
FPSAC 2015, Daejeon, South Korea DMTCS proc. FPSAC’15, 2015, 655–666

Formal Group Laws and Chromatic
Symmetric Functions of Hypergraphs

Jair Taylor†

University of Washington

Abstract. If f(x) is an invertible power series we may form the symmetric function

f(f−1(x1) + f−1(x2) + · · · ),

which is called a formal group law. We give a number of examples of power series f(x) that are ordinary generating
functions for combinatorial objects with a recursive structure, each of which is associated with a certain hypergraph.
In each case, we show that the corresponding formal group law is the sum of the chromatic symmetric functions of
these hypergraphs by finding a combinatorial interpretation for f−1(x). We conjecture that the chromatic symmetric
functions arising in this way are Schur-positive.

Résumé. Si f(x) est une série entière inversible, nous pouvons former la fonction symétrique

f(f−1(x1) + f−1(x2) + · · · ),

que nous appelons une loi de groupe formel. Nous donnons plusieurs exemples de séries entières f(x) qui sont séries
génératrices ordinaires pour des objets combinatoires avec une structure récursive, chacune desquelles est associée
à un certain hypergraphe. Dans chaque cas, nous donnons une interprétation combinatoire à f−1(x), ce qui nous
permet de montrer que la loi de groupe formel correspondante est la somme des fonctions symétriques chromatiques
de ces hypergraphes. Nous conjecturons que les fonctions symétriques chromatiques apparaissant de cette manière
sont Schur-positives.
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1 Introduction
Formal group laws were first defined by S. Bochner in 1946 [2], who called them formal Lie groups.
Specifically, a one-dimensional formal group law over a ring R is a formal power series F (x, y) ∈
R[[x, y]] so that

• F (x, 0) = x, F (0, y) = y

• F (F (x, y), z) = F (x, F (y, z)).
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We will always take formal group laws to be one-dimensional and commutative, so that F (x, y) =
F (y, x), and we will take R = Z. In this case, it is well known [9, IV.5] that formal group laws are
exactly the formal power series of the form

F (x, y) = f(f−1(x) + f−1(y))

for some f(x) ∈ Z[[x]] with f(0) = 0 and f ′(0) = 1, where f−1(x) is the compositional inverse of f(x).
More generally, we consider the power series F in infinitely many variables x1, x2, . . . given by

F (x1, x2, . . .) = f(f−1(x1) + f−1(x2) + · · · ) (1)

and from this point on we define formal group laws to be power series of the form (1).
The purpose of this paper is to develop a technique for showing that the formal group law F has

nonnegative coefficients when f(x) is an ordinary generating function for certain combinatorial objects.
In each case we will use the language of hypergraphs colorings to give a combinatorial interpretation for
the associated formal group law. A hypergraph (sometimes called a set system) is a pair H = (V,E)
whereE is a family of subsets of V which we call the edges ofH . We do not require that every edge e has
the same number of elements, but we will always assume that V is finite and that no edge of H contains
another edge. In the case that each edge of V has two elements, we say that H is an (ordinary) graph. We
say thatH is connected if V is not a disjoint union V = V1∪V2 of nonempty sets V1, V2 so that each edge
e ∈ E is contained in either V1 or V2. Every hypergraph H is the disjoint union of connected hypergraphs
called the connected components of H .

We say that H is linear if |e1 ∩ e2| ≤ 1 for every e1, e2 ∈ E. If there is a labeling of V by the integers
[n] = {1, 2, . . . , n} so that each e ∈ E is an interval I = {a, a+ 1, . . . , b− 1, b}, we will say that H is an
interval hypergraph. For example, if V = [9] andE is the set of edges {1, 2, 3}, {3, 4}, {5, 6}, {6, 7, 8, 9}
thenH = (V,E) is a linear interval hypergraph. All of the hypergraphsH appearing in our examples will
be linear interval hypergraphs.

A coloring of H is a map χ : V → P = {1, 2, 3, . . .}. If e is an edge of H and χ is a coloring of
H so that every element of e is the given the same color, we say that e is monochromatic, and we say
that χ is proper if no edge e ∈ E of H is monochromatic. (One might expect that we would define
proper colorings so that each vertex in an edge must colored differently. But as Stanley notes in [12], in
that case we could replace each edge by a complete ordinary graph and nothing new would be gained by
considering hypergraphs.)

Let x1, x2, . . . be an infinite set of indeterminates. A symmetric function is a power series in x1, x2, . . .
that is invariant under any permutation of the variables. For example,

pn = xn1 + xn2 + · · ·

is a symmetric function known as the n-th power sum symmetric function.
The chromatic symmetric function XH of a hypergraph H with vertex set V is the power series

XH(x1, x2, . . .) =
∑
χ

∏
v∈V

xχ(v)

with the sum taken over all proper colorings χ of H . Thus XH is indeed a symmetric function, since
permuting the colors of a proper coloring gives another proper coloring. The chromatic symmetric func-
tion XG of an ordinary graph G was introduced by Stanley [11], who later generalized the notion to
hypergraphs [12].
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It will be useful in what follows to write the chromatic symmetric function XH in terms of the power
sum symmetric functions. The following theorem is a straightforward application of the inclusion-
exclusion principle. A proof was for ordinary graphs given by Stanley [11, Theorem 2.5], who later
extended it to hypergraphs [12, Theorem 3.2].

Theorem 1. Let H = (V,E) be a hypergraph. Then

XH =
∑
S⊆E

(−1)|S|pk1pk2 · · · pkn

where k1, . . . , kn are the sizes of the connected components of the hypergraph HS = (V, S) that has only
the edges e ∈ S.

In Section 2, we will give a number of examples of power series f(x) so that the associated formal
group law F is a sum of chromatic symmetric functions, and hence has nonnegative coefficients. Specif-
ically, we will describe sequences (An) of sets An of combinatorial objects T on the n nodes 1, 2, . . . , n
that have a recursive structure in the sense that one object may be inserted into any vertex of another object
in a nice fashion, and certain “sub-objects” can be contracted to a point. Letting an = |An|, we form the
generating function f(x) =

∑∞
n=1 anx

n and show that the corresponding formal group law has nonneg-
ative coefficients. For example, we may let an be the sequence of Catalan numbers, Motzkin numbers,
or the factorial numbers, corresponding to the sets An of binary trees, Motzkin paths and permutations,
respectively. In each case, we will show that

f(f−1(x1) + f−1(x2) + · · · ) =

∞∑
n=1

∑
T∈An

XHT (2)

where HT = (V,ET ) is a particular hypergraph determined by the structure of the object T ∈ An, where
V = [n]. The edges of T will be made up of the “sub-objects” of T that are minimal in the sense that they
do not contain any other sub-objects except for singletons, and these edges will always be intervals in [n].
Furthermore, each HT will be linear, so that HT is a linear interval hypergraph.

While it is possible to give an axiomatic framework for proving equations of the form (2), we feel that
for this extended abstract it is more useful to give individual examples. In each case, we will prove (2)
by first giving a combinatorial interpretation for f−1(x). Letting Cn be the set of T ∈ An so that the
hypergraph HT is connected, we will find that

f−1(x) =

∞∑
n=1

∑
T∈Cn

(−1)|ET |xn. (3)

Then we use (3) to prove (2) using the combinatorial interpretation of a composition of generating func-
tions along with Theorem 1.

2 Examples
2.1 Lattice paths
Let L be a finite subset of Z. Define a L-admissible path to be a map P : [n]→ N so that P (1) = P (n) =
0 and P (i+ 1)− P (i) ∈ L for i = 1, . . . , n− 1. Let An,L be the set of L-admissible paths P : [n]→ N,
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let an,L = |An,L| and define the generating function fL(x) =
∑∞
n=1 an,Lx

n. If L = {−1, 1} then an
L-admissible path is called a Dyck path. Then an,L = 0 if n is even while a2n+1 = Cn, the n-th Catalan
number, and

fL(x) =
1−
√

1− 4x2

2x
.

If L = {−1, 0, 1} then L-admissible paths are called Motzkin paths and an,L = Mn+1 where Mn is the
n-th Motzkin number, with

fL(x) =
1− x−

√
1− 2x− 3x2

2x
.

There is an obvious way to insert one path into the vertex of another path. Formally, if P is an L-
admissible path on [n], j ∈ [n], and P ′ is an L-admissible path on [m], define P (j ← P ′) to be the path
on [n+m− 1] given by

P (j ← P ′)(i) =

 P (i) if i < j
P ′(i− j + 1) + P (j) if j ≤ i < j +m
P (i−m+ 1) if i ≥ j +m.

It is clear that P (j ← P ′) is an L-admissible path.
For any path P : [n] → N, define an excursion of P to be an interval I = {a, a + 1, . . . , b} ⊆ [n] so

that P (a) = P (b) and P (i) ≥ P (a) for i ∈ I . Thus restricting an L-admissible path P to an excursion I
and translating produces another L-admissible path Q ∈ Am,L where m = |I|, so that excursions can be
thought of as sub-objects of P . If P ∈ An,L and P ′ ∈ Am,l then we see that {j, j + 1, . . . , j +m− 1} is
an excursion of P (j ← P ′).

We call a excursion I of P minimal if |I| > 1 and the only excursions of P properly contained in I are
singletons. For each path P on [n] we associate the hypergraph HP = (V,EP ) where V = [n] and EP
is the set of minimal excursions of P . Fig. 1 gives an example of a path P and its associated hypergraph.
Note that if I1, I2 are excursions of P with I1 ∩ I2 6= ∅, then I1 ∩ I2 and I1 ∪ I2 are also excursions. In
particular, if I1, I2 are minimal excursions and I1 ∩ I2 6= ∅, then I1 ∩ I2 must be a singleton. It follows
that HP is a linear interval hypergraph.

Now we can give a combinatorial interpretation of the formal group law associated with fL(x): it is the
sum of the chromatic symmetric functions XHP for L-admissible paths P .

Theorem 2. Let L ⊆ Z be finite. Then

fL(f−1
L (x1) + f−1

L (x2) + · · · ) =

∞∑
n=1

∑
P∈An,L

XHP .

Note that in the case L = {0}, the only allowed path on [n] is the constant path P = 0, so

fL(x) =
1

1− x
− 1, f−1

L (x) =
x

1 + x
.

The minimal excursions of the constant path on [n] are the intervals {i, i+ 1}, and so

fL(f−1
L (x1) + f−1

L (x2) + · · · ) =
1

1− x1

1+x1
− x2

1+x2
− · · ·

− 1 =

∞∑
n=1

XGn (4)
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where Gn is the ordinary graph with vertices 1, 2, . . . , n and edges {i, i + 1} for i = 1, . . . , n − 1,
sometimes called the n-vertex path (not to be confused with an L-admissible path P ). A proper coloring
of Gn is equivalent to a word c1 · · · cn with ci ∈ P and ci 6= ci+1 for i = 1, . . . , n − 1. Such words
are called Smirnov or Carlitz words, and if we assign a weight xc1 · · ·xcn to the word c1 · · · cn we see
that (4) is the sum of the weights of all nonempty Smirnov words. This result can be found in Goulden
and Jackson [5, 2.4.16], and was first found by MacMahon [7].

To prove Theorem 2, we will first find a combinatorial interpretation for f−1(x).

Lemma 3. Let L ⊆ Z be finite and let Cn,L be the set of L-admissible paths P ∈ An,L so that HP is a
connected hypergraph. Let

gL(x) =

∞∑
n=1

∑
P∈Cn,L

(−1)|EP |xn.

Then gL(x) = f−1
L (x).

Proof. Recall the usual combinatorial interpretation of the composition of ordinary generating functions.
If f(x) =

∑∞
n=1 anx

n and g(x) =
∑∞
n=1 bnx

n then

f(g(x)) =

∞∑
k=1

ak

( ∞∑
n=1

bnx
n

)k

=

∞∑
n=1

xn
∑

n1+···+nk=n

akbn1
· · · bnk (5)

where the inner sum is taken over all compositions of n, that is, k-tuples (n1, . . . , nk) of positive integers
with n1 + · · ·+ nk = n, with any positive number of parts k.

Now suppose that an = |An| where An is the number of combinatorial structures of some type on n
vertices. Then we interpret (5) as saying that the coefficient of xn in f(g(x)) is given by taking a weighted
sum indexed by partitions of [n] into k disjoint subintervals for some k, where the summand akbn1

· · · bnk
represents the weight the set of all choices of a structure T ∈ Ak to give the interval [k] where each
subinterval of size i in the partition is given the weight bi.

Let Γn,L be the set of tuples (Q,Q1, . . . , Qk) for some k ≥ 1, where Q ∈ Ak,L and each Qi ∈ Cni,L
for some ni ∈ P, with n1 + . . .+ nk = n. Then the coefficient of xn in fL(gL(x)) is∑

(Q,Q1,...,Qk)∈Γn,L

(−1)|EQ1
|+···+|EQk |. (6)

We will show show that fL(gL(x)) = x by showing that (6) is 1 if n = 1 and 0 otherwise.
Given (Q,Q1, . . . , Qk) ∈ Γn,L with Qi ∈ Cni,L we can form an L-admissible path P ∈ An,L by

inserting Q1 into the first vertex of Q, inserting Q2 into the second vertex of Q (which is the k1 + 1-th
vertex of Q(1← Q1)), etc. That is, we let

P = Q(1← Q1)(n1 + 1← Q2) · · · (n1 + . . .+ nk−1 + 1← Qk).

Furthermore, we get a set S ⊆ EP by collecting all of the minimal edges of eachQi as they appear within
P , so that S consists of the translates I +n1 + . . .+ni−1 := {j+n1 + . . .+ni−1 : j ∈ I} for the edges
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Fig. 1: An L-admissible path P ∈ An,L with its minimal excursions I ∈ EP circled underneath it, where L =
{−2,−1, 0, 1, 2} and n = 20. Below that, the edges of an arbitrary subset S ⊆ EP are circled.

Fig. 2: A tuple (Q,Q1, . . . , Qk) ∈ ∆n,L, with n = 20 and k = 8, that is the result of applying the bijection ρ−1

to the pair (P, S) ∈ ∆n,L from Fig. 1. Above is the path Q given by contracting each of the components of the
hypergraph HS = ([n], S) to a point; below are the paths Q1, . . . , Qk given by the individual components, with the
minimal excursions I ∈ EQi circled.

I ∈ EQi , for each i. This gives a map ρ : Γn,L → ∆n,L where ∆n,L is the set of pairs (P, S) where
P ∈ An,L and S ⊆ EP .

In fact, we can show that ρ is a bijection. Given an arbitrary P ∈ An,L and S ⊆ EP , let I1, I2, . . . , Ik
be the components of the hypergraph HS = ([n], S) with edge set S ⊆ EP . Since the set of excursions
is closed under non-disjoint unions, each Ii is an excursion of P , so restricting P to Ii and translating
gives a path Qi ∈ Ani,L where ni = |Ii|. The hypergraph HQi is connected since Ii was a connected
component of P , so Qi ∈ Cni,L. Finally, we define Q by contracting each of the excursions Ii to a point.
This defines the map ρ−1; an example of its use is given in Fig. 2.

Applying the bijection ρ, (6) becomes ∑
P∈An,L

∑
S⊆EP

(−1)|S|.

The inner sum ∑
S⊆EP

(−1)|S| (7)

is 0 unless EP is empty, which only occurs if P is the path with one vertex, in which case (7) is 1. Thus
fL(gL(x)) = x.

Proof of Theorem 2. Again we use the combinatorial interpretation of a composition of ordinary generat-
ing functions. Let f(x) =

∑∞
n=1 anx

n and g(x) =
∑∞
n=1 bnx

n, and let pn = xn1 + xn2 + · · · be the nth
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power sum symmetric function. Then

f(g(x1) + g(x2) + · · · ) =

∞∑
k=1

ak

( ∞∑
n=1

bnx
n
1 +

∞∑
n=1

bnx
n
2 + · · ·

)k

=

∞∑
k=1

ak

( ∞∑
n=1

bnpn

)k

=

∞∑
k=1

∑
n1+···+nk=n

akbn1 · · · bnkpn1 · · · pnk . (8)

In the case f(x) = fL(x) and g(x) = f−1
L (x), we can use Lemma 3 to rewrite (8) as

∞∑
n=1

∑
(Q,Q1,...,Qk)∈Γn,L

(−1)|EQ1
|+···+|EQk |pn1

· · · pnk (9)

where ni is the number of vertices in the ith path Qi. Applying the bijection ρ defined in the proof of 3,
we see that (9) is

∞∑
n=1

∑
P∈An

∑
S⊆EP

(−1)|S|pn1 · · · pnk (10)

where n1, . . . , nk are the sizes of the connected components of the hypergraph HS = (V, S). Using
Theorem 1, (10) becomes

∞∑
n=1

∑
P∈An

XHP .

The fundamental tool in the proof of Theorem 2 is the ability to insert one path into any vertex of another
path while preserving the edges, as well as the ability to contract edges (and connected unions of edges) to
a point. This leads to the bijection ρ defined in the proof of 3, which allows us to use inclusion-exclusion
to find a combinatorial interpretation for the compositional inverse f−1

L (x), which in turn allows us to
find a combinatorial interpretation for the formal group law using the expansion of chromatic symmetric
functions into power sums (Theorem 1). In what follows we will give more examples of this technique,
but the details will be similar and the proofs will generally be omitted.

2.2 Plane trees with a fixed number of leaves
A plane tree (also called embedded tree is a rooted tree so that each node is equipped with an ordering
of its children. A leaf of a tree T is a node that has no children. Let An be the set of plane trees with
n leaves labeled 1, 2, . . . , n left-to-right, with all other nodes unlabeled and with no node having exactly
one child. (If nodes were allowed to have a single child, then each An would be infinite.)

There is an obvious way to insert one tree into any leaf of another that will allow us to replicate the
proof of Theorem 2. If T ∈ An, i is a leaf of T , and T ′ ∈ Am, we form the tree T (i← T ′) by replacing i
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Fig. 3: A plane tree T with the edges I ∈ ET circled below.

with the root of T ′. We let a subtree of T be a set of nodes T ′ so that T ′ is itself a tree that is a “down set”,
meaning that if v is a node of T ′ and u is descended from v in T , then u ∈ T ′. Then let HT = (V,ET )
where ET is the set of subsets I of leaves that form a complete set of siblings — all elements of I are
children of a single node v, and every child of v is a leaf and is in I . Fig. 3 is an example of a tree T
with its edge set ET . Note that HT has a very simple structure as a hypergraph, since the edges of HT are
always disjoint. In particular, HT is a linear interval hypergraph.

Let t2, t3, . . . be indeterminates. Define the weight w(T ) of a plane tree to be tk22 t
k3
3 · · · where ki is the

number of nodes in T that have exactly i children; thus if T is the tree in Fig. 3 then w(T ) = t2t
2
3. Then

let f(x) be the generating function

f(x) =

∞∑
n=1

xn
∑
T∈An

w(T ).

If we set t2 = 1 and ti = 0 for i > 2 in the coefficient of xn in f(x) we get the number of binary trees
with n leaves, the Catalan number Cn−1.

We have the following facts, whose proofs are similar to the proofs of Lemma 3 and Theorem 2.

Theorem 4 ([6, 8]). LetCn be the set of trees T ∈ An so that the associated hypergraphHT is connected.
Then

f−1(x) =

∞∑
n=1

xn
∑
T∈Cn

w(T )(−1)|ET |. (11)

Furthermore,

f(f−1(x1) + f−1(x2) + · · · ) =

∞∑
n=1

∑
T∈An

w(T )XHT . (12)

Note that HT is connected only when all the leaves of T are children of the root. In this case ET
consists of only one edge, which is the entire set of leaves. So Cn consists of this single tree T with
weight w(T ) = tn for each n, and by (11) we see

f−1(x) = x− t2x2 − t3x3 − · · · . (13)

Equation (13) can also be seen as a corollary of a more general theorem due to Parker [8] giving a com-
binatorial interpretation of the compositional inverses of generating functions that count plane trees with
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certain restrictions. Equation (12) is due to Lenart [6, Theorem 3.2], although there it is given in a signed
form.

We can also prove (12) directly, if we first define f(x) so that f−1(x) = x− t2x2 − t3x3 − · · · and let

F =

∞∑
n=1

∑
T∈An

w(T )XHT .

Then we see that F obeys the functional equation

F = x1 + x2 + · · ·+ t2(F 2 − x2
1 − x2

2 − · · · ) + t3(F 3 − x3
1 − x3

2 − · · · ) + · · · (14)

since a properly colored tree T consists either of a single vertex of any color, or a root whose descendants
consist of some number k ≥ 2 of subtrees T1, . . . , Tk which are properly colored, where we do not allow
the case where T1, . . . , Tk are single vertices all colored the same. Then rearranging (12), we see

F − t2F 2 − t3F 3 − · · · =
(
x1 − t2x2

1 − t3x3
1 − · · ·

)
+
(
x2 − t2x2

2 − t2x2
2 − · · ·

)
+ · · ·

f−1(F ) = f−1(x1) + f−1(x2) + · · ·

as desired.

2.3 Permutations
Let Sn be the set of permutations σ : [n]→ [n], and let

f(x) =

∞∑
n=1

|Sn|xn =

∞∑
n=1

n!xn.

The power series f(x) is nowhere convergent, but as a formal power series it still has a well-defined
inverse f−1(x). As in our previous examples, there is a simple way to insert one permutation into another.
In this case, it is most easily described in terms of permutation matrices. LetMσ be the permutation matrix
of σ ∈ Sn, given by the entries aij = 1 if σ(j) = i, with aij = 0 otherwise. Then if σ ∈ Sm, j ∈ [m],
and σ′ ∈ Sk, we define the permutation σ(j ← σ′) by letting Mσ(j←σ′) be the matrix given by inserting
Mσ′ as a k × k block into the entry (j, σ(j)) of Mσ . For example, if σ = 41523, j = 4, and σ′ = 213
then

Mσ =

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 0 1 0 0



, Mσ′ =
0 1 0

1 0 0

0 0 1


, Mσ(4←σ′) =

0 1 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 0 1 0 0 0 0




and so σ(4 ← σ′) = 6173245. From here we see how to define the associated hypergraph Hσ for a
permutation σ ∈ Sn. We let Êσ be the set of intervals I ⊆ [n] so that σ maps I to another interval
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J ⊆ [n]; thus {(j, σ(j)) : j ∈ I} is the set of entries with 1’s in an |I| × |I| block within Mσ which is
a permutation matrix in itself. Then we define Eσ to be the minimal non-singleton elements of Êσ . For
example, if σ = 659421387 then Eσ consists of the intervals {1, 2}, {4, 5, 6, 7}, {8, 9} since these map to
the intervals {5, 6}, {1, 2, 3, 4}, and {7, 8} respectively and they are minimal with respect to this property.

We then have the following facts, whose proofs are similar to the previous examples.

Theorem 5. Let Cn be the set of permutations σ of Sn so that Hσ is connected. We have

f−1(x) =

∞∑
n=1

∑
σ∈Cn

(−1)|Eσ|xn (15)

and

f(f−1(x1) + f−1(x2) + · · · ) =

∞∑
n=1

∑
σ∈Sn

XHσ .

A permutation σ ∈ Sn is called simple if Eσ = {[n]}, so that σ does not map any proper non-singleton
subinterval of [n] to another subinterval of [n]. For example, the permutations 12 and 24153 are simple,
but 253641 is not simple because it maps the interval {2, 3, 4, 5} to the interval {3, 4, 5, 6}. We can also
state this in terms of the permutation matrix Mσ: if σ is simple then Mσ has no k × k block that is itself
a permutation matrix, unless k = 1 or n.

Clearly if σ ∈ Sn is simple then Hσ is connected and so σ ∈ Cn. In fact, we will show that all but two
of the permutations in Cn are simple for n > 2. It is not hard to show that if I1, I2 are distinct elements
of Eσ with I1 ∩ I2 6= ∅ then |I1| = |I2| = 2. It follows that if Hσ is a connected hypergraph that is not
simple then σ is either the identity 123 · · ·n or the reverse permutation n · · · 321. In the latter two cases
we have Eσ = {{1, 2}, {2, 3}, . . . , {n− 1, n}}, so |Eσ| = n− 1. Then using (15) we find that

f−1(x) = x− 2x2 +

∞∑
n=3

(
2(−1)n−1 − sn

)
xn (16)

where sn is the number of simple permutations in Sn, which is the sequence 1, 2, 0, 2, 6, 46, 338, . . .
(Sequence A059372 in [10].) Equation (16) was found by Albert and Atkinson [1].

2.4 Other examples
There are a number of other power series f(x) for which

f(f−1(x1) + f−1(x2) + · · · )

can be shown to have nonnegative coefficients using these methods. For example, instead of taking An to
be plane trees with any number of nodes but with leaves labeled 1, 2, . . . , n, we can take plane trees with
each of its nodes labeled 1, 2, . . . , n. Let

f(x) =

∞∑
n=1

∑
T∈An

w(T )xn
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where w(T ) = tk11 t
k2
2 · · · where ki is the number of nodes of T with exactly i children. It is shown within

the proof of the Lagrange inversion formula in [13, Theorem 5.4.2] that

x

f−1(x)
= 1 + t1x+ t2x

2 + · · · (17)

and (17) can also be used to define f(x). It is possible to prove that the corresponding formal group law
has nonnegative coefficients using the technique we have described.

For simplicity of exposition we have only discussed the case where f(x) is an ordinary generating
function, but it is also possible to extend the methods to exponential generating functions. For example,
we may take f(x) to be the exponential generating function for labeled trees or labeled graphs. However,
the hypergraphs that arise in the exponential case are not necessarily linear interval hypergraphs.

3 A conjecture
This section will assume a basic knowledge of symmetric functions as found in, e.g., [13, Chapter 7], and
in particular knowledge of the Schur functions sλ which form an important basis of the ring of symmetric
functions Λ in infinity many variables x1, x2, . . .. If a symmetric function has positive coefficients in a
basis {bλ} of Λ we will say that it is b-positive; we will say that a hypergraph H is b-positive if XH is.
Based on numerical evidence, we make the following conjecture.

Conjecture 6. Linear interval hypergraphs are Schur-positive.

In particular, this conjecture would imply that all of the formal group laws discussed in 2.1, 2.2, 2.3 are
Schur-positive.

In some cases we can prove Schur-positivity directly. For example, let f(x) = x/(1− x). Stanley has
shown [13, Exercise 7.47(k)] that (4) can be rewritten

f(f−1(x1) + f−1(x2) + · · · ) =

∞∑
n=1

XGn =

∑∞
i=1 ei

1−
∑∞
i=1(i− 1)ei

− 1 (18)

where ei is the ith elementary symmetric function. It follows that the formal group law F corresponding
to f(x) = x/(1−x) is e-positive and hence Schur-positive, and all the paths Gn are e-positive as well. A
linear interval hypergraph that is actually an ordinary graph is a disjoint union of paths, and so must also
be e-positive. The Schur positivity of a disjoint union of paths also follows from results of Gessel [4] and
Gasharov [3], where a combinatorial interpretation of the coefficients of XG in the Schur basis is given
when G is the incomparability graph of a (3 + 1)-free poset.

If H is the hypergraph with vertex set [n] whose only edge is the whole set [n] then XH = pn1 − pn
since the only colorings of H that are not proper are the ones that assign all of H to a single color. It is
not hard to see that XH is Schur-positive in this case, and it follows that any hypergraph with all edges
disjoint is Schur-positive. Recall from Example 2.2 that if

f−1(x) = x− t2x2 − t3x3 − · · ·

then

f(f−1(x1) + f−1(x2) + · · · ) =
∑
T

w(T )XHT
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with the sum taken over plane trees T where w(T ) is a monomial in t2, t3, . . . and HT is a hypergraph
with all of its edges disjoint. It follows we may set t2, t3, . . . to be any sequence of nonnegative real
numbers and the resulting formal group law will be Schur-positive, giving the following.

Theorem 7. If f(x) ∈ R[[x]] so that f−1(x) = x − t2x
2 − t3x

3 − · · · , with each ti ≥ 0, then the
corresponding formal group law is Schur-positive.
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