Lenart, Cristian and Zainoulline, Kirill - On Schubert calculus in elliptic cohomology

dmtcs:2502 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
On Schubert calculus in elliptic cohomology

Authors: Lenart, Cristian and Zainoulline, Kirill

An important combinatorial result in equivariant cohomology and $K$-theory Schubert calculus is represented by the formulas of Billey and Graham-Willems for the localization of Schubert classes at torus fixed points. These formulas work uniformly in all Lie types, and are based on the concept of a root polynomial. We define formal root polynomials associated with an arbitrary formal group law (and thus a generalized cohomology theory). We usethese polynomials to simplify the approach of Billey and Graham-Willems, as well as to generalize it to connective $K$-theory and elliptic cohomology. Another result is concerned with defining a Schubert basis in elliptic cohomology (i.e., classes independent of a reduced word), using the Kazhdan-Lusztig basis of the corresponding Hecke algebra.


Source : oai:HAL:hal-01337776v1
Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Submitted on: November 21, 2016
Keywords: Schubert classes,Bott-Samelson classes,elliptic cohomology,root polynomial,Kazhdan-Lusztig basis,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]


Share

Browsing statistics

This page has been seen 22 times.
This article's PDF has been downloaded 29 times.