation matrices,

2. bothG(A) andG(AT) are £-weak-expanders.

Proof. The existence of matrix is established in the proof of Theorem 4.3 in [11]. |

Lemma 4.3 Let A be a matrix with a constant number of nonzero elements per row, and such(thal)
is a f-weak-expander. If conditions 1-2 of section 3 hpld, and, for0 < A < p, |Fy—1(h)| = n/p, any
algorithm for computing the produgt = Ax on ap-processor hypercube requir€(n/p) log p) time.

Proof. As in the proof of Theorem 3.1, it suffices to prove that, fo£ £ < logp, there are(n) items
that must traverse the dimensibtinks of the hypercube.

Let H,, H, denote the sets obtained by removing the dimenkilimks. As usual, we can assume that
H, contains at least/2 valuesz;'s. Clearly, then/2 valuesy; € H, depend upon at lea§f — 1)(n/2)
valuesz; € H;. These values can traverse the dimengidinks either by themselves or inside a partial
sum. However, each partial sum can contain only a constant number of ¥aJiresice2(n) items must
traverse the dimensianlinks. a

An analogous proof yields the following result.

Lemma 4.4 Let A be a matrix with a constant number of nonzero elements per column, and such that
G(A) is a p-weak-expander. If conditions 1-2 of Section 3 hpld, and, for0 < h < p, |F;1(h)| =
n/p, any algorithm for computing = Ax on ap-processor hypercube requir€s(n/p) log p) time. O

Using Lemmas 4.2-4.4, we can easily prove that, in the worst case, the computatien.dk requires
Q((n/p) log p) time also for matrices with onlgn nonzero elements.

Theorem 4.5 For all n > 5, there exists am x n matrix A with at mostn nonzero elements, such that,
if the components of one of the vectarsr y are evenly distributed among the processors, any algorithm
for computingy = Ax on ap-processor hypercube requir€(n/p) log p) time. O

The case of matrices with three nonzero elements per row appears to be the boundary between easy and
difficult problems. In fact, if a matrix3 contains at most two nonzero elements in each row and in each
column, we can arrange the components @ndy so that the produgt = Ax can be computed on the
hypercube irO(n/p) time. To see this, it suffices to notice that each verte& OB) has degree at most

Sparse matrix vector multiplication 45

two. Hence, the connected component&¢B) can only be chains or rings and can be embedded in the
hypercube with constant dilation and congestion.

We conclude this section by studying the complexity of sparse matrix vector multiplication when we
requirethat, foi = 1, ..., n, the valugy; is stored in the same processor containipngA typical situation
in which this requirement must be met, is when the multiplication algorithm is utilized for computing the
sequenca**t1) = Ax(¥) generated by an iterative method. Note that, using the notation of section 3,
this requirement is equivalent to assuming that= F,.

Theorem 4.6 Let# be the class of matrix vector multiplication algorithms such that;ifer 1,... , n,
the valuey; is stored in the same processor containing For all n > 5, there exists am x n matrix B
such that

1. each row and each column Bfcontains at most two nonzero elements,

2. if the component of are evenly distributed, any algorithm i for computingy = Bx on a
p-processor hypercube requir€g(n/p) logp) time.

Proof. By Lemmas 4.2 and 4.4, we know that there exists a matrsuch that the communication cost

of computingy = Ax is Q((n/p) logp) time (note that this bound holds for the algorithms notin
Moreover, we know thatl = 7 + 7 + 73, wherer; , 7o, 75 are permutation matrices. Now consider the
matrix A’ = nl‘lﬁ. Since the multiplication by a permutation matrix does not require any communication
(for the algorithms not ir#!), the communication cost of computingg= A’x is Q((n/p) logp). Since

A'x = x + Bx, any algorithm in# for computingBx can be used for computing’x with no extra
communication cost. It follows that any algorithm#hfor computingBx requires2((n/p) log p) time.

This completes the proof, sindis equal to the sum of two permutation matrices. O

5 Concluding Remarks

One of the most challenging problems in the field of distributed computing is to find good data distribu-
tions for irregular problems. In this paper we have analysed the issue of data distribution for the problem
of sparse matrix vector multiplication. We have performed an average case analysis by introducing four
different probability measures on the setok n matrices with®(n) nonzero elements. We have shown
that, on average, computing = Ax on many®(p)-processor networks requir€¥ (n/p) log p) time.

The result holds for any balanced distribution of the componentsamidy among the processors.

A parallel algorithm for computing the produgt= Ax, whereA is an x n matrix with O(n) nonzero
elements, has been given in [9]. The algorithm run®{iin/p) log p) time on ap-processor hypercubic
network. The results of this paper establish the ‘average case’ optimality of the algorithm in [9] for the
class of unstructured matrices. However, our results do not rule out the possibility that the predust
can be computed io((n/p) log p) time for important classes of matrices which are not pseudo-expanders.
Typical examples are the matrices arising in finite elements and finite difference discretization of partial
differential equations for whict(n/p) multiplication algorithms exist (see for example [6, Ch. 11]).

There are several possible extensions of our results which deserve further investigation. In our analysis
we have considered only the cost of routing each valu® the processors in charge of computing the
valuesy;’s which depend upom;. It is natural to ask if one could get more general results by taking into
account also the computation cost, which, as the number of nonzero elements grows, may well exceed the
cost of communication. Another interesting open problem is whether we can bre@(thép) log p)

46 Giovanni Manzini

lower bound by allowing processors to contain multiple copies of the componertsTa be fair, our
algorithm should produce multiple copies of the componentg sb that it can be used to compute
sequences of the kind* +1) = Ax(*),

References

[1] A. Agrawal, P. Klein and R. Ravi. Cutting down on fill using nested dissection: Provably good
elimination orderings. In A. George, R. Gilbert and J. Liu, edit@sph Theory and Sparse Matrix
Computation31-55. Springer-Verlag, 1993.

[2] B. Bollobas.Random GraphsAcademic Press, 1985.

[3] U. Catalyuerek and C. Aykanat. Decomposing irregularly sparse matrices for parallel matrix-
vector multiplication. Parallel Algorithms for Irregulary Structured Problems (IRREGULAR '96)
LNCS 1117, 75-86. Springer-Verlag, 1996.

[4] T. Dehn, M. Eiermann, K. Giebermann and V. Sperling. Structured sparse matrix-vector multiplica-
tion on massively parallel SIMD architecturdarallel Computing21:1867-1894, 1995.

[5] P. Fernandes and P. Girdinio. A new storage scheme for an efficient implementation of the sparse
matrix-vector productParallel Computingl2:327-333, 1989.

[6] V. Kumar, A. Grama, A. Gupta and G. Karypisntroduction to Parallel Computing: Design and
Analysis of AlgorithmsBenjamin/Cummings, Redwood City, CA, 1994.

[7] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes
Morgan Kaufmann, San Mateo, CA, 1991.

[8] R. Lipton, D. Rose and R. Tarjan. Generalized nested disse&iéi J. Numer. Anall6:346-358,
1979.

[9] G. Manzini. Sparse matrix computations on the hypercube and related netdouksal of Parallel
and Distributed Computing1:169-183, 1994.

[10] G. Manzini. Sparse matrix vector multiplication on distributed architectures: Lower bound and
average complexity resultinformation Processing Lette&0:231-238, 1994.

[11] G. Manzini. On the ordering of sparse linear systemworetical Computer Sciené&6(1-2):301—
313, 1996.

[12] V. Pan. Parallel solution of sparse linear and path systems. In J. H. Reif, &jitthesis of Parallel
Algorithms 621-678. Morgan Kaufmann, 1993.

[13] C. G. Plaxton. Load balancing, selection and sorting on the hyperBube. of the 1st Annual ACM
Symposium on Parallel Algorithms and Architectyr@$—73, 1989.

[14] L. Romero and E. Zapata. Data distributions for sparse matrix vector multiplic&ésallel Com-
puting21:583—-605, 1995.

Sparse matrix vector multiplication a7

[15] L. Ziantz, C. Oezturan and B. Szymanski. Run-time optimization of sparse matrix-vector multiplica-
tion on SIMD machines. Ifrarallel Architectures and Languages Europe (PARLE ;24CS 817,
313-322. Springer-Verlag, 1994.

