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Rigged configurations of type D(3)
4 and the

filling map

Travis Scrimshaw1†
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Abstract. We give a statistic preserving bijection from rigged configurations to a tensor product of Kirillov–Reshetikhin
crystals

⊗N
i=1 B

1,si in type D
(3)
4 by using virtualization into type D

(1)
4 . We consider a special case of this bijec-

tion with B = B1,s, and we obtain the so-called Kirillov–Reshetikhin tableaux model for the Kirillov–Reshetikhin
crystal.

Résumé. Nous donnons une bijection prservant les statistiques entre les configurations gréées et les produits tensoriels
de cristaux de Kirillov–Reshetikhin

⊗N
i=1 B

1,si de type D(3)
4 , via une virtualisation en type D(1)

4 . Nous considérons
un cas particulier de cette bijection pour B = B1,s et obtenons ainsi les modèles de tableaux appelés Kirillov–
Reshetikhin pour le cristal Kirillov–Reshetikhin.

Keywords: rigged configuration, Kirillov–Reshetikhin crystal, bijection

1 Introduction
Rigged configurations were first introduced by Kerov, Kirillov, and Reshetikhin in [14, 15] as combinato-
rial objects that index solutions to the Bethe Ansatz for the Heisenberg spin chains. Rigged configurations
were shown to be in bijection with semi-standard tableaux and classical highest weight elements of a
tensor power of the vector representation in type A(1)

n . This bijection was then extended to Littlewood–
Richardson tableaux [16], to non-exceptional types [20], and to type E(1)

6 [19]. This bijection Φ be-
tween rigged configurations and the tensor powers has been further expanded to include classically highest
weight elements in a tensor product of certain Kirillov–Reshetikhin (KR) crystals [16, 21, 18, 27, 28].

Rigged configurations have been shown to display remarkable representation theoretic properties. A
(classical) crystal structure was first given for simply-laced types [26], which was then extended to all
finite types [27] and affine types [24]. While Φ is defined recursively, making it difficult to work with,
it preserves certain natural statistics (cocharge and energy), giving a bijective proof of the X = M
conjecture of [5, 6]. Furthermore, the combinatorial R-matrix transforms into the identity map on rigged
configurations under Φ. Rigged configurations are also well-behaved under virtualization [21, 22, 27],
a process of realizing a non-simply-laced type crystal inside of a simply-laced type, and embeddings
B(λ) ↪−→ B(µ) where λ ≤ µ component-wise, leading to a model for B(∞) [24].
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Fig. 2.1: Dynkin diagram of type D
(3)
4 .

KR crystals in non-exceptional types were given a combinatorial model in [4] using Kashiwara–Nakashima
tableaux [13]. The bijection Φ has also lead to a new tableaux model for KR crystals, coined Kirillov–
Reshetikhin (KR) tableaux, using filled rectangular tableaux [18, 25, 27]. The map between Kashiwara–
Nakashima tableaux [13] and the KR tableaux is called the filling map.

The goal of this work is to extend Φ to type D(3)
4 and describe the filling map. For this extended

abstract, we will be focusing on the KR crystals B1,s and the rigged configurations associated with tensor
products of the form

⊗N
i=1B

1,si . In particular, we show Φ is a classical crystal isomorphism, and we
describe the filling map for B1,s. We do so by showing the filling map and bijection commute with the
virtualization map, proving more special cases of many of the conjectures stated in [27].

This extended abstract is organized as follows. In Section 2, we give background on crystals, virtual-
ization, and rigged configurations. In Section 3, we describe the bijection Φ. In Section 4, we describe
the filling map . In Section 5, we describe the virtualization map and our main results. In Section 6, we
give possible extensions to B2,s and some open questions. We conclude in Section 7 with some examples
using Sage [29].

2 Background
2.1 Crystals

For this extended abstract, let g be the Kac–Moody algebra of type D(3)
4 with index set I = {0, 1, 2},

generalized Cartan matrix A = (Aij)i,j∈I , weight lattice P , root lattice Q, fundamental weights {Λi |
i ∈ I}, simple roots {αi | i ∈ I}, and simple coroots {hi | i ∈ I}. There is a canonical pairing
〈 , 〉 : P∨ × P −→ Z defined by 〈hi, αj〉 = Aij , where P∨ is the dual weight lattice. Let g0 denote the
classical subalgebra of type G2 with index set I0 = {1, 2}, weight lattice P , root lattice Q, fundamental
weights {Λ1,Λ2}, and simple roots {α1, α2}.

An abstract Uq(g)-crystal is a nonempty set B together with a weight function wt: B −→ P , crystal
operators ea, fa : B −→ Bt{0}, and maps εa, ϕa : B −→ Zt{−∞} for a ∈ I , subject to the conditions

1. ϕa(b) = εa(b) + 〈ha,wt(b)〉 for all a ∈ I ,

2. if eab ∈ B, then εa(eab) = εa(b)− 1, ϕa(eab) = ϕa(b) + 1, and wt(eab) = wt(b) + αa.

3. if fab ∈ B, then εa(fab) = εa(b) + 1, ϕa(fab) = ϕa(b)− 1, and wt(fab) = wt(b)− αa.

4. fab = b′ if and only if b = eab
′ for b, b′ ∈ B and a ∈ I ,

5. if ϕa(b) = −∞ for b ∈ B, then eab = fab = 0.

We define for all b ∈ B

εa(b) = max{k ∈ Z≥0 | ekab 6= 0}, ϕa(b) = max{k ∈ Z≥0 | fka b 6= 0}. (2.1)
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Fig. 2.2: The KR crystal B1,1 of type D
(3)
4 which is isomorphic to B(Λ1) ⊕B(0) as Uq(g0)-crystals.

An abstract Uq(g)-crystal with εa and ϕa defined as above is called a regular crystal.
Let B1 and B2 be abstract Uq(g)-crystals. The tensor product of crystals B2 ⊗ B1 is defined to be the

Cartesian product B2 × B1 with the crystal structure

ei(b2 ⊗ b1) =

{
eib2 ⊗ b1 if εi(b2) > ϕi(b1),

b2 ⊗ eib1 if εi(b2) ≤ ϕi(b1),
εi(b2 ⊗ b1) = max

(
εi(b2), εi(b1)− 〈hi,wt(b2)〉

)
fi(b2 ⊗ b1) =

{
fib2 ⊗ b1 if εi(b2) ≥ ϕi(b1),

b2 ⊗ fib1 if εi(b2) < ϕi(b1),
ϕi(b2 ⊗ b1) = max

(
ϕi(b1), ϕi(b2) + 〈hi,wt(b1)〉

)
wt(b2 ⊗ b1) = wt(b2) + wt(b1).

Remark 2.1 Our tensor product convention is the opposite to that given in [12].

Let B1 and B2 be two abstractUq(g)-crystals. A crystal morphism ψ : B1 −→ B2 is a map B1t{0} −→
B2 t {0} with ψ(0) = 0 such that for b ∈ B1

1. if ψ(b) ∈ B2, then wt(ψ(b)) = wt(b), εi(ψ(b)) = εi(b), and ϕi(ψ(b)) = ϕi(b);

2. we have ψ(eib) = eiψ(b) provided ψ(eib) 6= 0 and eiψ(b) 6= 0;

3. we have ψ(fib) = fiψ(b) provided ψ(fib) 6= 0 and fiψ(b) 6= 0.

A crystal embedding or isomorphism is a crystal morphism such that the induced map B1 t {0} −→
B2 t {0} is an embedding or bijection respectively. A crystal morphism is strict if it commutes with all
crystal operators.

If an abstract Uq(g)-crystal B is isomorphic to the crystal basis of an integrable Uq(g)-module, we
simply say B is a Uq(g)-crystal. In particular, an irreducible highest weight Uq(g0)-module with highest
weight λ admits a crystal basis [11], which we denote by B(λ). Moreover there is a unique element
uλ ∈ B(λ) such that wt(uλ) = λ and eauλ = 0 for all a ∈ I0. For each dominant integral weight
λ = k1Λ1 + k2Λ2, we can associate a partition (k1 + k2, k2). We can realize B(λ) as semistandard
tableaux of shape λ filled with entries in B(Λ1) whose crystal structure is given by embedding into
B(Λ1)⊗|λ| using the reverse far-eastern reading word. The resulting tableaux were explicitly described
by Kang and Misra [9].

2.2 Kirillov–Reshetikhin crystals
An important class of finite dimensional U ′q(g)-representations are Kirillov–Reshetikhin (KR) modules
W r,s indexed by r ∈ I0 and s ∈ Z>0. KR modules are characterized by their Drinfeld polynomials [2, 3]
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and correspond to the minimal affinization of B(sΛr) [1]. The KR modules W 1,s admit a crystal basis
called Kirillov–Reshetikhin (KR) crystals and denoted by B1,s. As Uq(g0)-crystals, we have B1,s ∼=⊕s

k=1B(kΛ1), and B1,s is a perfect crystal [10]. This means we can use a semi-infinite tensor product
of B1,s to realize highest weight Uq(g)-crystals, see [7] for details.

There is a statistic called energy defined on B =
⊗N

i=1B
1,si [5]. First we define the local energy

function on B1,s⊗B1,t as follows. The combinatorial R-matrix is the unique U ′q(g)-crystal isomorphism
R : B1,s ⊗B1,t −→ B1,t ⊗B1,s [10]. Let c′ ⊗ c = R(b⊗ b′).

H
(
ei(b⊗ b′)

)
= H(b⊗ b′) +


−1 i = 0 and e0(b⊗ b′) = b⊗ e0b′ and e0(c′ ⊗ c) = c′ ⊗ e0c,
1 i = 0 and e0(b⊗ b′) = e0b⊗ b′ and e0(c′ ⊗ c) = e0c

′ ⊗ c,
0 otherwise.

(2.2)

The local energy function is defined up to an additive constant [8], and so we normalizeH by the condition
H(1s ⊗ 1t) = 0 where 1k is row of length k filled with 1. Next we define DB1,s : B1,s → Z by

DB1,s(b) = H(b⊗ b])−H(1s ⊗ b]), (2.3)

where b] is the unique element such that ϕ(b]) = sΛ0. Then we define

D(bN ⊗ · · · ⊗ b1) =
∑

1≤i<j≤N

HiRi+1Ri+2 · · ·Rj−1 +

N∑
j=1

DB1,sjR1R2 · · ·Rj−1, (2.4)

where Ri and Hi are the combinatorial R-matrix and local energy function, respectively, acting on the
i-th and (i+ 1)-th factors and DB1,sj acts on the rightmost factor. We say the energy of an element b ∈ B
is D(b).

2.3 Rigged configurations

Let H0 = I0 × Z>0. Consider a multiplicity array L =
(
L
(a)
i ∈ Z≥0 | (a, i) ∈ H0

)
and a dominant

integral weight λ of g0. A (L;λ)-configuration is a sequence of partitions ν = {ν(a) | a ∈ I} such that∑
(a,i)∈H0

im
(a)
i αa =

∑
(a,i)∈H0

iL
(a)
i Λa − λ, (2.5)

wherem(a)
i is the number of parts of length i in the partition ν(a). We denote the set of (L, λ)-configurations

by C(L, λ). The vacancy numbers of ν ∈ C(L;λ) are defined as

p
(a)
i =

∑
j≥1

min(i, j)L
(a)
j −

∑
(b,j)∈H0

Aab min(i, j)m
(b)
j . (2.6)

A rigged configuration of classical weight λ is a (L;λ)-configuration ν, along with a sequence of
multisets of integers J = {J (a)

i | (a, i) ∈ H0} such that |J (a)
i | = m

(a)
i (the size of J (a)

i ) and max J
(a)
i ≤

p
(a)
i . (Often each J (a)

i will be sorted in weakly decreasing order.) So to each row of length i, we have an
integer x ∈ J (a)

i and we call the pair (i, x) a string. The integers x ∈ J (a)
i are called label, rigging, or
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quantum number. The colabel of a string (i, x) is defined as p(a)i − x. A rigged configuration is highest
weight if min J

(a)
i ≥ 0 for all (a, i) ∈ H0 and is valid if max J

(a)
i ≤ p

(a)
i . We say a string (i, a) is

singular if p(a)i = x and is quasi-singular if p(a)i = x− 1 and max J
(a)
i 6= p

(a)
i .

Example 2.2 Rigged configurations will be depicted with vacancy numbers on the left and labels on the
right. For example,

3
1

5
1

−2−2

is a rigged configuration of weight 2Λ1 + Λ2 with L is given by L(1)
1 = L

(1)
2 = L

(2)
1 = 1 with all other

L
(a)
i = 0. See Section 7 on how to construct this example in Sage.

Denote by RC∗(L;λ) the set of valid highest weight rigged configurations. Rigged configurations have
an abstract Uq(g0)-crystal structure [27]. To obtain the weight, we first note that we can compute the
classical weight by

wt(ν, J) =
∑

(a,i)∈H0

i
(
L
(a)
i Λa −m(a)

i αa
)
. (2.7)

We can extend this to wt: RC(L;λ) −→ P by wt(ν, J) = k0Λ0 + wt(ν, J), where k0 is such that
〈wt(ν, J), c〉 = 0 with c the canonical central element of g (i.e., we make wt(ν, J) be level 0). Explicitly,
if wt(ν, J) = c1Λ1 + c2Λ2, then we have k0 = −2c1 − 3c2. Next we recall the crystal operators.

Definition 2.3 Let g0 be a Lie algebra of finite type and L a multiplicity array. Let (ν, J) be a valid
rigged configuration. Fix a ∈ I0 and let x be the smallest label of (ν, J)(a), the strings associated to ν(a).

1. If x ≥ 0, then set ea(ν, J) = 0. Otherwise, let ` be the minimal length of all strings in (ν, J)(a)

which have label x. The rigged configuration ea(ν, J) is obtained by replacing the string (`, x)
with the string (`− 1, x+ 1) and changing all other labels so that all colabels remain fixed.

2. If x > 0, then add the string (1,−1) to (ν, J)(a). Otherwise, let ` be the maximal length of all
strings in (ν, J)(a) which have label x and replace the string (`, x) by the string (`+ 1, x− 1). In
both cases, change all other labels so that all colabels remain fixed. If the result is a valid rigged
configuration, then it is fa(ν, J) . Otherwise fa(ν, J) = 0.

Remark 2.4 The condition for highest weight rigged configurations matches with the usual crystal theo-
retic definition; i.e., that ea(ν, J) = 0 for all (ν, J) ∈ RC∗(L;λ).

Example 2.5 Let (ν, J) be the rigged configuration from Example 2.2. Then

e1(ν, J) = 0, e2(ν, J) = 0
1

2
1

−1−1 ,

f1(ν, J) = 1
−1
−1

3
−1
−1

−1−1 , f2(ν, J) = 0.

Let RC(L;λ) denote the set generated from RC∗(L;λ) by the crystal operators. Let RC(L) be the
closure under the crystal operators of the set RC∗(L) =

⊔
λ∈P+ RC∗(L;λ).



678 Travis Scrimshaw

Theorem 2.6 ([27]) Let g0 be a Lie algebra of finite type. For (ν, J) ∈ RC∗(L;λ), let X(ν,J) be the
closure of (ν, J) under ea, fa for a ∈ I0. Then X(ν,J)

∼= B(λ) as Uq(g0)-crystals.

There is a statistic called cocharge on rigged configurations given by

cc(ν, J) =
1

2

∑
a,b∈I0

∑
i,j∈Z>0

(αa|αb) min(i, j)m
(a)
i m

(b)
j +

∑
(a,i)∈H0

∑
x∈J(a)

i

x. (2.8)

Moreover cocharge is invariant under ea and fa for a ∈ I0 [27].

2.4 Virtual crystals
Let ĝ be the Kac–Moody algebra with index set Î of type D(1)

4 and ĝ0 be of type D4. We consider the
diagram folding φ : Î ↘ I defined by φ(0) = 0, φ(2) = 1, and φ(1) = φ(3) = φ(4) = 2. The folding φ
restricts to a diagram folding of type ĝ0 ↘ g0, and by abuse of notation, we also denote this folding by φ.

Remark 2.7 To simplify our notation, for any object X or X of g0, we denote the corresponding object
of ĝ0 by X̂ .

Furthermore, the folding φ induces an embedding of weight lattices Ψ: P −→ P̂ given by

Λa 7→
∑

b∈φ−1(a)

Λ̂b, αa 7→
∑

b∈φ−1(a)

α̂b. (2.9)

This gives an embedding of crystals as sets v : B(λ) −→ B
(
Ψ(λ)

)
, and let V (λ) denote the image of v.

We can define a crystal structure on V which is induced from the crystal B
(
Ψ(λ)

)
by

ev :=
∏

b∈φ−1(a)

êb, fv :=
∏

b∈φ−1(a)

f̂b,

εva := ε̂x, ϕva := ϕ̂x,

wt := Ψ−1 ◦ ŵt,

(2.10)

where we fix some x ∈ φ−1(a). We say the pair
(
V (λ), B

(
Ψ(λ)

))
is a virtual crystal and the isomor-

phism v is the virtualization map.

Proposition 2.8 ([27]) Let g0 be of finite type. Then we have B(λ) ∼= V (λ) as Uq(g0)-crystals.

In particular, we can define a virtualization map on rigged configurations by

ν̂(b) = ν(a), (2.11a)

Ĵ
(b)
i = J

(a)
i (2.11b)

for all b ∈ φ−1(a) [27].

3 The bijection Φ

Consider a tensor product of KR crystals B =
⊗N

i=1B
ri,si . We write RC(B) for RC(L) with L(a)

i equal
to the number of factors Ba,i occurring in B. In this section, we describe the map Φ: RC(B) −→ B.
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3.1 The basic algorithm δ

We begin by describing the basic step δ : RC(B1,1⊗B∗) −→ RC(B∗), whereB∗ is some tensor product
of KR crystals. Each step δ returns some element b ∈ B1,1, which we use to create B. We note that this
is the special case of the algorithm given in [17] for type D(3)

4 .
Set `0 = 1. Do the following process for a = 1. Find the minimal integer i ≥ `a−1 such that ν(a) has

a singular string of length i. If no such i exists, then set b = a and `a = ∞ and terminate. Otherwise set
`a = i and repeat the above process for a = 2.

Suppose the process has not terminated. We remove the selected (singular) string of length `1 from
consideration. If there are no singular or quasi-singular strings in ν(a) larger than `2 or if `2 = `1 and
there is only one string of length `1 in ν(1), then set b = 3 and terminate. Otherwise find the smallest
i ≥ `2 that satisfies one of the following three mutually exclusive conditions:

(S) J (1,i) is singular and i > 1;

(P) J (1,i) is singular and i = 1;

(Q) J (1,i) is quasi-singular.

If (P) holds, set b = ∅, and `3 = i and terminate. If (S) holds, set `3 = i− 1, `3 = i, say case (S) holds
for a = n, and continue. If (Q) holds, find the minimal j > i such that (S) holds. If no such j exists, set
b = 0 and terminate. Else set `3 = j and say case (Q, S) holds and continue.

Suppose the process has not terminiated, and let a = 2. If `a = `a+1, then set `a = `a, afterwards reset
`a = `a − 1, and say case (S2) holds for a. Otherwise find the minimal index i ≥ `a+1 such that ν(a)

has a singular string of length i. If no such i exists, set b = a+ 1 and terminate. Otherwise set `a = i
and repeat this for a = 1 (there must exists at least two singular strings if `3 = `1 and case (S2) does not
hold). If the process has not terminated, set b = 1.

Set all undefined `a and `a for a = 1, 2, 3 to∞.

3.2 Change in the rigged configuration
The rigged configurations change under δ as follows. We first remove a box from `a in ν(a) for a = 1, 2,
and if case (S2) holds for a, we remove another box from that particular row, otherwise we remove a
box from `a. If case (S) holds, then remove two boxes from `3 and make the resulting string singular. If
case (Q) holds, remove a box from `3 and make the resulting string singular. If case (Q, S) holds, then we
remove both boxes corresponding to `3 and `3, but we make the smaller one (i.e. the row corresponding
to `3) singular and the larger one quasi-singular. Also make all the changed strings in ν(2) singular.

Remark 3.1 We can determine the inverse algorithm by roughly doing the opposite of the above; in
paritcular, selecting largest (quasi)singular strings at most as long as before.

Example 3.2 Using the rigged configuration (ν, J) from Example 2.2 and B = B1,1 ⊗ B1,2 ⊗ B2,1.
Applying the map δ, we get b = 3 and

δ(ν, J) = 33 −2−2
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3.3 Extending to arbitrary rectangles

We now extend Φ to B =
⊗N

i=1B
1,si by defining the map

ls : RC(B1,s ⊗B∗) −→ RC(B1,1 ⊗B1,s−1 ⊗B∗),

which is known as left-split. On the rigged configurations, the map ls is the identity (but perhaps in-
creases the vacancy numbers) and a strict crystal embedding. Thus iterating ls with δ, we obtain a map
Φ: RC(B) −→ B.

4 Filling map
We determine the highest weight rigged configurations forB1,s by using the virtual Kleber algorithm [22].

Lemma 4.1 Consider the KR crystal B1,s. We have RC(B1,s) =
⊕s

k=0 RC(B1,s; kΛ1). Moreover
the highest weight rigged configurations in RC(B1,s; kΛ1) are given by ν(1) = (s − k, s − k) and
ν(2) = (s− k) with all labels 0.

From Lemma 4.1 and the Uq(g0)-crystal decomposition of B1,s is multiplicity free, there exists a
natural Uq(g0)-crystal isomorphism ι : RC(B1,s) −→ B1,s. For type D(3)

4 , we note that kΛ1 can be
considered as the partition (k).

Definition 4.2 Let B1,s be a KR crystal of type D(3)
4 and consider the classical component B(kΛ1) ⊆

B1,s. The filling map fill : B1,s −→ (B1,1)⊗s is given by adding
⌊
s−k
2

⌋
copies of the horizontal domino

1 1 and an additional ∅ if s− k is odd.

Let T 1,s denote the image of B1,s under fill written as a 1 × s rectangle. We note that T 1,s inherits a
classical crystal structure from (B1,1)⊗s.

Example 4.3 Consider the element

b = 3 0 2 2 1 ∈ B(5Λ1) ⊆ B1,9,

then we have
fill(b) = 3 0 2 2 1 1 1 1 1 .

Now suppose b ∈ B1,8, then we have

fill(b) = 3 0 2 2 1 1 1 ∅ .

We give a U ′q(g)-crystal structure to T 1,s by following [10, 30] as the conditions for e0 and f0 are
preserved under the filling map.

Proposition 4.4 The filling map fill : B1,s → T 1,s given in Definition 4.2 is aU ′q(g)-crystal isomorphism.

We also can show the following.

Proposition 4.5 Let B = B1,s. Then Φ = fill ◦ι with fill as in Definition 4.2 on highest weight elements.
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5 Virtualization Map
Lemma 5.1 The virtualization map v : B1,s −→ B2,s for types D(3)

4 ↪−→ D
(1)
4 is given column-by-

column by

1 7→ 1
2

2 7→ 1
3

3 7→ 2
3

0 7→ 3
3

3 7→ 3
2

2 7→ 3
1

1 7→ 2
1

∅ 7→ 1
1

Using Lemma 5.1 and the analogue of Φ in type D(1)
4 [18, 25], we can show the following.

Theorem 5.2 Consider a tensor product of KR crystalsB =
⊗N

i=1B
1,si of typeD(3)

4 . The virtualization
map v commutes with the map Φ.

We need to define the complement rigging map θ : RC(B) −→ RC(Br) by sending (ν, J) 7→ (ν, J ′),
where J ′ is obtained by x′ = p

(a)
i − x for all labels x and Br are the factors of B in reverse order. That is

to say θ maps each label x to its colabel. We can define δ̃ := θ ◦ δ ◦ θ, and using the virtualization map,
Proposition 4.5, and the results of [25], we can show the following.

Lemma 5.3 We have δ ◦ δ̃ = δ̃ ◦ δ.

Using the results on the combinatorial R-matrix in [30], we can show the following.

Lemma 5.4 Consider B = B1,s ⊗B1,1. We have Φ−1 ◦R ◦ Φ is the identity map on RC(B).

Then following [28, Sec. 8], the map rs := θ ◦ ls ◦θ preserves statistics using [30]. From Lemma 5.4,
the R-matrix preserves statistics. Thus iterating rs and R-matrices, we preserve statistics to

⊗N ′

i=1B
1,1.

Then we use the results of [23, 25] and Theorem 5.2 to obtain our main result.

Theorem 5.5 Let B =
⊗N

i=1B
1,si of type D(3)

4 . The map Φ: RC(B) −→ B is a Uq(g0)-crystal
isomorphism and Φ ◦ θ sends cocharge to energy.

From Proposition 4.4, Lemma 5.1, Theorem 5.5, and the filling map for type D(1)
n given in [18], we

can show the following.

Theorem 5.6 Let B = B1,s. Then Φ = fill ◦ι with fill as in Definition 4.2 as Uq(g0)-crystal morphisms.

Thus we can define a U ′q(g)-crystal structure on RC(B) by extending Φ to be a U ′q(g)-crystal isomor-

phism. Thus we have a special case in type D(3)
4 of the conjectures given in [27].

6 Extensions and questions
The Uq(g0)-crystal decomposition of B2,s and the highest weight rigged configurations will appear in the
full version of this work. The author hopes to use this to determine the filling map for B2,s.

There is a map lt : RC(B2,1 ⊗B∗) −→ RC(B1,1 ⊗B1,1 ⊗B∗) called left-top which adds a singular
string of length 1 to ν(1). In the full version, this is used to extend the Uq(g0)-crystal isomorphism Φ to
tensor products also containing B2,1.
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Example 6.1 Continuing from Example 3.2, we obtain

Φ(ν, J) = 3 ⊗ 2 3 ⊗ 1
2
.

The computations for the Kleber algorithm can be modified to determine the Uq(g0)-crystal decompo-
sition of Br,s of type G(1)

2 . However there is a difficulty with determining what the map δ should be. This
would need to be overcome to define the filling map for type G(1)

2 .
There is a conjecture [22, Conj. 3.7] that we can realize B1,s of type D(3)

4 as a virtual crystal in B1,s

of type D(1)
4 . Therefore obtaining a direct description of e0 and f0 on rigged configurations could lead to

an answer to this conjecture using the results of [18]. The author hopes to have this description and prove
this conjecture in this special case in the full version of this work.

7 Examples using Sage
The bijection Φ and the rigged configurations have been implemented by the author in Sage [29]. We
begin by setting up the Sage environment to give a more concise printing.

sage: RiggedConfigurations.global_options(display="horizontal")

We construct our the rigged configuration from Example 2.2 by specifying the partitions and corre-
sponding labels.

sage: nu = RC(partition_list=[[4,1], [4]], rigging_list=[[3,1], [-2]]); nu
5[ ][ ][ ][ ]3 -2[ ][ ][ ][ ]-2
1[ ]1

We apply the full bijection and print the output using Sage’s ASCII art.

sage: ascii_art(nu.to_tensor_product_of_kirillov_reshetikhin_tableaux())
3 # 2 3 # 1

-2
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