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Bruhat interval polytopes

Emmanuel Tsukerman† and Lauren Williams‡
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Abstract. Let u and v be permutations on n letters, with u ≤ v in Bruhat order. A Bruhat interval polytope Qu,v is the convex hull
of all permutation vectors z = (z(1), z(2), . . . , z(n)) with u ≤ z ≤ v. Note that when u = e and v = w0 are the shortest and
longest elements of the symmetric group, Qe,w0 is the classical permutohedron. Bruhat interval polytopes were studied recently in
the 2013 paper “The full Kostant-Toda hierarchy on the positive flag variety” by Kodama and the second author, in the context of
the Toda lattice and the moment map on the flag variety. In this paper we study combinatorial aspects of Bruhat interval polytopes.
For example, we give an inequality description and a dimension formula for Bruhat interval polytopes, and prove that every face
of a Bruhat interval polytope is a Bruhat interval polytope. A key tool in the proof of the latter statement is a generalization of the
well-known lifting property for Coxeter groups. Motivated by the relationship between the lifting property and R-polynomials, we
also give a generalization of the standard recurrence for R-polynomials.

Résumé. Soient u et v des permutations sur n lettres, avec u ≤ v dans l’ordre de Bruhat. Un polytope d’intervalles de Bruhat
Qu,v est l’enveloppe convexe de tous les vecteurs de permutations z = (z(1), z(2), . . . , z(n)) avec u ≤ z ≤ v. Notons que
lorsque u = e et v = w0 sont respectivement le plus court et le plus long élément du groupe symétrique, Qe,w0 est le permutoèdre
classique. Les polytopes d’intervalles de Bruhat ont été étudiés récemment dans le papier de 2013 “The full Kostant-Toda hierarchy
on the positive flag variety” par Kodama et le deuxième auteur, dans le contexte du treillis de Toda et la carte des moments sur la
variété de drapeaux. Dans ce papier nous étudions des aspects combinatoires des polytopes d’intervalles de Bruhat. Par exemple,
nous donnons une description par inégalités et une formule dimensionnelle pour les polytopes d’intervalles de Bruhat, et provons
que chaque face d’un polytope d’intervalles de Bruhat est un polytope d’intervalles de Bruhat. Un outil essentiel dans la preuve
de cette dernière affirmation est une généralisation de la célèbre propriété de lifting pour les groupes de Coxeter. Motivés par la
relation entre la propriété de lifting et les R-polynômes, nous donnons aussi une généralisation de la récurrence standard pour les
R-polynômes.
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1 Introduction
The classical permutohedron is the convex hull of all permutation vectors (z(1), z(2), . . . , z(n)) ∈ Rn where z is an
element of the symmetric group Sn. It has many beautiful properties: its edges are in bijection with cover relations
in the weak Bruhat order; its faces can be described explicitly; it is the Minkowski sum of matroid polytopes; it is the
moment map image of the complete flag variety.

The main subject of this paper is a natural generalization of the permutohedron called a Bruhat interval polytope.
Let u and v be permutations in Sn, with u ≤ v in (strong) Bruhat order. The Bruhat interval polytope (or pairmu-
tohedron(i)) Qu,v is the convex hull of all permutation vectors z = (z(1), z(2), . . . , z(n)) with u ≤ z ≤ v. Note
that when u = e and v = w0 are the shortest and longest elements of the symmetric group, Qe,w0

is the classical
permutohedron. Bruhat interval polytopes were recently studied in [KW13] by Kodama and the second author, in
the context of the Toda lattice and the moment map on the flag variety Fln. A basic fact is that Qu,v is the moment
map image of the Richardson variety Ru,v ⊂ Fln. Moreover, Qu,v is a Minkowski sum of matroid polytopes (in fact
of positroid polytopes [ARW13]) [KW13], which implies that Qu,v is a generalized permutohedron (in the sense of
Postnikov [Pos09]).
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The goal of this paper is to study combinatorial aspects of Bruhat interval polytopes. We give a dimension formula
for Bruhat interval polytopes, an inequality description of Bruhat interval polytopes, and prove that every face of a
Bruhat interval polytope is again a Bruhat interval polytope. In particular, each edge corresponds to some edge in the
(strong) Bruhat order. The proof of our result on faces uses the classical result (due to Edelman [Ede81] in the case of
the symmetric group, and subsequently generalized by Proctor [Pro82] and then Bjorner-Wachs [BW82]) that the order
complex of an interval in Bruhat order is homeomorphic to a sphere. Our proof also uses a generalization of the lifting
property, which appears to be new and may be of interest in its own right. This Generalized lifting property says that
if u < v in Sn, then there exists an inversion-minimal transposition (ik) (see Definition 3.2) such that u ≤ v(ik) l v
and u l u(ik) ≤ v. One may compare this with the usual lifting property, which says that if u < v and the simple
reflection si ∈ Dr(v) \Dr(u) is a right-descent of v but not a right-descent of u, then u ≤ vsi l v and ul usi ≤ v.
Note that in general such a simple reflection si need not exist.

The usual lifting property is closely related to the R-polynomials Ru,v(q). Recall that the R-polynomials are used
to define Kazhdan-Lusztig polynomials [KL79], and also have an interesting geometric interpretation: the Richardson
variety Ru,v may be defined over a finite field Fq , and the number of points it contains is given by the R-polynomial
Ru,v(q) = #Ru,v(Fq). A basic result about the R-polynomials is that if si ∈ Dr(v) \ Dr(u), then Ru,v(q) =
qRus,vs(q)+(q−1)Ru,vs(q). We generalize this result, showing that if t = (ik) is inversion-minimal, thenRu,v(q) =
qRut,vt(q) + (q − 1)Ru,vt(q).

The structure of this paper is as follows. In Section 2 we provide background and terminology for posets, Cox-
eter groups, permutohedra, matroid polytopes, and Bruhat interval polytopes. In Section 3 we state and prove the
Generalized lifting property for the symmetric group. We then use this result in Section 4 to prove that the face of a
Bruhat interval polytope is a Bruhat interval polytope. Section 4 also provides a dimension formula for Bruhat interval
polytopes, and an inequality description for Bruhat interval polytopes. In Section 5 we give a generalization of the
usual recurrence for R-polynomials, using the notion of an inversion-minimal transposition on the interval (u, v).

2 Background
In this section we will quickly review some notation and background for posets and Coxeter groups. We will also
review some basic facts about permutohedra, matroid polytopes, and Bruhat interval polytopes. We will assume
knowledge of the basic definitions of Coxeter systems and Bruhat order; we refer the reader to [BB05] for details.
Note that throughout this paper, Bruhat order will refer to the strong Bruhat order.

Let P be a poset with order relation <. We will use the symbol l to denote a covering relation in the poset: ul v
means that u < v and there is no z such that u < z < v. Additionally, if u < v then [u, v] denotes the (closed)
interval from u to v; that is, [u, v] = {z ∈ P | u ≤ z ≤ v}. Similarly, (u, v) denotes the (open) interval, that is,
(u, v) = {z ∈ P | u < z < v}.

The natural geometric object that one associates to a poset P is the geometric realization of its order complex (or
nerve). The order complex ∆(P ) is defined to be the simplicial complex whose vertices are the elements of P and
whose simplices are the chains x0 < x1 < · · · < xk in P . Abusing notation, we will also use the notation ∆(P ) to
denote the geometric realization of the order complex.

Let (W,S) be a Coxeter group generated by a set of simple reflections S = {si | i ∈ I}. We denote the set of
all reflections by T = {wsw−1 | w ∈ W}. Recall that a reduced word for an element w ∈ W is a minimal length
expression for w as a product of elements of S, and the length `(w) of w is the length of a reduced word. For w ∈W ,
we let DR(w) = {s ∈ S | wsl w} be the right descent set of w and DL(w) = {s ∈ S | sw l w} the left descent set
of w. We also let TR(w) = {t ∈ T | `(wt) < `(w)} and TL(w) = {t ∈ T | `(tw) < `(w)} be the right associated
reflections and left associated reflections of w, respectively.

The (strong) Bruhat order on W is defined by u ≤ v if some substring of some (equivalently, every) reduced word
for v is a reduced word for u. The Bruhat order on a Coxeter group is a graded poset, with rank function given by
length.

When W is the symmetric group Sn, the reflections are the transpositions T = {(ij) | 1 ≤ i < j ≤ n}, the set of
permutations which act on {1, . . . , n} by swapping i and j. The simple reflections are the reflections of the form (ij)
where j = i+1. We also denote this simple reflection by si. An inversion of a permutation z = (z(1), . . . , z(n)) ∈ Sn

is a pair (ij) with 1 ≤ i < j ≤ n such that z(i) > z(j). It is well-known that `(z) is equal to the number of inversions
of the permutation z.

Note that we will often use the notation (z1, . . . , zn) instead of (z(1), . . . , z(n)).
We now review some facts about permutohedra, matroid polytopes, and Bruhat interval polytopes.
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Definition 2.1 The usual permutohedron Permn in Rn is the convex hull of the n! points obtained by permuting the
coordinates of the vector (1, 2, . . . , n).

Bruhat interval polytopes, as defined below, were introduced and studied by Kodama and the second author in
[KW13], in connection with the full Kostant-Toda lattice on the flag variety.

Definition 2.2 Let u, v ∈ Sn such that u ≤ v in (strong) Bruhat order. We identify each permutation z ∈ Sn with the
corresponding vector (z(1), . . . , z(n)) ∈ Rn. Then the Bruhat interval polytope Qu,v is defined as the convex hull of
all vectors (z(1), . . . , z(n)) for z such that u ≤ z ≤ v.

See Figure 1 for some examples of Bruhat interval polytopes.
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Figure 1: The two polytopes are the permutohedron Qe,w0
= Perm4, and the Bruhat interval polytope Qu,v with

v = (2, 4, 3, 1) and u = (1, 2, 4, 3).

We next explain how Bruhat interval polytopes are related to matroid polytopes, generalized permutohedra, and flag
matroid polytopes.

Definition 2.3 LetM be a nonempty collection of k-element subsets of [n] such that: if I and J are distinct members
ofM and i ∈ I \ J , then there exists an element j ∈ J \ I such that (I \ {i}) ∪ {j} ∈ M. ThenM is called the set
of bases of a matroid of rank k on the ground set [n]; or simply a matroid.

Definition 2.4 Given the set of basesM ⊂
(
[n]
k

)
of a matroid, the matroid polytope ΓM ofM is the convex hull of

the indicator vectors of the bases ofM:

ΓM := Conv{eI | I ∈M} ⊂ Rn,

where eI :=
∑

i∈I ei, and {e1, . . . , en} is the standard basis of Rn.

Note that “a matroid polytope" refers to the polytope of a specific matroid in its specific position in Rn.

Definition 2.5 The flag variety Fln is the variety of all flags

Fln = {V• = V1 ⊂ V2 ⊂ · · · ⊂ Vn = Rn | dimVi = i}

of vector subspaces of Rn.

Definition 2.6 The Grassmannian Grk,n is the variety of k-dimensional subspaces of Rn

Grk,n = {V ⊂ Rn | dimV = k}.

Note that there is a natural projection πk : Fln → Grk,n taking V• = V1 ⊂ · · · ⊂ Vn to Vk.
Note also that any element V ∈ Grk,n gives rise to a matroidM(V ) of rank k on the ground set [n]. First represent

V as the row-span of a full rank k × n matrix A. Given a k-element subset I of {1, 2, . . . , n}, let ∆I(A) denote the
determinant of the k × k submatrix of A located in columns I . This is called a Plücker coordinate. Then V gives rise
to a matroidM(V ) whose bases are precisely the k-element subsets I such that ∆I(A) 6= 0.

One result of [KW13, Section 6] (see also [KW13, Appendix]) is the following.
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Proposition 2.7 Choose u ≤ v ∈ Sn. Let V• = V1 ⊂ · · · ⊂ Vn be any element in the positive part of the Richardson
varietyRu,v;>0. Then the Bruhat interval polytope Qu,v is the Minkowski sum of n− 1 matroid polytopes:

Qu,v =

n−1∑
k=1

ΓM(Vk).

In fact each of the polytopes ΓM(Vk) is a positroid polytope, in the sense of [ARW13], and Qu,v is a generalized
permutohedron, in the sense of Postnikov [Pos09].

We can compute the basesM(Vk) from the permutations u and v as follows.

M(Vk) = {I ∈
(

[n]

k

)
| there exists z ∈ [u, v] such that I = {z(1), . . . , z(k)}}. (1)

Therefore we have the following.

Proposition 2.8 For any u ≤ v ∈ Sn, the Bruhat interval polytope Qu,v is the Minkowski sum of n − 1 matroid
polytopes

Qu,v =

n−1∑
k=1

ΓMk
,

where

Mk = {I ∈
(

[n]

k

)
| there exists z ∈ [u, v] such that I = {z(1), . . . , z(k)}}.

Positroid polytopes are a particularly nice class of matroid polytopes coming from positively oriented matroids. A
generalized permutohedron is a polytope which is obtained by moving the vertices of the usual permutohedron in such
a way that directions of edges are preserved, but some edges (and higher dimensional faces) may degenerate. See
[ARW13] and [Pos09] for more details on positroid polytopes and generalized permutohedra.

There is a generalization of matroid called flag matroid, due to Gelfand and Serganova [GS87], [BGW03, Section
1.7], and a corresponding notion of flag matroid polytope. A convex polytope ∆ in the real vector space Rn is called
a (type An−1) flag matroid polytope if the edges of ∆ are parallel to the roots of type An−1 and there exists a point
equidistant from all of its vertices.

The following result follows easily from Proposition 2.7.

Proposition 2.9 Choose u ≤ v ∈ Sn. Then the Bruhat interval polytope Qu,v is a flag matroid polytope.

We can use Proposition 2.9 to prove the following useful result.

Proposition 2.10 Let Qu,v be a Bruhat interval polytope. Consider a face F of Qu,v . LetN be the set of permutations
which label vertices of F . Then N contains an element x and an element y such that

x ≤ z ≤ y ∀z ∈ N .

3 The generalized lifting property for the symmetric group
The main result of this section is Theorem 3.3, which is a generalization (for the symmetric group) of the classical
lifting property for Coxeter groups. This result will be a main tool for proving that every face of a Bruhat interval
polytope is a Bruhat interval polytope.

We start by recalling the usual lifting property.

Proposition 3.1 (Lifting property) Suppose u < v and s ∈ DR(v) \DR(u). Then u ≤ vsl v and ul us ≤ v.

Definition 3.2 Let u, v ∈ Sn. A transposition (ik) is inversion-minimal on (u, v) if the interval [i, k] is the minimal
interval (with respect to inclusion) which has the property

vi > vk, ui < uk.

Theorem 3.3 (Generalized lifting property) Suppose u < v in Sn. Choose a transposition (ij) which is inversion-
minimal on (u, v). Then u ≤ v(ij) l v and ul u(ij) ≤ v.
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We note that there are pairs u < v whereDR(v)\DR(u) is empty, and hence one cannot apply the Lifting property.
In contrast, Lemma 3.4 below shows that for any pair u < v in Sn, there exists an inversion-minimal transposition
(ij). Hence it is always possible to apply the Generalized lifting property.

Lemma 3.4 Let (W,S) be a Coxeter group. Take u, v ∈ W distinct. If `(v) ≥ `(u) then there exists a reflection
t ∈ T such that

v > vt, u < ut.

Lemma 3.4 directly implies the following corollary.

Corollary 3.5 Let v, u ∈ Sn be two distinct permutations. If `(v) ≥ `(u) then there exists an inversion-minimal
transposition on (u, v).

In preparation for the proof of Theorem 3.3, it will be convenient to make the following definition.

Definition 3.6 A pattern of length n is an equivalence class of sequences x1x2 · · ·xn of distinct integers. Two such
sequences x1x2 · · ·xn, y1y2 · · · yn are in the same equivalence class (“have the same pattern”) if

xi > xj ⇐⇒ yi > yj for all i, j such that 1 ≤ i, j ≤ n.

Denote by Pattn the set of patterns of length n.

There is a canonical representative for each pattern x ∈ Pattn obtained by replacing each xi with

x̄i := #{j ∈ [n] : xj ≤ xi}.

For example, the canonical representative of 523 is 312.

Definition 3.7 Let x, y ∈ Pattn for some n. Call (x, y) an Inversion-Inversion pair if the following condition holds:

for all i < j, xi > xj =⇒ yi > yj .

Notice that this statement is independent of the choice of representatives.
It is easy to see that if (x, y) is an Inversion-Inversion pair, then so is (x1 · · · x̂k · · ·xn, y1 · · · ŷk · · · yn) for any k.
In preparation for the proof of Theorem 3.3, we first state and prove Lemmas 3.8, 3.10, and 3.11.

Lemma 3.8 Let u, v ∈ Sn. The following are equivalent:

(i). The transposition (ik) is inversion-minimal on (u, v)

(ii). The patterns x = xi . . . xk := vi · · · vk and y = yi . . . yk := ukui+1ui · · ·uk−2uk−1ui form an Inversion-
Inversion pair (x, y) with x̄k = x̄i + 1 and ȳk = ȳi + 1.

Lemma 3.8 implies the following result.

Corollary 3.9 Let u, v ∈ Sn and let (ik) be inversion-minimal on (u, v). Then

v(ik) l v and ul u(ik).

v

v(ij)

u(ij)

u

Figure 2: Generalized lifting property

Lemma 3.10 Let x, y ∈ Pattn with x̄n = x̄1 + 1 and ȳn = ȳ1 + 1. If (x, y) is an Inversion-Inversion pair, then
x̄1 = ȳ1.
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Lemma 3.11 Suppose that (ik) is inversion-minimal on (u, v). Then for every i < j < k, we have

uj > ui ⇐⇒ uj > uk ⇐⇒ vj > vk ⇐⇒ vj > vi.

u = 2143

3142 2341

v = 3241

t = (24)(14)

t = (24) (12)

Figure 3: Example of Theorem 3.3

Example 3.12 The following example shows that the converse to Theorem 3.3 does not hold: it is not necessarily the
case that if the Bruhat relations

v(ik) l v ul u(ik) u ≤ v(ik) u(ik) ≤ v

hold, then (ik) is inversion-minimal on (u, v). Take v = 4312, u = 1243 and (ik) = (24). Then

v(ik) l v ul u(ik) u ≤ v(ik) u(ik) ≤ v

but also v2 > v3 and u2 < u3.

As a corollary of Generalized lifting, we have the following result, which says that in an interval of the symmetric
group we may find a maximal chain such that each transposition connecting two consecutive elements of the chain is
a transposition that comes from the atoms, and similarly, for the coatoms.

Corollary 3.13 Let [u, v] =⊂ Sn and let T (v) := {t ∈ T : v m vt ≥ u} and T (u) := {t ∈ T : ul ut ≤ v}. There
exist maximal chains Cv : u = x(0) l x(1) l x(2) l . . .l x(l) = v and Cu : u = y(0) l y(1) l y(2) l . . .l y(l) = v in
I such that x−1(i)x(i+1) ∈ T (v) and y−1(i) y(i+1) ∈ T (u) for each i.

4 Results on Bruhat interval polytopes
In this section we give some results on Bruhat interval polytopes. We show that the face of a Bruhat interval polytope
is a Bruhat interval polytope; we give a dimension formula; and we give an inequality description.

4.1 Faces of Bruhat interval polytopes are Bruhat interval polytopes
The main result of this section is the following.

Theorem 4.1 Every face of a Bruhat interval polytope is itself a Bruhat interval polytope.

Our proof of this result uses the following theorem. It was first proved for the symmetric group by Edelman [Ede81],
then generalized to classical types by Proctor [Pro82], and then proved for arbitrary Coxeter groups by Bjorner and
Wachs [BW82].

Theorem 4.2 [BW82] Let (W,S) be a Coxeter group. Then for any u ≤ v in W , the order complex ∆(u, v) of the
interval (u, v) is PL-homeomorphic to a sphere S`(u,v)−2. In particular, the Bruhat order is thin, that is, every rank
2 interval is a diamond. In other words, whenever u ≤ v with `(v) − `(u) = 2, there are precisely two elements
z(1), z(2) such that u < z(i) < v.

We will identify a linear functional ω with a vector (ω1, . . . , ωn) ∈ Rn, where ω : Rn → R is defined by ω(ei) = ωi

(and extended linearly).

Proposition 4.3 Choose u ≤ v in Sn, and let ω : Rn → R be a linear functional which is constant on a maximal
chain C from u to v. Then ω is constant on all permutations z where u ≤ z ≤ v.

Corollary 4.4 If a linear functional ω : Rn → R, when restricted to [u, v], attains its maximum value on u and v,
then it is constant on [u, v].
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4.2 The dimension of Bruhat interval polytopes
In this section we will give a dimension formula for Bruhat interval polytopes. We will then use it to determine which
Richardson varieties in Fln are toric varieties, with respect to the usual torus action on Fln. Recall that a Richardson
varietyRu,v is the intersection of opposite Schubert (sometimes called Bruhat) cells.

Definition 4.5 Let u ≤ v be permutations in Sn, and let C : u = x(0) l x(1) l x(2) l . . .l x(l) = v be any maximal
chain from u to v. Define a labeled graph GC on [n] having an edge between vertices a and b if and only if the
transposition (ab) equals x−1(i)x(i+1) for some 0 ≤ i ≤ l − 1. Define BC = {B1, B2, . . . , Br} to be the partition of
[n] = {1, 2, . . . , n} whose blocks Bj are the connected components of GC . Let #BC denote r, the number of blocks
in the partition.

We will show in Corollary 4.8 that the partition BC is independent of C; and so we will denote this partition by
Bu,v .

Theorem 4.6 The dimension dimQu,v of the Bruhat interval polytope Qu,v is

dimQu,v = n−#Bu,v.

The equations defining the affine span of Qu,v are∑
i∈Bj

xi =
∑
i∈Bj

ui(=
∑
i∈Bj

vi), j = 1, 2, . . . ,#Bu,v. (2)

Before proving Theorem 4.6, we need to show that Bu,v is well-defined. Given a subset A ⊂ [n], let eA denote the
0− 1 vector in Rn with a 1 in position a if and only if a ∈ A.

Lemma 4.7 Let C be a maximal chain in [u, v] ⊂ Sn. Let BC = {B1, . . . , Br} be the associated partition of [n].
Then a linear functional ω : Rn → R is constant on the interval [u, v] if and only if

ω =

r∑
j=1

cjeBj

for some coefficients cj .

Corollary 4.8 The partition BC is independent of the choice of C.

Definition 4.9 Let u ≤ v be permutations in Sn, and let T (u) := {t ∈ T : u l ut ≤ v} and T (v) := {t ∈ T :
vm vt ≥ u} be the transpositions labeling the cover relations corresponding to the atoms and coatoms in the interval.
Define a labeled graph Gat (resp. Gcoat) on [n] such that Gat (resp. Gcoat) has an edge between a and b if and only
if the transposition (ab) ∈ T (u) (resp. (ab) ∈ T (v)). Let Bat

u,v be the partition of [n] whose blocks are the connected
components of Gat. Similarly, define partition Bcoat

u,v whose blocks are the connected components of Gcoat.

Proposition 4.10 Let [u, v] ⊂ Sn. The partitionsBat
u,v andBcoat

u,v are equal toBu,v . Consequently, the labeled graphs
GC , Gat and Gcoat all have the same connected components.

Example 4.11 Consider the intervals [1234, 1432] and [1234, 3412] in Figures 4 and 5. We see that B1234,1432 =
|1|234| and B1234,3412 = |1234|, so that the dimensions are 2 and 3, respectively.

1234

1243 1324

1423 1342

1432

(23)(34)

(23) (34)

(23)(34)

(24)(24)

Figure 4
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We now turn to the question of when the Richardson varietyRu,v is a toric variety.

Proposition 4.12 The Richardson variety Ru,v in Fln is a toric variety if and only if the number of blocks #Bu,v of
the partition Bu,v satisfies #Bu,v = n − `(v) + `(u). Equivalently, Ru,v is a toric variety if and only if the labeled
graph GC is a forest (with no multiple edges).

Given a labeled graph G, we will say that a cycle (v0, v1, . . . , vk) with vk = v0 is increasing if v0 < v1 < . . . <
vk−1. We shall call a labeled graph with no increasing cycles an increasing-cycle-free labeled graph.

Lemma 4.13 The labeled graphsGat andGcoat are increasing-cycle-free. In particular, they are simple and triangle-
free.

Following Björner and Brenti [BB05], we call the face poset of a k-gon a k-crown. Any length 3 interval in a
Coxeter group is a k-crown [BB05, Corollary 2.7.8]. It is also known that in Sn, the values of k can only be 2, 3 or 4.

Remark 4.14 Using Proposition 4.10 and Lemma 4.13, it is easy to show that any k-crown must have k ≤ 4. Indeed,
the graph GC has 3 edges, and therefore at least n − 3 connected components. By Proposition 4.10, the graph Gat

has the same connected components as GC and k edges. By Lemma 4.13 it is simple and triangle-free. Consequently,
if k > 4 then Gat must have at most n− 4 components.

Lemma 4.15 Let [u, v] be a 4-crown and let C : u = x(0) l x(1) l x(2) l x(3) = v be any maximal chain. The graph
GC is a forest. In particular, if we set ti := x−1(i)x(i+1) for 0 ≤ i ≤ 2, then t0 6= t2 since there are no multiple edges.

Corollary 4.16 A Richardson variety Ru,v in Fln with `(v) − `(u) = 3 is a toric variety if and only if [u, v] is a
3-crown or a 4-crown.

4.3 An inequality description of Bruhat interval polytopes
Using Proposition 2.8, which says that Bruhat interval polytopes are Minkowski sums of matroid polytopes, we will
provide an inequality description of Bruhat interval polytopes.

We first need to recall the notion of the rank function rM of a matroidM. Suppose thatM is a matroid of rank k
on the ground set [n]. Then the rank function rM : 2[n] → Z≥0 is the function defined by

rM(A) = max
I∈M

|A ∩ I| for all A ∈ 2[n].

There is an inequality description of matroid polytopes, using the rank function.
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Proposition 4.17 ([Wel76]) LetM be any matroid of rank k on the ground set [n], and let rM : 2[n] → Z≥0 be its
rank function. Then the matroid polytope ΓM can be described as

ΓM =

x ∈ Rn |
∑
i∈[n]

xi = k,
∑
i∈A

xi ≤ rM(A) for all A ⊂ [n]

 .

Using Proposition 4.17 we obtain the following result.

Proposition 4.18 Choose u ≤ v ∈ Sn, and for each 1 ≤ k ≤ n− 1, define the matroid

Mk = {I ∈
(

[n]

k

)
| there exists z ∈ [u, v] such that I = {z(1), . . . , z(k)}}.

Then

Qu,v =

x ∈ Rn |
∑
i∈[n]

xi =

(
n+ 1

2

)
,
∑
i∈A

xi ≤
n−1∑
j=1

rMj
(A) for all A ⊂ [n]

 .

Example 4.19 Consider u = 1324 and v = 2431 in S4. We will compute the inequality description of Qu,v . First
note that [u, v] = {1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431}. We then compute:

• M1 = {{1}, {2}}, a matroid of rank 1 on [4].

• M2 = {{1, 3}, {1, 4}, {2, 3}, {2, 4}}, a matroid of rank 2 on [4].

• M3 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}, a matroid of rank 3 on [4].

Now using Proposition 4.18, we get

Qu,v = {x ∈ R4 |
∑
i∈[4]

xi = 10, x1 + x2 + x3 ≤ 6, x1 + x2 + x4 ≤ 6, x1 + x3 + x4 ≤ 6, x2 + x3 + x4 ≤ 6,

x1 + x2 ≤ 4, x1 + x3 ≤ 5, x1 + x4 ≤ 5, x2 + x3 ≤ 5, x2 + x4 ≤ 5, x3 + x4 ≤ 3,

x1 ≤ 3, x2 ≤ 3, x3 ≤ 2, x4 ≤ 2.}

5 A generalization of the recurrence for R-polynomials
The well-known R-polynomials were introduced by Kazhdan and Lusztig as a useful tool for computing Kazhdan-
Lusztig polynomials [KL79]. R-polynomials also have a geometric interpretation in terms of Richardson varieties.
More specifically, the Richardson variety Ru,v may be defined over a finite field Fq , and the number of points it
contains is given by the R-polynomial Ru,v(q) = #Ru,v(Fq).

The R-polynomials may be defined by the following recurrence.

Theorem 5.1 [BB05, Theorem 5.1.1] There exists a unique family of polynomials {Ru,v(q)}u,v∈W ⊂ Z[q] satisfying
the following conditions:

1. Ru,v(q) = 0, if u 6≤ v.

2. Ru,v(q) = 1, if u = v.

3. If s ∈ DR(v), then

Ru,v(q) =

{
Rus,vs(q) if s ∈ DR(u),

qRus,vs(q) + (q − 1)Ru,vs(q) if s 6∈ DR(u).

It is natural to wonder whether one can replace s with a transposition t whenever the Generalized lifting property
holds. More precisely, suppose that t is a transposition such that

vtl v ul ut u ≤ vt ut ≤ v. (3)
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Is it true that
Ru,v(q) = qRut,vt(q) + (q − 1)Ru,vt(q)? (4)

In general, the answer is no. For example, one can check that u = 1324, v = 4231 and t = (24) give a counterexample.
However, when t is an inversion-minimal transposition on (u, v), (4) does hold. We’ll use the next lemma to prove
this.

Lemma 5.2 Let u, v ∈ Sn and suppose that (ik) is inversion-minimal on (u, v). Assume further that vj > vj+1 and
uj > uj+1 for some j such that i < j < k − 1. Then (ik) is inversion-minimal on (vsj , usj).

Proposition 5.3 Let u, v ∈ Sn with v ≥ u. Let t = (ij) be inversion-minimal on (u, v). Then

Ru,v(q) = qRut,vt(q) + (q − 1)Ru,vt(q).

Remark 5.4 The above statement holds mutatis mutandis for the R̃-polynomials, which are a renormalization of the
R-polynomials.

Example 5.5 Take u = 21345, v = 53421 and t = (13). We have

Ru,v(q) = q8 − 4q7 + 7q6 − 8q5 + 8q4 − 8q3 + 7q2 − 4q + 1

Rut,vt(q) = q6 − 4q5 + 7q4 − 8q3 + 7q2 − 4q + 1

and
Ru,vt(q) = q7 − 4q6 + 7q5 − 8q4 + 8q3 − 7q2 + 4q − 1.

Definition 5.6 A matching of a graph G = (V,E) is an involution M : V → V such that {v,M(v)} ∈ E for all
v ∈ V .

Definition 5.7 Let P be a graded poset. A matching M of the Hasse diagram of P is a special matching if for all
x, y ∈ P such that xl y, we have M(x) = y or M(x) ≤M(y).

It is known that special matchings can be used to compute R-polynomials:

Theorem 5.8 [BCM06, Theorem 7.8] Let (W,S) be a Coxeter system, let w ∈ W , and let M be a special matching
of the Hasse diagram of the interval [e, w] in Bruhat order. Then

Ru,w(q) = qcRM(u),M(w)(q) + (qc − 1)Ru,M(w)(q)

for all u ≤ w, where c = 1 if M(u) m u and c = 0 otherwise.

One might guess that the Generalized lifting property is compatible with the notion of special matching. More
precisely, one might speculate that if [u, v] ⊂ Sn and t is inversion-minimal on (u, v) then there is a special matching
M of [u, v] such that M(u) = ut and M(v) = vt. The following gives an example of this.

Example 5.9 Take u = 143265 and v = 254163. Then t = (36) is inversion-minimal on (u, v). Suppose that a
special matching M of [u, v] (see Figure 6) satisfies M(v) = vt and M(u) = ut. Then we must have M(154263) =
153264 and M(243165) = 245163. Observe that the result is a multiplication matching. Similarly, if we take
t = (14), another inversion-minimal transposition on (u, v), we again obtain a multiplication matching.

143265

153264 243165 145263

253164 154263 245163

254163

(26) (14) (36)

(36) (14) (23)
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Figure 6

The following example shows that it is not the case that an inversion-minimal transposition must be compatible with
a special matching. This makes Proposition 5.3 all the more surprising, and shows that it cannot be deduced using
special matchings.

Example 5.10 Take u = 1324 and v = 4312. Then t = (24) is inversion-minimal on (u, v). Suppose that a special
matching M of [u, v] (Figure 7) satisfies M(v) = vt, i.e., sends 4312 to 4213. Then

M(4132) = 4123, M(1432) = 1423, M(1342) = 1324, M(3142) = 3124, M(3412) = 3214, M(2413) = 2314.

But M(2314) = 2413 6≥ 1342 = M(1324), which is a contradiction.

1324

1423 1342 3124 2314

1432 4123 2413 3142 3214

4132 4213 3412

4312

(24)

(24)

Figure 7
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