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Coxeter-biCatalan combinatorics

Emily Barnard: and Nathan Reading;
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Abstract. We consider several counting problems related to Coxeter-Catalan combinatorics and conjecture that the
problems all have the same answer, which we call the W -biCatalan number. We prove the conjecture in many cases.

Résumé. Nous considérons des problèmes énumératifs liés à la combinatoire de Coxeter-Catalan et conjecturons que
tous les problèmes ont la même solution, que nous appelons le nombre W -biCatalan. Nous prouvons la conjecture
dans de nombreux cas.
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1 Introduction
This extended abstract considers enumeration problems closely related to Coxeter-Catalan combinatorics.
(For background on Coxeter-Catalan combinatorics, see for example [1, 11]). Each enumeration can be
thought of as counting pairs of two “twin” Coxeter-Catalan objects. We now pose counting problems in
several of the usual settings of Coxeter-Catalan combinatorics. The counting problems are conjectured
to have the same answer in all of the settings. As we pose the problems, we discuss to what extent this
conjecture is known. Most of the terms used below are new and will be explained later.

In the setting of sortable elements and Cambrian lattices/fans, the enumeration problem is to count

• maximal cones in the bipartite biCambrian fan (the common refinement of two bipartite Cambrian fans);
• pairs of twin c-sortable elements for bipartite c;
• classes in the bipartite biCambrian congruence (the meet of two bipartite Cambrian congruences);
• elements of the c-biCambrian lattice for bipartite c; or
• c-bisortable elements for bipartite c.

In type A, c-bisortable elements for bipartite c are in bijection with certain pattern-avoiding permutations
and with alternating arc diagrams. In type B, similar bijections exist with certain signed permutations
and with centrally symmetric alternating arc diagrams. All of the objects listed above make sense for
non-bipartite c, but the enumeration depends on the choice of c. We focus here on the bipartite choice.

In the setting of nonnesting partitions (antichains in the root poset), the enumeration problem is to count

• antichains in the doubled root poset.
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Theorem 1.1 For crystallographic W , c-bisortable elements for bipartite c are in bijection with an-
tichains in the doubled root poset. More specifically, for each k, the number of bipartite c-bisortable
elements with k descents equals the number of k-element antichains in the doubled root poset.

Some of the enumerations and descent generating functions of bipartite c-bisortable elements are shown
here. At present we have no conjectured formula the type-D descent generating functions.
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D4 1` 20q ` 42q2 ` 20q3 ` q4

D5 1` 35q ` 136q2 ` 136q3 ` 35q4 ` q5

D6 1` 54q ` 343q2 ` 600q3 ` 343q4 ` 54q5 ` q6

E6 1` 66q ` 415q2 ` 736q3 ` 415q4 ` 66q5 ` q6

F4 1` 44q ` 106q2 ` 44q3 ` q4

G2 1` 10q ` q2

H3 1` 27q ` 27q2 ` q3

I2pmq 1` p2m´ 2qq ` q2.

In the setting of clusters of almost positive roots (in the sense of [12]), the problem is to count two
closely related families of objects:

• maximal cones in the bicluster fan (common refinement of the cluster fan and its antipodal opposite), or
• pairs of twin clusters.

A bijection between sortable elements and clusters from [22] extends to prove the following theorem.

Theorem 1.2 For all W , c-bisortable elements for bipartite c are in bijection with pairs of twin clusters.

We prove Theorem 1.2 in Section 2.4 by quoting results of [12, 22, 25]. While there is a notion of c-
clusters for any Coxeter element c, we emphasize that Theorem 1.2 refers to the original definition of
clusters in [12], which corresponds to a bipartite choice of c. A type-A version of twin c-clusters (in a
not-necessarily-bipartite sense) were considered in a recent paper by Chatel and Pilaud [7], in the guise
of twin Cambrian trees.

In the setting of noncrossing partitions, the problem is to count

• pairs of twin bipartite c-noncrossing partitions, or
• pairs of twin bipartite pc, c´1q-noncrossing partitions.

Theorem 1.3 For all W and bipartite c, the c-bisortable elements are in bijection with pairs of twin
c-noncrossing partitions and with pairs of twin pc, c´1q-noncrossing partitions.

Although the definitions of twin bipartite c-noncrossing partitions and pairs of twin bipartite pc, c´1q-
noncrossing partitions are made specifically to make Theorem 1.3 true, they are phrased naturally in the
language of noncrossing partitions. We fill in these definitions in Section 2.5.
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Fig. 1: Some doubled root posets

We propose the terms W -biCatalan number and W -biNarayana number for the answers to the enu-
merations. Naturally, one would like a uniform formula for the W -biCatalan number, but we have not
found one. A tantalizing near-miss is the non-formula

śn
i“1

h`ei´1
ei

, where h is the Coxeter number and
the ei are the exponents. This expression captures the W -biCatalan numbers for W of types An, Bn, H3,
and I2pmq—the “coincidental types” of [31]—but fails to even be an integer in some other types. In every
case, the expression is a surprisingly good estimate of the W -biCatalan number.

The remainder of this extended abstract is devoted to filling in definitions and details for the discussion
above, and giving some more details of the type-A enumeration of bipartite c-bisortable elements.

2 BiCatalan objects
In this section, we fill in the definitions and details behind the enumeration problems discussed in the
introduction.

2.1 Antichains in the doubled root poset and twin nonnesting partitions
The root poset of a finite crystallographic root system Φ is the set of positive roots in Φ, partially ordered
by setting α ď β if and only if β ´ α is in the nonnegative span of the simple roots. Recall that the dual
of a poset pX,ďq is the poset with the same ground set X , satisfying x ď y in the dual poset if and only
if x ě y in pX,ďq. The doubled root poset consists of the root poset, together with a disjoint copy of
the dual poset, identified on the simple roots. Figure 1 shows the doubled root posets of types A5, B3,
and D4.

The antichain counts in types A and B are easy and known, in the guise of lattice path enumeration.
Antichains in the doubled root poset of type An are in an easy bijection with lattice paths from p0, 0q
to pn, nq with steps p1, 0q and p0, 1q. The bijection can be made so that the number of elements in
the antichain corresponds to the number of right turns in the path (the number of times a p1, 0q-step
immediately follows a p0, 1q-step). To specify a path with k right turns, we need only specify where the
right turns are. This means choosing 0 ď x1 ă ¨ ¨ ¨ ă xk ď n´1 and 1 ď y1 ă ¨ ¨ ¨ ă yk ď n and placing
right turns at px1, y1q, . . . , pxk, ykq. Thus, as is well-known, there are

`

n
k

˘2
paths with k right turns.

Antichains in the doubled root poset of type Bn are similarly in bijection with lattice paths from p´n`
1,´n` 1q to pn´ 1, n´ 1q with steps p1, 0q and p0, 1q that are symmetric with respect to the reflection
in the line y “ ´x. These are in turn in bijection with self-conjugate partitions in a p2n´ 1q ˆ p2n´ 1q

box. The generating function for such partitions is
ś2n´1

i“1 p1` q
2i´1q gives the enumeration 22n´1.

Remark 2.1 It is not clear in general how one should define a “root poset” for a noncrystallographic
root system. (See [1, Section 5.4.1] for a discussion.) For the obvious generalization of A2, B2 and G2 in
type I2pmq and the H3 root poset suggested in [1, Section 5.4.1], one can verify that Theorem 1.1 holds
in these types as well.
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Fig. 2: Cambrian fans and the biCambrian fan

The support of a root β is the set of simple roots appearing with nonzero coefficient in the expansion
of β in the basis of simple roots. The support of a set of roots is the union of the supports of the roots in
the set. We write ∆ for the simple roots and, given a set A of roots, we write A˝ for the set of non-simple
roots in A. If A1 and A2 are nonnesting partitions (i.e. antichains in the root poset), then pA1, A2q is a
pair of twin nonnesting partitions if and only if A1 X∆ “ A2 X∆, and supppA˝1q X supppA˝2q “ H.

Given an antichainA in the doubled root poset, defineA1 to be the intersection ofA with the root poset
that forms the top of the doubled root poset. Define A2 to be the intersection of A with the dual root
poset that forms the bottom of the doubled root poset. The following proposition is easily proved using
the observation that a root β in the top part of the doubled root poset is related to a root γ in the bottom
part of the doubled root poset if and only if the supports of β and γ overlap.

Proposition 2.2 The map A ÞÑ pA1, A2q is a bijection from antichains in the doubled root poset to pairs
of twin nonnesting partitons.

2.2 BiCambrian fans
The Cambrian fan is a complete simplicial fan whose maximal faces are naturally in bijection [22, 25]
with seeds in an associated cluster algebra of finite type and with noncrossing partitions. Furthermore, the
Cambrian fan is the normal fan [15, 16] to a simple polytope called the generalized associahedron [6, 12],
which encodes much of the combinatorics of the associated cluster algebra. The noncrossing partitions
can be found as the subspaces spanned by certain faces in the Cambrian fan.

The defining data of a Cambrian fan is a finite Coxeter group W and a Coxeter element c of W . We
emphasize that the results discussed earlier in the introduction concern a special “bipartite” choice of c,
as explained below, but for now we proceed with a discussion for general c. A Coxeter element is the
product of a permutation of the simple generators of W , or equivalently it is an orientation of the Coxeter
diagram of W . For fixed W , all choices of c give distinct but combinatorially isomorphic fans. Given a
choice of W , we will assume the usual representation of W as a reflection group acting with trivial fixed
subspace. The collection of reflecting hyperplanes in this representation is the Coxeter arrangement of
W . The hyperplanes in the Coxeter arrangement cut space into cones, which constitute a fan called the
Coxeter fan F . The maximal cones of the Coxeter fan are in bijection with the elements of W . The
Cambrian fan CambpW, cq is the coarsening of the Coxeter fan obtained by gluing together maximal
cones according to an equivalence relation on W called the c-Cambrian congruence.

For each Coxeter element c, the inverse element c´1 is also a Coxeter element, corresponding to the
opposite orientation of the diagram. We define the biCambrian fan biCambpW, cq to be the coars-
est common refinement of the Cambrian fans CambpW, cq and CambpW, c´1q. Since CambpW, cq
and CambpW, c´1q are coarsenings of F , so is biCambpW, cq. Naturally, biCambpW, c´1q “

biCambpW, cq. To illustrate the definition, take W of type B2 with simple generator r and s. Fig-
ure 2 shows, from left to right, the rs-Cambrian fan, the sr-Cambrian fan, and the rs-biCambrian fan.
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The c´1-Cambrian fan coincides with the image of the c-Cambrian fan under the antipodal map. This
is an immediate corollary of [23, Proposition 1.3], which is a statement about Cambrian congruences. See
also [26, Remark 3.26]. Thus we have the following proposition which amounts to an alternate definition
of the biCambrian fan.

Proposition 2.3 The biCambrian fan biCambpW, cq is the coarsest common refinement of CambpW, cq
and ´CambpW, cq.

Since CambpW, cq and CambpW, c´1q are the normal fans of two generalized associahedra, a stan-
dard fact (see [32, Proposition 7.12]) yields the following result.

Proposition 2.4 For any W and c, the fan biCambpW, cq is the normal fan of a polytope, specifically,
the Minkowski sum of the generalized associahedra dual to CambpW, cq and CambpW, c´1q.

The definition of biCambpW, cq seems strange a priori, but it is well-motivated a posteriori by enu-
merative results. The first such result was first pointed out empirically (in the language of lattice con-
gruences) in [20, Section 10] and later proven by J. West [30] and then in [14, 18]. When W is the
symmetric group Sn, the Coxeter diagram of W is a path. Taking c to be the linear orientation of that
path (the linear Coxeter element), the number of maximal cones in biCambpW, cq is the Baxter number
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, the number of Baxter permutations [3, 8].
Once one sees that the Baxter number counts maximal cones of biCambpW, cq for W of type A and

for a particular c, it is natural to look at other types of finite Coxeter group W , with the idea of defining a
“W -Baxter number” for each finite Coxeter group W . Indeed, there is a good notion of a “type-B Baxter
number” discovered by Dilks [9]. The Coxeter diagram of type B is also a path, and taking c to be a
linear Coxeter element, the maximal cones of biCambpW, cq are counted by the type-B Baxter number.
Despite the nice type-B result, there seems to be little hope for a reasonable definition of the W -Baxter
number, because some types of Coxeter diagrams are not paths and thus it is not clear how to generalize
the notion of a linear Coxeter element.

There is, however, a choice of Coxeter element that can be made uniformly for all finite Coxeter groups.
Since the Coxeter diagram of any finite irreducible Coxeter group is a tree, the diagram is in particular
bipartite. Thus we can fix a bipartition S` Y S´ of the diagram and orient each edge of the diagram from
its vertex in S´ to its vertex in S`. The resulting Coxeter element is called a bipartite Coxeter element,
and if c is a bipartite Coxeter element of W , we call biCambpW, cq a bipartite biCambrian fan.

Proposition 2.4 says that biCambpW, cq is the normal fan of a polytope, but does not guarantee that
this polytope is simple (equivalently, that this fan is simplicial). In fact, simpleness fails for the linear
Coxeter element of Sn, and this failure can be seen already in S4. (See [18, Figure 13], which shows the
Hasse diagram of a lattice that coincides with the 1-skeleton of this polytope.) The situation appears to be
better in the bipartite case. The following conjecture is verified in types A and B.

Conjecture 2.5 If c is a bipartite Coxeter element, then biCambpW, cq is a simplicial fan.

2.3 The biCambrian congruence, twin sortable elements, and bisortable ele-
ments

A congruence on a lattice L is an equivalence relation respecting the meet and join operations. A general
fact about finite lattices (see for example [21, Section 3]) says that congruence classes are intervals in



162 Emily Barnard and Nathan Reading

the lattice and that the quotient of a finite lattice L modulo the congruence is isomorphic to the subposet
induced by the set πÓpLq of elements that are the bottoms of their congruence classes.

The maximal cones of the Coxeter fan F , partially ordered according to a suitable linear functional,
form a lattice isomorphic to the weak order on W . (This fact is true either for the right or left weak order.
We will work with the right weak order.) Each Coxeter element c specifies a congruence on the weak
order called the c-Cambrian congruence. (See [21] for the definition.) For each congruence class in the
c-Cambrian congruence, the union of the corresponding maximal cones in F is itself a convex cone. The
collection of all these convex cones and their faces is the c-Cambrian fan CambpW, cq described earlier.

Consider the set ConpLq of all congruences on a given lattice L. The set ConpLq is itself a sublattice
of the lattice of set partitions of L. In particular, the meet of two congruences is the coarsest set partition
of L refining both congruences. The c-biCambrian congruence is the meet, in ConpW q, of the Cambrian
congruence specified by c and the Cambrian congruence specified by c´1. The c-biCambrian congruence
classes are thus in bijection with the maximal cones of biCambpW, cq. The c-biCambrian lattice is the
quotient of the weak order modulo the biCambrian congruence.

We write πc
Ó for the projection taking each element of W to the bottom element of its c-Cambrian con-

gruence class, and similarly πc´1

Ó for the c´1-Cambrian congruence. Two elements u and v are congruent
in the c-Cambrian congruence if and only if πc

Ópuq “ πc
Ópvq and are congruent in the c´1-Cambrian

congruence if and only if πc´1

Ó puq “ πc´1

Ó pvq. The congruence classes for the c-biCambrian congru-
ence are the nonempty intersections of congruence classes of the two opposite c-Cambrian congruences.
This gives us a natural way to associate a pair pπc

Ópwq, π
c´1

Ó pwqq to each c-biCambrian congruence class.
Specifically, u and v are congruent in the c-biCambrian congruence if and only if πc

Ópuq “ πc
Ópvq and

πc´1

Ó puq “ πc´1

Ó pvq.

The bottom elements of the c-Cambrian congruence are called c-sortable elements. (In fact c-sortable
elements have an independent combinatorial definition [22, Section 2], but were shown to be the bottom
elements of c-Cambrian congruences in [23, Theorems 1.1&1.4].) Given elements u and v of W , we
define the pair pu, vq to be a pair of twin pc, c´1q-sortable elements of W if there exists w P W such
that u “ πc

Ópwq and v “ πc´1

Ó pwq. The considerations of the previous paragraph show that there is
a bijection between congruence classes in the biCambrian congruence specified by c and pairs of twin
pc, c´1q-sortable elements of W . The bijection maps a congruence class to pπc

Ópwq, π
c´1

Ó pwqq for any w
in the class. The twin sortable elements are similar in spirit to the twin binary trees of [10]. Indeed, for W
of type A and c linear, the connection is implicit in the construction in [18] of a diagonal rectangulation
from a pair of binary trees. (See also [18, Remark 6.6].)

The bottom elements of the biCambrian congruence classes are, of course, also in bijection with the
biCambrian congruence classes. We coin the term c-bisortable elements for these bottom elements. Work
is in progress to give a direct combinatorial characterization of bisortable elements. Each c-bisortable
element v covers some number of elements in the c-biCambrian lattice. By a general fact on lattice
quotients, v covers the same number of elements in the weak order on W . This number is despvq, the
number of descents of v.

A general fact about lattice quotients of the weak order [20, Proposition 3.5] implies that, when
biCambpW, cq is simplicial, the descent generating function of c-bisortable elements equals the h-
polynomial of biCambpW, cq.
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2.4 Twin clusters and bicluster fans
In a finite root system, the almost positive roots are those roots which either are positive, or are the neg-
atives of simple roots. In [12], almost positive roots were shown to index cluster variables in cluster
algebras of finite type. Furthermore, a compatibility relation was defined on almost positive roots and
(combinatorial) clusters of almost positive roots were defined to be the maximal sets of pairwise compat-
ible almost positive roots. The combinatorial clusters were shown to correspond to the (algebraic) clusters
of cluster variables.

Here, we will not need either the cluster-algebraic background, nor even the definition of compatibility.
(These can be found in [12, 13].) Rather, for our purposes it will be enough to quote some results about
combinatorial clusters and their relationship to sortable elements.

First, [12, Theorem 1.8] states that all clusters C are of the same size, and furthermore, each is a
basis for the root space (the span of the roots). Write Rě0C for the nonnegative linear span of C. Then
[12, Theorem 1.10] states that the cones Rě0C, for all clusters C, are the maximal cones of a complete
simplicial fan. We call this fan the cluster fan.

We define the bicluster fan to be the coarsest common refinement of the cluster fan and its opposite. A
pair pC1, C2q of clusters is called a pair of twin clusters if the cones Rě0C and ´Rě0C (the nonpositive
linear span of C) intersect in a full-dimensional cone. It is immediate that maximal cones in the bicluster
fan are in bijection with pairs of twin clusters.

For a bipartite choice of c, [25, Theorem 9.1] says that c-Cambrian fan is linearly isomorphic to the
cluster fan. Theorem 1.2 follows immediately from the bijection between c-bisortable elements and max-
imal cones in biCambpW, cq, from Proposition 2.3, from this linear isomorphism, and from the bijection
between maximal cones in the bicluster fan and pairs of twin clusters.

In [19] (see also [22, Section 7]), the construction of [12], which uses a bipartite Coxeter element c,
was shown to generalize to arbitrary choices of c. Thus one may consider c-clusters and the c-cluster fan.
However, we emphasize again that all results stated in this paper for clusters refer to the bipartite choice
of c.

2.5 Twin noncrossing partitions
The absolute order on a finite Coxeter group W is the prefix order (or equivalently the subword order) on
W relative to the generating set T , the set of reflections in W . (By contrast, the prefix order relative to the
simple reflections S is the weak order, while and subword order relative to S is the Bruhat order.) We will
use the symbol ďT for the absolute order. The c-noncrossing partitions in a finite Coxeter group W are
the elements of W contained in the interval r1, csT in the absolute order on W . For details on the absolute
order and noncrossing partitions, see for example [1, Chapter 2].

For our purposes, the key fact is a theorem of Brady and Watt. Let W be a finite Coxeter group of rank
n represented as a reflection group in Rn and let T be the set of reflections of W . For each reflection
t P T , let βT be the corresponding positive root. Given w P r1, csT , define a cone

Fcpwq “
 

x P Rn : x ¨ βt ď 0 @ t ďT w, x ¨ βt ě 0 @ t ďT cw´1
(

.

The following theorem combines [5, Theorem 1.1] with [5, Theorem 5.5].

Theorem 2.6 For c bipartite, the map Fc is a bijection from r1, csT to the set of maximal cones in the
c-Cambrian fan.
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The astute reader will notice a difference between our definition of Fc and the definition appearing in [5,
Section 1]. The set of reflections t such that t ďT w is the intersection of T with some (not necessarily
standard) parabolic subgroup of W . The definition in [5] imposes inequalities x ¨ βt ď 0 only for those
βt that are simple roots for that parabolic subgroup. Our definition imposes additional inequalities, all
of which are implied by the inequalities for the simple roots. We similarly add additional redundant
inequalities of the form x ¨ βt ě 0.

Theorem 2.6 suggests a definition of twin noncrossing partitions. In fact, two natural definitions suggest
themselves. We call a pair v, w of elements of r1, csT twin c-noncrossing partitions if FcpvqXp´Fcpwqq
is full-dimensional. Similarly, we call a pair pv, wq P r1, csT ˆ r1, c´1sT twin pc, c´1q-noncrossing
partitions if Fcpvq X Fc´1pwq is full-dimensional. Theorem 2.6 now immediately implies Theorem 1.3.

3 Enumerating bipartite c-bisortable elements in type A
In this section, we describe how bipartite c-bisortable elements of type A are in bijection with certain
objects called alternating arc diagrams. We then prove the type-A enumeration of bipartite c-bisortable
elements by counting alternating arc diagrams.

The Coxeter group of type An is the symmetric group Sn`1. The Cambrian congruences on Sn`1

are described in detail in [21]. As a consequence of this description, we have the following proposition
describing bottom elements of c-biCambrian congruence classes (the c-bisortable elements).

Proposition 3.1 For c bipartite, a permutation x “ x1 ¨ ¨ ¨xn`1 is c-bisortable if and only if, for every
descent xi ą xi`1, there exists no k with xi`1 ă k ă k ` 1 ă xi such that k and k ` 1 are on the same
side of the descent (i.e. k and k ` 1 both left of xi or both right of xi`1).

The avoidance condition in Proposition 3.1 can be rephrased in the languange of generalized pattern
avoidance [2].

In order to introduce alternating arc diagrams, we review the more general noncrossing arc diagrams
from [24]. Beginning with n ` 1 distinct points on a vertical line, we draw some (or no) curves called
arcs connecting the points. Each arc moves monotone upwards from one of the points to another, passing
either to the left or to the right of each point in between. Furthermore no two arcs may intersect in their
interiors, no two arcs may share the same upper endpoint, and no two arcs may share the same lower
endpoint. We consider arc diagrams only up to their combinatorics, i.e. which pairs of points are joined
by an arc and which points are left and right of each arc.

Given a permutation x “ x1 ¨ ¨ ¨xn`1 in Sn`1, we define a noncrossing arc diagram δpxq. We number
the n` 1 points 1, . . . , n` 1 from bottom to top. Each descent xi ą xi`1 in x becomes an arc α in δpxq.
For each integer a with xi`1 ă a ă xi that occurs to the left of xi in x1 ¨ ¨ ¨xn`1, the ath point is left of
the arc α. For each integer a with xi`1 ă a ă xi that occurs to the right of xi`1 in x1 ¨ ¨ ¨xn`1, the ath

point is right of the arc α. It was shown in [24, Theorem 3.1] that δ is a bijection from permutations to
noncrossing arc diagrams.

An alternating arc is an arc (in the sense of noncrossing digrams) that alternates between passing left of
points and passing right of points (starting either on the right or on the left). An alternating (noncrossing)
arc diagram is a noncrossing arc diagram all of whose arcs are alternating. Comparing the definition of δ
with Proposition 3.1, we obtain the following proposition.

Proposition 3.2 For W “ Sn`1 and c bipartite, the restriction of δ is a bijection from c-bisortable
permutations with k descents to alternating arc diagrams on n` 1 points with k arcs.
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Fig. 3: Some alternating noncrossing arc diagrams

Fig. 4: Two alternating arcs Fig. 5: Two arc diagrams Fig. 6: Non-diagrams

Figure 3 shows several alternating noncrossing arc diagrams. From left to right they are δp5371624q,
δp6745231q, and δp4627531q.

To prove the type-A enumeration of bipartite c-bisortable elements, we give a bijection between pairs
pS, T q of subsets of rns and noncrossing alternating arc diagrams on n ` 1 vertices with |S| “ |T | “ k
arcs. We begin with the simplest and most obvious case: the bijection between diagrams with one arc and
pairs pi, jq with i, j P rns. First we set some terminology.

Recall that we number the arcs 1, . . . , n` 1 from bottom to top. At times it will be convenient to refer
to an arc by its endpoints, in which cases we adopt the notation, σpi,jq for an arc connecting point i to
point j with i ă j. When i`1 ă j, this notation can refer to two different arcs. We say that σpi,jq has left
orientation if the arc passes to the left of the point i` 1. Similarly, σpi,jq has right orientation if the arc
passes to the right of i` 1. Figure 4 shows the two arcs that could be called σp1,6q for n` 1 “ 6. The left
picture in the figure is an arc with left orientation. The bijection from alternating arcs to pairs pi, jq with
i, j P rns maps each arc σpi,i`1q to pi, iq. Each arc σpi,jq has either left orientation or right orientation. If
the orientation is left, then the arc is mapped to pi, j ´ 1q, and if right, it is mapped to pj ´ 1, iq.

We wish to generalize this process to alternating arc diagrams with k arcs. Based on what we learned
in the k “ 1 case, the naı̈ve goal, given a pair of subsets pS, T q, is the following: If the numbers in S
are smaller than the numbers in T , then the numbers in S should label the lower endpoints of arcs, while
the numbers in tt` 1 : t P T u should label the upper endpoints in an alternating diagram. If the numbers
in S are larger than the numbers in T , then ts` 1 : s P Su should label upper endpoints while T labels
lower endpoints. The difference between these two cases should be recorded by the orientation (left or
right) of the arcs in the diagram. Specifically, we will give the lowest arc in the diagram a left orientation
if the numbers in S are lower than the numbers in T .

This naı̈ve goal will be the basis for the bijection, but as stated, it can’t possibly succeed. Take for
example the following pair: pt1, 4, 6u , t2, 3, 5uq. The whole set S cannot be the set of lower endpoints,
since it has the largest value in S Y tt` 1 : t P T u. Similarly, ts` 1 : s P Su has the smallest value in
ts` 1 : s P Su Y T , so ts` 1 : s P Su can’t be the set of upper endpoints. To try to salvage the idea, we
will attempt to pair each element s P S with an element t P T and draw alternating arcs with endpoints s
and t` 1 if s ď t or endpoints t and s` 1 if t ă s in such a way that the union of the arcs is noncrossing.
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Two ways to do this (listing s first in each pair) are tp1, 2q, p4, 3q, p6, 5qu and tp1, 2q, p6, 3q, p4, 5qu, with
corresponding diagrams shown in Figure 5.

We first observe that to obtain a noncrossing alternating arc diagram we must pair 1 with 2. Otherwise,
if we pair 1 with 3, then either 4 or 6 must be paired with 2, and either way, there is a problem, as shown
in the left picture of Figure 6. Or, if we pair 1 with 5, then we cannot pair 4 with 2, as shown in the middle
picture of Figure 6, and we can’t pair 6 with 2, as shown in the right picture of Figure 6. Having made this
observation, we see that, up to changing the orientations of some arcs, the diagrams shown in Figure 5 are
the only possibilities.

But which of the two alternating arc diagrams, and with which orientations, should correspond to the
pair pt1, 4, 6u , t2, 3, 5uq? To answer this question, we decompose the problem into smaller problems and
then return to the naı̈ve goal. Specifically, we notice that all of the possible arc diagrams can naturally
break apart at point 3. This suggests that we break apart the subsets in a corresponding way as pS1, T1q “
pt1u , t2uq and pS2, T2q “ pt4, 6u , t3, 5uq. The naı̈ve approach now sends pS1, T1q to an arc with left
orientation connecting points 1 and 3. Since each number in S2 is greater than a corresponding number in
T2, we send pS2, T2q to an arc with right orientation connecting 3 to 5 and an arc connecting 5 to 7. The
final difficulty is to determine the orientation of the arc from 5 to 7, which orientation is not specified by
the naı̈ve approach. The solution to the difficulty is to further break pS2, T2q into pt4u , t3uq and pt6u , t5uq
and apply the naı̈ve approach to each piece. We thus see that we should orient the arc from 5 to 7 with
right orientation and send pS, T q to the alternating diagram shown in the left picture in Figure 5.

With the intuition gained from this example, we now describe a bijection π from alternating arc dia-
grams on n` 1 points to pairs of subsets rns of the same size.

Let Σ be an alternating arc diagram. Let P pΣq be the set of points p P rn ` 1s such that no arc in
Σ passes left or right of p. (A point p P P pΣq may still be an endpoint of one or two arcs.) Write
P pΣq “ tp0, . . . , pmu with p0 ă ¨ ¨ ¨ ă pm. In every case, p0 “ 1 and pm “ n ` 1. We will
define m pairs of subsets pS1, T1q, . . . , pSm, Tmq. For each i, the sets Si and Ti will be subsets of
tpi´1, pi´1 ` 1, . . . , pi ´ 1u and will be determined by the part of Σ between pi´1 and pi.

If pi´1 “ j and pi “ j ` 1, then either Σ has an arc connecting j to j ` 1 or not. If so, then set
pSi, Tiq “ ptju , tjuq. If not, then set pSi, Tiq “ pH,Hq.

Suppose pi´1 “ j and pi ą j ` 1. Since j ` 1 is not in P pΣq, Σ has an arc that passes left or right of
j ` 1. But since j is in P pΣq, that arc σ must have its lower endpoint at j. Since pi, pi`1 P P pΣq, every
arc in Σ having one endpoint in tpi´1, pi´1 ` 1, . . . , piu also has its other endpoint in the same set. If σ
has left orientation, that is, if it passes left of j ` 1, then we define Si to be the set of lower endpoints
of arcs in tpi´1, pi´1 ` 1, . . . , piu and define Ti to be the set of numbers t ´ 1 such that t is the upper
endpoint of an arc in tpi´1, pi´1 ` 1, . . . , piu. If σ has right orientation then we switch the definitions of
Si and Ti.

We define πpΣq “ p
Ťm

i“1 Si ,
Ťm

i“1 Tiq.

Theorem 3.3 The map π is a bijection from the set of alternating arc diagrams on n ` 1 points to the
collection of pairs of subsets rns of the same size. For each k, the bijection restricts to a bijection from
alternating arc diagrams with k arcs to pairs of subsets of size k.

The proof of Theorem 3.3, and many other details, are omitted from this extended abstract.
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