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We consider the standard Quicksort algorithm that sodistinct keys with all possible! orderings of keys being equally

likely. Equivalently, we analyze the total path length in a randomly builtbinary search tree Obtaining the limiting
distribution of £y, is still an outstanding open problem. In this paper, we establish an integral equation for the probability
density of the number of comparisorig. Then, we investigate the large deviations/gf We shall show that the left

tail of the limiting distribution is much “thinner” (i.e., double exponential) than the right tail (which is only exponential).

Our results contain some constants that must be determined numerically. We use formal asymptotic methods of applied
mathematics such as the WKB method and matched asymptotics.
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1 Introduction

Hoare’sQuicksortalgorithm [11] is the most popular sorting algorithm due to its good performance in prac-
tise. The basic algorithm can be briefly described as follows [11, 14, 16]:

A partitioning key is selected at random from the unsorted list of keys, and used to partition the
keys into two sublists to which the same algorithm is called recursively until the sublists have
size one or zero.

To justify the algorithm’s good performance in practise, a body of theory was built. First of all, every
undergraduate learns in a data structures course that the algorithm sorts “on avekags’in©(nlogn)
steps. To be more precise, one assumes thalt jpdissible orderings of keys are equally likely. It is, however,
also known that in the worst case the algorithm ne®¢¥’) steps (e.g., think of an input that is given in
a decreasing order when the output is printed in an increasing order). Thus, one needs a more detailed
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probabilistic analysis to understand better the Quicksort behavior. In particular, one would like to know how
likely (or rather unlikely) it is for such pathological behavior to occur.

A large body of literature is devoted to analyzing the Quicksort algorithm [4, 5, 6, 8, 14, 15, 16, 17, 18,
19, 21]. However, many aspects of this problem are still largely unsolved. To review what is known and
what is still unsolved, we introduce some notation. Lgtdenote the number of comparisons needed to sort
arandom list of lengtim. It is known that after selecting randomly a key, the two sublists are still “random”
(cf. [14]). Clearly, the sorting time depends only on the keys’ ranking, so we assume that the input consists
of the firstn integers{1, 2, ...,n}, and keyk is chosen with probability An. Then, the following recurrence
holds

Ly=n—1+ L+ Lo 1 k- 1)

Now, letLn(u) = Eu‘r = $y5oPr[Ln = KJuk be the probability generating function af,. The above recur-

rence implies that
un 1n-1

zol_ W)Ln_1-i( (2)

with Lo(u) = 1. Observe that the same recurrences are obtained when analyzing the total pathierigth

binary search tree built over a random sehégys (cf. [14, 16]). Finally, let us define a bivariate generating
functionL(z u) = ¥ 50Ln(u)Z". Then (2) leads to the following partial-differential functional equation

oL(zu)
0z

oL(O,u)
0z

=L%(zuu), =1 (3)

Observe also thdt(z, 1) = (1-2)~1

The moments ofZ, are relatively easy to compute since they are related to derivativies(of at u =
1. Hennequin [8] analyzed these carefully and computed the first five cumulants. He also conjectured an
asymptotic formula for the cumulants as~ c which he later proved in [9].

The main open problem is to find the limiting distribution 6f. Régnier [18] proved that the limiting
distribution of (L, — E[Ln]) /n exists, while Rosler [19, 20] characterized this limiting distribution as a fixed
point of a contraction satisfying a recurrence equation. A partial-differential functional equation seemingly
similar to ( 3) was studied recently by Jacquet and Szpankowski [12]. They analgigithhsearch tree for
which the bivariate generating functituz, u) (in the so—called symmetric case) satisfies

1
= (

oL(zu)
0z

zu u) (4)

with L(z,0) = 1. The above equation was solved asymptotically in [12], and this led to a limiting normal
distribution of the path lengtli, in digital search trees. While the above equation and ( 3) look similar, there
are crucial differences. Among them, the most important is the contracting %m'ldhe right-hand side of
the above. Needless to say, we know that ( 3) desdead to a normal distribution since the third central
moment is not asymptotically equal to zero (cf. [16]). More precisely, the third (and all higher odd) moments
of (Ln — E[Ln])/n does not tend to zero @s— .

In view of the above discussion, a less ambitious goal was set, namely that of computing the large devi-
ations of Ly, i.e., Pr[| Ln— E[Ln]| > €E[Ly]] for € > 0. Hennequin [8] used Chebyshev’s inequality to show
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that the above probability i©(1/(slog?n)). Recently, Rosler [19] showed that this probability is in fact
O(n~%) for any fixedk, and soon after McDiarmid and Hayward [15] used the powerful method of bounded
differences to obtain an even better estimate, namely that the tail is approximately equ&{®®°9" (see

the comment after Theorem 1 of Section 2).

In this paper, we obtain some new results for the tail probabilities. First of all, we establish an integral
equation for the probability density af,, and using this we derive a left tail and a right tail of the large
deviations ofZ,. We demonstrate that the left tail is much thinner (i.e., double exponential) than the right
tail, which is roughly exponential.

We establish these results using formal asymptotic methods of applied mathematics such as the WKB
method and matched asymptotics. By “formal” we mean that we do not rigorously establish error bounds
on the various asymptotic expansions. The main merit of these methods is that they can be used to obtain
asymptotic information directly from the underlying equations. Similar asymptotic approaches were used for
enumeration problems by Knessl and Keller [13] and Canfield [3].

The paper is organized as follows. In the next section we describe our main findings and compare them
with other known results. In Section 3 we derive the integral equation for the asymptotic probability density
of £,. In Section 4 we obtain our large deviations results.

2 Formulation and Summary of Results

As before, we letl, be the number of key comparisons made when Quicksort sdegs. The probability
generating function of,, becomes

Pr[£Ln = Kuk = E[u™]. (5)

M s

Ln(u) =

k=0

The upper limit in this sum may be truncatedkat (), since this is clearly an upper bound on the number
of comparisons needed to sorkeys.
The generating function in ( 5) satisfies ( 2 on the page before) which we repeat below (cf. also [6, 16, 18,

19])

lfliil‘i(u)l-n—i(u)a Lo(u) = 1. ©)

Ln+1(u) = n

Note thatLn(1) = 1 for all n > 0, and that the probabilitfr[ L, = K] may be recovered from the Cauchy
integral

PrlLn=K = Zim/cu—k-an(u)du. (7)

HereC is any closed loop about the origin.

In Section 3, we analyze ( 6) asymptotically for» co and for various ranges af. We use asymptotic
methods of applied mathematics, such as the WKB method and matched asymptotics [2, 7]. The most
important scale is whene— o with u— 1 = O(n~1), which corresponds tkh = E[ L] + O(n) = 2nlogn +
O(n). Most of the probability mass is concentrated in this rangk. ohs mentioned before, the existence
of a limiting distribution of( L, — E[Ly])/n ash — c was established in [18, 19], though there seems to be
little known about this distribution (cf. [4, 6, 8, 15, 21]). Numerical and simulation results in [4, 6] show that
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the distribution is highly asymmetric and that the right tail seems much thicker than the left tail. It is also of
interest to estimate these tails (cf. [15, 19]), as they give the probabilities that the number of key comparisons
will deviate significantly fromE[ £,], which is well known to be asymptotically equal taldgn asn —
(cf. [8, 16]).

Foru—1=w/n= 0(n"1) andn — o, we derive in Section 3 the asymptotic expansion

logn

La(t) = exp(Aan/n) (Go(w) + 2" Gy(w) + 1 Galw) +o(n™Y ®

whereA, = E[£y]. The leading ternto(w) satisfies a non-linear integral equation. Indeed, in Section 3 we
find that (cf. (49 on page 52))

&Gy (W / 200V Go(Wx) Go (W — WX)dx ©)
Go(0)=1; G(0)=0 (10)

where
¢(x) = xlogx+ (1—x) log(1—x) (11)

is the entropy of the Bernoulkj distribution. Furthermore, the correction ter@g-) andG(-) satisfy linear
integral equations (cf. ( 50 on page 52)—( 51 on page 52)).
By using (8) in ( 7 on the page before) and asymptotically approximating the Cauchy integral we obtain

Prln—E(£Ly) =i ~ TP(y) 12)

where
PY) = oo f e e M"Go(w)dw, (13)
or equivalentlyGo(w) = /_ _&P(y)dy (14)

andc is a constant. Henc&p(w) is the moment generating function of the density).
Now, we can summarize our main findings. We establish the results below under the assumptfe(ys that
has certain forms as— + (cf. Section 4).

Theorem 1 Consider the Quicksort algorithm that sorts n randomly selected keys.

(i) The limiting density By) satisfies

P(y+1) = / /. < +¥ 12“’()())) P (—(1—x)t 410 ;‘f(x)) dtdx (15)
and . .
[ Pejay=1 [ yrwydy=o. (16)
(i) The left tail of the distribution satisfies
2 1 B-z
Pritn—E(Ln) <nd~ 2 —mea— eXp<_anp<2— |og—12)) 4
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for n — oo, and z= z(n) — —oo sufficiently slowly, where = zgg; =0.205021 .. andp is a constant.

(iii) The right tail becomes

1
2\/ﬁw*\/ w,

for n— o, and y= y(n) — + sufficiently slowly. Here (s a constantyis Euler’s constant and w= w,(y)

~W, (W, — 3 +2y+log2 W 21
PrlLn—E(Ln) > Nyl ~ 52— (202 o yw*+/ = du (18)

is the solution to

2
y= - exp(W;) (19)
that asymptotically becomes
e (Y y\ , loglog(y/2)
= Iog(z) +Iog|og(2) + 109(y,2) (1+0(1)) (20)

fory — oo (cf. (89 on page 60) in Section 4).

Finally, we relate our results for the tails to those of McDiarmid and Hayward [15]. These authors showed
that

Pr[|Ln — E(Ln)| > €E(Ln)] = exp—2¢elogn(loglogn— log(1/¢€) + O(logloglogn))], (21)
which holds fom — o ande in the range
1
W <E€ < 1. (22)

As pointed out in [15], this estimate is not very precise if, say,O(loglogn/logn).
¢From Theorem 1 we conclude that (since the right tail is much thicker than the left tail)

Pr[|Ln— E(Ln)| > ny| ~ CK(y)e®Y), y— o (23)
whereC is a constant and
Wi ZelJ Ze""*
Py) = —wv*+/1 - du y= (24)
@) oW g (3—2y—log2)
o= Wy /W, — 1

We have not been able to determine the upper limiy tor the validity of ( 23). However, it is easy to see
that ( 23) reduces to ( 21) if we sgt= eE(Ln)/n= 2elogn+ +€(2y—4) + O(g(logn)/n) and use ( 20) to
approximatev, asy — c. This yields

—yw*+/w* Edu = y{—log()—é) —Ioglog()—zl) +1+ 0(1)} (25)
= —2tlognloglogn—log(1/¢) + loglog(elogn) — 1] + o(logn)

which agrees precisely with the estimate ( 21), and also explicitly identifie®(tlog loglogn) error term.
This suggests that ( 23) applies fpas large as 2log though it cannot hold foy as large a®/2 in view

of the fact thatPr[L, = k] = O for k> (7). An important open problem is obtaining an accurate numerical
approximation to the consta@t This would likely involve the numerical solution of the integral equation for
Go(W).
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3 Analysis of the Generating Function for n — o

We study ( 6 on page 45) asymptotically, for various rangesaridu, namely: (i)u — 1 with n fixed; (ii)
w = n(u— 1) fixed whenn — o andu — 1, (iii) w— +o; and (iv)u< 1 oru> 1. We study these cases
below.

A. CASENFIXED ANDU— 1

First we consider the limi1 — 1 with n fixed. Then using the Taylor expansion

La(u) = 14Ag(u—1)+By(u—1)2+0((u-1)% (26)
= M4 By ZAY) (U 1)+ O((u- 1))

we find from ( 6 on page 45) th&, = L;,(1) andB, = Lj;(1)/2 satisfy the linear recurrence equations

An1 =N+~ 1%A|+An —n+—Z)A. Ay=0, (27)

Bni1= (”) n+1%An+1+ii[zsi+AqAn_i]; Bo=0. (28)

These are easily solved using either generating functions, or by multiplying ( 27) and ( 28) bgnd then
differencing with respect ta. The final result is (cf. [14, 16])

An = 2(n+1)Hn—4n (29)
Bn = 2(n+1)2H2 — (8n+2)(n+ 1)Hp+ = (23n+17) 2(n+1)2H. (30)

HereHy = 1+ 1+ 1+ ...+ X is the harmonic number, artd\® = SP_ k=2 is the harmonic number of
second order. In terms é§, andB,, the mean and variance @f, are given by

E[L]
Var [Ly]

An=2(n+1)Hy—4n (31)
LI (1) + LL(1) — [LA(1)]? = 2By + An — A2 (32)
= 7n?—2(n+1)Ha+13n—4(n+ 1)2HP.

Asymptotically, forn — o, we obtain

An:2nlogn+(2y—4)n+2|ogn+2v+1+gn‘1+0(n‘2) (33)
By— A2 = Cy— (Z_f) n2—2nlogn+n<2—1—2y— Er@)+o(n) (34)
2T \2 3 2 3 '

These expressions will be used in order to asymptotically match the expansiomfrandn fixed, to those

that will apply for other ranges afandu. Since itis well known that theh moment ofZ, — E[ Ly is of order

O(n') asn — o, all terms in the series ( 26) will be of comparable magnitude when (rough#y) = O(n~1)

andn — . If we view ( 26) as an asymptotic series fofixed andu — 1, then it will cease to be valid when
= O((u—1)~1), which motivates the analysis that follows.
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B. CASEW=n(u—1) FIXED WHENN— o AND U— 1

Next we consider the limit — 1, n — o with w= n(u— 1) held fixed. This scaling is necessary to obtain
a non-trivial limiting problem. We defing(-) by

Ln(u) = exp(Aw/n) G(w; n) = eU=DG(n(u—1);n). (35)

With this change of variables, we rewrite ( 6 on page 45) as
(1+w/n)"

exp(Ant1w/n)  x G(W+Vﬁv;n+1): — (36)
X {:z:exp(Aivﬁv+An_ivﬁv)G(w%;i)G(w(l—iﬁ);n—i)

¥ zzexp(pq"ﬁHAn_i"ﬁv) <1+ci‘;i22+m) G <w(1—ln) ;n—i)}

whereC; = B; — %Aiz. Here we have broken up the sumin ( 6 on page 45) into the three rarges On— 1,
m<i<n-—m, andn—m+1<i<n, and used the symmetfy — n—i) of the summand. We expect ( 26
on the preceding page) to also be valid for large values, @f long asi(u— 1) — 0 asn — . Thus, for
0< i< m-1wereplaced,(u) in the sum by the approximation ( 26 on the page before). The integeay
be chosen arbitrarily, since the right side of ( 36) must ultimately be independemtfdr now we assume
thatm — c butm/n — 0 asn — . Forn large we have (cf. ( 33 on the page before))

()il e

+ %Iog ('ﬁ (1—%)) +§+0(n‘1)

with which we rewrite ( 36) as

(n+1)e™"

X

<1+\£+O(n‘2)> G(w+ Vﬁv;n+ 1) (38)

- Emezqi/mw <1+W (%tu <ln) + %) +0(n?, n_lm_l))

I=m

ool
s (1+A5 +O@)) exp((Avi — Aua) 1)

2
- ofo(i)

o = xlogx+ (1—x)log(1—Xx) (39)
W) = loglx(1-X)].

where

=

We now evaluate the two sums in ( 38) asymptotically and show that when the two results are added, the
dependence om disappears.
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From ( 35 on the preceding page) and the identjjl) = A, = E[ L] we find that for alln
G(0;n) =1 and G'(0;n) = 0. (40)
We assume that far — o, G(w; n) has an asymptotic expansion of the form
G(w; n) = Go(w) +a(n)Ga(w) + a2(n)Ga(W) + - -- (41)

whereaj(n) is an asymptotic sequenceras: «, i.e.,aj+1(n)/a;j(n) — 0 asn— c. The appropriate sequence
is determined by balancing terms in ( 38 on the page before). This will eventually yield

_loon =t (42)

n'’ n

al(n)

so we use this form from the beginning. Note ttw) is the moment generating function of the limiting
density of(Ln— E[£Ln])/n, which is discussed in [19]. The conditions ( 40) imply that

Go(0) = 1; G1(0)=Gp(0)=---=0 (43)
Go(0) = Gi(0)=G,(0)=---=0. (44)

We consider the first sum in ( 38 on the page before), which we den@gby5: (n; m). Using (41), (42)
and the Euler-MacLaurin formula we obtain

forpeel) o] e
) R T CO)

¢ afelt) ) o) o)

O IEACI

= n/1—m/n equ)WGo(WX)Go(W— wx)dx+ Amnwe (W%) Go (W <1_ %))

m/n

I

S

X

+ w/l_m/n[zw(x) + 3]&@XGo(Wx) Go (W — wx) dx

m/n

1=m/n logn+109(1—X) o@xw
+ /mn Tez Go(Wx) Gy (w— wx)dx

1-m/n
. / 10gn+109X 2000wy (w — wx) G (wx)dlx

m/n X

1-m/n 1
+ / T PG (Wx) Go(w — wx)dx
m/n -

1-m/n 1
+ / = XMWG, (W) Go (W — wx)dx+0(1).

m/n X

We note that all the integrals remain finiteragn — 0, in view of ( 43) and ( 44). However, if we were to
consider higher order terms in the expansion ( 41), which would involve terms of erdemdn=3, then
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the corresponding higher order terms in ( 45 on the page before) would involve integrands not integrable
over [0,1]. It then becomes essential that we integrate only over the farigel — m/n] and consider the
contribution from the second sus = S(n; m) in ( 38 on page 49). We can further simplBy by evaluating
each term in the limitm/n — 0, which we assumed to be true. We have
1-m/n .
Ty = / XIWG(Wx) Go (W — wx)dx

m/n

1 m/n .
= / P IWGo(Wx) Go(w— wx)dx— 2 / P IWGo(Wx) Go(w — wx)dx
0 0

/01 PG (wx) Go(w — wx)dx— Z/Om/n[1+ 2w(xlogx— x) 4+ O(x%)]

X

[1+ O(x?)][Go(W) — WxXGh(w) + O(x%)]dx
~ /0 ' 9XIWGH(wx) Go(w — wx)dx

m?

2Go(w) [? +2w <W log (

B i) | ot

T2

2/1—m/n Iogn+|ogxe2(p(x)

"Go(w— wxX) Gy (wx)dx
m/n X

1
~ 2/ wez‘“x)WGo(w—wx)Gl(wx)dx—Zg(logn)Gl(w);
0

and
1-m/n .
2 eZ‘P(X)W)—l(Gz(WX) Go(w—wx)dx

m/n

Ti3

Il

1 1
~ 2/0 ech(X)W;Gz(WX)Go(W—WX)dX— Zng(w).
Thus$S; simplifies to

S = n /0 ' P IWGo(Wx) Go (W — Wx)dx+ Go (W) (46)
+ W/Ol[ZI.IJ(X) + 31X Gy (wx) Go (W — wx)dx

1
+ 2 [ OO0 Gy o v G wdx
0

1
+ 2 /0 )—1(e2‘p(X)WGo(w—wx)G2(wx)dx

+ {—ZmGO(W) +W$Gg,(w) - ?WGO(W) [Iog (E) . g]
- z%’(logn)el(w) - 2%1G2(W)} .

where we have grouped the terms involvimgnside the { }". The error term in ( 46) approaches zero as
n— oo,

Now we consider the second susnin ( 38 on page 49). Using(n—i) —A(n+1) ~ —(i + )A'(n) ~
—(i+1)(2logn+ 2y— 2), we obtain

S ~ zz[HAﬁ"ﬁv} [1—\%’(i+1)(2Iogn+2y—2) (47)
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x [Go<w) - Lwchw) + 296, w) + %Gz<w)]
~  2Go(w) m+vﬁv'§:(Aa—2(Iogn)(i+1)—(2y—2)(i+1))

+ 2™ ogn)Ga(w) + Ga(w)] - T wehw
m?

~  2Go(w)m+ Zngo(w) [Iog (?) - g] - FWGé)(W)

+ 221(logn) Gy(w) + Go(w)]

Here we have usedg‘;olAi =n[A,— (n—1)]. Upon adding ( 46 on the page before) to (47 on the preceding
page), we see that all the terms involvingancel, and that the leading three terms in the expansisSrHe%,

(i.e., the right side of ( 38 on page 49)) are of or¥n), O(logn) andO(1), respectively. Using ( 41 on
page 50) and ( 42 on page 50), the left side of ( 38 on page 49) becomes

e (1420 (Gotw + 28w + 2wGhw) + Gotw +oinh) . (4)
Thus, comparing the above S+ S, we find that
e "Go(w) = /0 ' PIWGH(wWx) Go(w— wx)dx, (49)
eVGi(w) = 2 / 1}equ)WGo(W—WX)G1(WX)dX, (50)
0 X
& [Go(W) + 3WGo(W) + WGH(W) +Ga(w)] = Golw) (51)

+ w /0 l[ZLIJ(x) + 3)@XIWGy (Wx) Go(W — wx)dx
+ 2/1 IOﬂ(ezq’(x)""Go(w—wx)Gl(wx)dx
0o X
1
2 /0 )—1(e2‘P(X)WGo(W—WX)G2(WX)dx

Equations (49)-(51), along with ( 39 on page 49), (43 on page 50) and ( 44 on page 50) are integral equations
for the first three terms in the series ( 41 on page 50). Below we discuss some aspects of the solutions to
these problems. The leading order equation ( 49) was previously obtained in [6], using more probabilistic
arguments.

We observe that the solution to (49) is not uniqGe(w) = 0 is one solution and iBo(w) is any solution,
then so i€*"Gy(w) for any constant. We can construct the solution as a Taylor series:

Go(w) =1+ g gjw!. (52)
=1

This eliminates the trivial solutio®o(w) = 0 and satisfies the normalizati@a(0) = 1. Using ( 52) in ( 49)

1

and noting that/ [2¢(x) + 1]dx= 0, we see thag); remains arbitrary, and then we can easily calcuigte
0

for j > 2 in terms ofg;. But, (44 on page 50) forceg = 0 and then all the Taylor coefficients in ( 52) are
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uniquely determined. They may be evaluated from the recursion

<1—%) Oh = l_1§B(i,n—i,0)gign_i (53)

n—1 ¢
+ B(i,£—1,n—¢)0ig,—i
Aoy o

forn> 2 where
1

B(i,j,k):/o Xi(1— )Jk—l![Z(p(X)+1]kdx (54)

In particular,g, = £ — %

Next we consider the equations ( 50 on the page before) and ( 51 on the preceding page) for the correction
termsG; andGy. These are linear, Fredholm integral equations of the second kind. Their solutions may also
be constructed as Taylor seriesanin view of (43 on page 50) and ( 44 on page 50) we must have

Go(w) ~ 140w’
Gi(w) ~ PBow’
Go(w) ~ YW,

asw — 0, where we have already computeg = g». Given 3, we can easily compute the higher order
Taylor coefficients of51(w) from (50 on the page before), in terms of the (now uniquely determined) Taylor
coefficients ofGp(w). However, the constarfly cannot be determined solely from ( 50 on the preceding
page), ( 43 on page 50) and ( 44 on page 50). Td3fixve use the principle of asymptotic matching.

We require that expansions ( 26 on page 48) and ( 35 on page 49) (with ( 41 on page 50)) agree in some
intermediate limit, where@ — 1, n — o andn(u— 1) — 0. Then the behavior of ( 26 on page 48)as;

must agree with the behavior of ( 35 on page 49) (with ( 41 on page 50)}a$. Writing ( 26 on page 48)
asbn(u) = expAn(u— 1)][14 Cr(u— 1)?+ O((u— 1)3)] the matching condition becomes

| 1
L+Ca(U= 1%+ s ~ Go(W) + - Ga(W) + ~Co(W) + -+ . (55)

w—0
Settingu — 1 = w/n, using ( 34 on page 48), and noting that the right side of ( 55)-isnt?[aon® +

Bo(logn)n+ yonjw?, we obtain

21 2
U

Bo=—2; Vo:7—2v—§ (56)

Now consider equation ( 51 on the preceding page) in the \imit 0. We write ( 50 on the page before)
abstractly ag G; = 0 whereT is the linear integral operator in ( 50 on the preceding page). Then ( 51 on
the page before) may be written &, = f(Go, G1) where f is a known function of the first two terms.
SinceT G, = 0 has a non-zero solution (made unique by the condfipsa —2), we expect thal G, = f
will have a solution only if a solvability condition is met. To obtain this solvability condition we expand
(51 on the preceding page) as— 0. Obviously ( 51 on the page before) is satisfiedvas 0, and, since

1
/0 [2W(x) + 3]dx= —1, ( 51 on the preceding page) also holds to o@exr). Comparingd(w?) terms in
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(51 on page 52) using ( 55 on the preceding page) gives

1 1
14200 = _§B°_3+4fo PX)W(X)dx (57)
1 5 1@

and thus3o = —2, which regains the result we obtained by using asymptotic matching. Note, however, that
this argument required that we derive the equation satisfi€bby) in order to uniquely specify the previous
termGy(w). In contrast, asymptotic matching made no use of ( 51 on page 52). Presumably, by deriving the
equation for the next ter@z(w) in (41 on page 50) and examining its solvability condition, we would have
an alternate way of computing. Givenp andyp, we can easily obtain the Taylor expansion&gfandG;
from (50 on page 52) and ( 51 on page 52).

To summarize, we have obtained the expansion ( 35 on page 49), with (41 on page 50)-( 44 on page 50),
( 49 on page 52)-( 51 on page 52) and ( 56 on the preceding page), for the stating, u — 1 with
n(u—1) = w fixed. We have not been able to explicitly solve these integral equations. However, we can
derive some approximate formulas in the limits+ +o, and these may be used to obtain approximations to
the tail probabilities of the Quicksort distribution.

C.Casew=n(u—1) —» o

We shall only examine the leading tei@y, and we first consider the limi — —c0. Asw — —oo, the
“kernel” expl2we(x)] in (49 on page 52) is sharply concentrated nearl/2, and behaves as a multiple of
|w|~1/25(x— 1/2). Thus we treat (49 on page 52) as a Laplace type integral (cf. [10]).

Assuming thato(w) has a weak (e.g., algebraic) dependenceone approximate the right side of (49
on page 52) by Laplace’s method, which (to leading order) yields the functional equation

e Go(w) ~ {Go (‘g)}z, /%ve—zwmgz’ W— —co. (58)

But, if Gg varies weakly withw, then the exponential orders of magnitude of the right and left sides of ( 58)
do not agree. In order to get agreement, we would 1@&gd) to vary much more rapidly a8 — —co, of the

order exfO(wlog(—w))]. But this then contradicts the assumption used to obtain ( 58). Therefore, we return
to (49 on page 52) and allow more rapid variatiorGpf Specifically, we assume thatas— —o

Go(W) ~ eaWlog(=W+Bw( _ v, (59)

Using (59) in (49 on page 52) yields

1
e (—w)¥18; ~ 33 (—w) M / XYL (1 — x) Y1) (2HaWg (60)
0
If 2+ a1 > O we again use Laplace’s method to approximate the integral, thus obtaining
1\ " 1 T
W 5 - _w\Y1—3 = —((11+2)(|092)W. 61
€ l<4) ( W) 2(2+G1)e ( )
Hence, we must have
1 2V/2

1
ap=—2+4+—; Vi=3 o1 = (62)

log2’ /1log?2
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andp remains arbitrary. Since the solution of (49 on page 52) is not unique, we can never defeusiing
only this integral equation. We thus have

Go(w) ~ %Zgzx/jvexp [BW+ (@ - 2) wlog(—w)] . W— —o00, (63)

By computing higher order terms in the expansion of the integral in ( 49 on page 52), we can extend ( 59 on
the page before) and ( 63) to an asymptotic series in powexs bf To fix 3, we must use the condition in
(43 on page 50) and ( 44 on page 50), and this probably requires a numerical solution of ( 49 on page 52).
By comparing this numerical solution to ( 49 on page 52) for large, negatiice( 63), we can obtain an
approximation td3.

Now consider (49 on page 52) in the limit— +c. Then exp2we(x)] is concentrated near the endpoints
x= 0 andx= 1. We assume th&i(w) has an asymptotic expansion in the WKB form [7]:

Go(w) ~ K(w) exp{W(w)]. (64)
The major contribution to the integral will come from whegé — x = o(w~1). Thus we use the Taylor series
Go(wx) = 1+ O((wx)?), and ( 64) to approximat€q(w— wx). This yields
\ 1/2
K(w)e!W-v 2 / [14 2w@(X) 4+ O(W2@P(X))][1 + O((Wx)2)]K (W — wx)e¥ WX dx
0
12 )
~ 2K(w)eHW / e (Wxgy (65)
0
If furthermoreW(-) is such thatvd’ (w) — o asw — oo, then ( 65) yields (after a slight rearrangement)
W' (w) ~ 2eV
and hence we define
weH
W(w) = 2 / = du (66)

Note that ( 66) is consistent with¥' (w) — o and shows thaBg grows very rapidly (as a double exponential)
asw — +o0. We note that the asymptotic expansion of the integrand in ( 65) is only validfay(w—1), but
the major contribution to the integral turns out to be frem O(e~"), which is certainlyo(w~1). To obtain
the next ternkK (w), we refine the expansion ( 65) to

K= =2 ["[1 2wp(6) + WA+ O( (w7 )

[K(w) —wxK' (w) + O(W?x?K" (w))]
exp <LP(W) — W (w)x + %WZLP” (W)X + O(wiy"" (w)x3)> dx

X

X

For x small we have ®@(x) = 2w(xlogx — x4+ O(x?)] and if x = O(e™) thenw?x?> = O(w?e~?") and
wAH3W” (w) = O(w?e~2%). Settingx = ne™"/2 we have

exp [%XZWZLP” (w)] =1+ %nz(w— 1)e"[1+0(1)].
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Thus (67 on the preceding page) becomes, after cancelling the common fagtBfvexp
e "K(w) = e“"’{K(W) / e "dn (68)
0

)=1)]en

+
NS

K(w) /Ooo g™ [%e“"’nz(w— 1) +we ™ ( w—|—|og(
— K (wwe" /0 ) %ne‘” dn+ O(e‘z""K(w)w")}

for some constard. To leading order ( 68) is obviously satisfied and then collecting terms that are of order
O(e~") asw — o (modulo some algebraic factors) we obtain the following differential equation

(W) 2eN n m_
K(w) / [ n°e (w—1)+wne" ( W+Iog(2) 1)]dn (69)
and thus K/ () 1
w
KW =—-2w+1-2y—2log2— w (70)
Solving ( 70) and using the result along with ( 66 on the page before), we have
W R
GO(W) ~C, exp (/ ;eudu ~W2+(1-2y—2log ZJW) Vlv (71)
1

HereC, is an undetermined constant and we have chosen the lower limit on the integral in ( 66 on the
preceding page) as one. An alternate choice would only ch@ngehich we cannot determine using only
the integral equation ( 49 on page 52).
Our analysis shows that as— +oo, the nonlinear equation ( 49 on page 52) may be approximated by a
linear one. To fixC, it would seem that we will again need an accurate numerical solution to (49 on page 52).
We have thus obtained formal asymptotic resultsvas + for the solution to ( 49 on page 52). Using
our procedure we can derive full asymptotic series in these limits, but the conBtantiC, will remain
undetermined.
In Section 4, we will use our results f@p(w) to obtain asymptotic expansions for the limiting density
P(y) asy — +oo.

D.CAsEu<10RuU>1

We next study ( 6 on page 45) for— o but for fixedu > 1 oru < 1. First we assume thatQu < 1. Note
thatu appears in ( 6 on page 45) only as a parameter. We assume an expansion of the form

Ln(u) ~ eA(u)nIogn+B(u)nnC(u)D(u) (72)

for n — o andu < 1. The major contribution to the sum in ( 6 on page 45) will come from the midpoint
i ~ n/2. Using ( 72) in ( 6 on page 45) and noting tiiat- 1) log(n+ 1) = nlogn+logn+ 1+ O(n~1) and
ilogi 4 (n—i)log(n—i) = nlogn—nlog2+ 2n=%(i — n/2)2 + O(n=2(i — n/2)3), we obtain

eAnIogneAlogneA+BeBnnCD ~ () eBn eAnIogn —Anlog 2
n

x Z}eXp(—(Z/Iﬂ)IAI(i —n/2)?)
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for A < 0. The sum is asymptotically equal {gnr/2|A|, and thus

logu 1 logu

log2’ 2 log2’
—2logu logu
_ 2
D = 2¢u \/ mlog2 eXp(logz)

Some further information may be obtained by asymptotically matching ( 72 on the preceding page) to the

A (73)

andB = B(u) remains arbitrary.

expansion valid fon — o, u— 1= 0(n~1). In the intermediate limit where— 1,n — o andn(u— 1) — —oo,
we use (63 on page 55) with=n(u— 1) to get

3 2\/§
(u—1)  Au=1)nlogn 4 2y—4)n(u—1) e[E»n( u—1)
=D Go(w) ~ e Tog?

X mexp{ <@ — 2) n(u— 1)[logn+ log(1— u)]} .

Asut1, (72 onthe preceding page) and ( 73) yields

u—1 Y 1/2 2(1-u)
exp{ [—Iogz +0((u-1) )] nlogn+ Bn} n'/22¢eB iog2
and these two expressions agree provided thattak
B(u) ~ <@ - 2) (u=1)log(l—u)+ (2y—4+B)(u—1), u—1. (74)

This relates the behavior &{u) asu 1 1 to the constarft in ( 63 on page 55).
Now considemn — o with u > 1. The dominant contribution in the sum ( 6 on page 45) now comes from
the terms with = 0 andi = n. Thus

u" 2u"

Loa(W) = o7 [lo(Whn(U) + 2La(Whn-a(U) +++ ] ~ == Ln(U) (75)
and N
Ln(u)~u(5)%k1(u); n—o,u>1 (76)

wherek; (u) is an undetermined function. Since for— « and alln > 2, Ly(u) ~ u(g)Z”/[4n!], we have
ki(u) = 1/4 asu — co.

We examine asymptotic matching between the expansions:fat andu— 1 = O(n~1). If ( 76) matches
to eM(U-DGy(w) then ( 71 on the page before) would agree with the expansion of ( A6). 4s However
this cannot be true as the dominant exponential term in ( 71 on the page before) is

0] [exp(%)] =0 exp(%)] (77)

while the dominantterm in ( 76) as— 1is

O[exp(n;(u—l)ﬂ . (78)
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This suggests that yet another expansion is needed on some scalewherandu | 1 withn(u—1) — +oo.
By comparing ( 77 on the page before) to ( 78 on the preceding page), this new scale is likely to be

w=n(u— 1) =logn+ 2loglogn+ O(1). (79)

With this scaling both ( 77 on the page before) and ( 78 on the preceding page) gBérdegn)]. We
have not examined this intermediate scale in any detail. However, we would guess that with ( 79), the
approximation of ( 6 on page 45) will involve retaining an infinite number of terms in this sum (rather than
just the 2 terms in ( 75 on the page before)), but not approximating the sum by an integral, as was possible
whenu—1=0O(n71).

To summarize this section, we have analyzed ( 6 on page 45) in various asymptotic limits. These include
(i) u— 1, nfixed; (i) u = 1,n — oo, n(u— 1) = wfixed; (jiii) w = +; (iv) 0 < U< 1,n— co; and (V)u > 1,
n— oo. In the next section, we use these results to obtain information about the distriBtftian= K].

4 Tails of the Limiting Distribution

Using the approximation ( 35 on page 49) tor 1= O(n~1), we obtain

PriLn—E(Ly) =ny] = % /C ZIvA+L (2)dz (80)
~ }i (1 V_V) _ny_le—AnIog(1+w/n)+Anw/nG0(W)dW
n2m Jc n
11

1
=— | eM"Go(w)dw= =P
215 o € Go(w)dw= ~P(y)
whereBr = (c— i, c+ i) for some constant, is any vertical contour in the-plane. Here we have set
z=1+4w/nin the integral. It follows that

[ee]

Go(w) = | _&"P(y)dy 81)

so thatGp(w) is the moment generating function of the den§lty). In view of ( 43 on page 50) and ( 44 on
page 50) we havé” P(y)dy= 1 and[" yP(y)dy= 0.

Observe that, using ( 35 on page 49), (41 on page 50), and (42 on page 50), we can refine the approxima-
tion ( 80) to

Pic-Elzl =] =+ P+ 2Pyl + ()

+ TROHP )+ 5P 0) + (- 2P ()]0l

where
1

AY) = 55 [, & G(w)dw (82)

fork=1,2.
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An integral equation foP(y) can easily be derived from ( 49 on page 52). We multiply ( 49 on page 52)
by e="¥/(2ri) and integrate over a contoBr in thew-plane:

PO+Y) = % &+ Gofwi)chw )
= / / 9 Go (W) Go(w — wx)e~Wdxdw
/ /Br Wy/ P(E ""’édE/ ()™=l 9009 i x

/ / / 6(y—x& — (1 —X)n — 2¢(x))dndédx
/11/ (X—l%(ﬂ— Z(p)ix)> dndx
/ / < y/2 (p( )> P(-(l—X)HM) dtdx

where we used the well known identity (cf. [1])

I

I

2—1& . e Mdw=9(y) (84)
whered(y) is Dirac’s delta function. The last expression is precisely ( 15 on page 46). The solution to this
integral equation is not unique: i(y) is a solution, so i®(y+ c) for anyc.

We studyP(y) = (2mi)~? [5, e Y"Go(w)dw asy — +o. We argue that the asymptotic expansion of the
integral will be determined by a saddle poimt= s(y), which satisfies(y) — + asy — +o. Thus for

y — —oo, We can use the approximation ( 63 on page 55Jdg(w), which yields

P ~ o [, o/ Byt (- 2) wlog(-w)| o ©

This integrand has a saddle point where

‘ [ (y—B)w+ (%z—z)wlog(_w)]:o

dw

so that 1 5
__= y —
W= eeXp[ 2- 1/|092] W)

which satisfiesv(y) — —c asy — —co. Then the standard saddle point approximation to ( 85) yields

Ply) ~ 2L iexp| Byt (o2 wiog(- |
xz—iu_ Brexp[% <@—Z) (W—VT/)Z] dw (86)
- 2 ozz— eXp[Z—Bl;Izgz_ = 1élogzeXp<2—81;|zgz>]

for y - —oe. Thus, the left tail is very small and the behaviorRify) asy — —co is similar to that of an
extreme value distribution (i.e., double-exponential distribution).



60 Charles Knessl and Wojciech Szpankowski

Now takey — +c0 and use ( 71 on page 56) to get
~ —/ C, exp (/ —du) YW= +(1-2y-2log i,y (87)

The saddle point now satisfies

d w 2¢H
d_vv[_yW+A TdU] =0

ory=2e"/w. Letw, = w,(y) be the solution to ( 19 on page 47) that satisfigs—> « asy — ». Then
expanding the integrand in ( 87) about= w, (y) and using the standard saddle point approximation yields

C. VY [
P(y) ~ ex *+/ 2% Ju—w2— (2y+ 2log 2w, 88
asy — o, from which ( 18 on page 47) easily follows. Thus for> c we haveP(y) = exp{O(—ylogy)] and
hence the right tail ishinnerthan the right tail of an extreme value distribution. ¢ From ( 19 on page 47) it is
easy to show that

(Y y\ , loglog(y/2)
w*_log(2)+loglog(2)+ gy (o), v e (89)
For fixedz andy we have, ag — o,

z

Prlca—E(Lo) <nd ~ [ P(y)ay (90)

—00

PrlLn—E(Ln) >Ny ~ /yooP(u)du. (91)

If z— —o0 Or y — +oo, then these integrals may be evaluated asymptotically using ( 86 on the preceding
page) and ( 88), and we obtain the results ( 17 on page 46) and ( 18 on page 47), respectively.

This derivation of the expansions Bfy) asy — + has the disadvantage in that it assumes the existence
of certain saddle points. However, we can obtain the identical results simply by using the integral equation
for P(y), which we now show.

Let us write ( 83 on the preceding page) in the form

Ply+ 1) :]le(ll_x) /:P<E+y{2_—x(p(><)) P<—2+y/x2—(p(><)) dEdx (92)

and assume that fgr— —oo, P(y) has the form
P(y) ~ de&¥expg—ae™] (93)

for some constants, b, c,d. Using ( 93) in ( 92) we find that the major contribution to the double integral
will come from(x,&) = (3,0). After scalingx = 3(1+ €”/2u) andg = €”/2n we obtain

defeY exp—aePe™™] ~ Zebydzexp[ Dae e 21092
x V¢ IogZ/ / exp y+2|og2)+2n)2b2_2Vb(U2(Y+2|092—1)+2nu)]dudn
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wherev = ae?'°92, The double integral is equal [(2v)~tb~%/?(2— 1/b)~Y/? and thus the above yields
2e—2b|ogz _ e—b ey — e(b+2<:)y (94)

- )

de = 22Tt edelogp-3/2biog2 (o 1 —1/2.
2a b

1 2a, 35 1
= = — = — 2——
b= g =P 4= V2-5 (95)

anda remains arbitrary. But then ( 93 on the page before) is equivalentto (86 on page 59) if we idexstify

_ 2—1/log2 B
4= "¢ eXp[Z—l/logZ]'

We thus have

(96)

Next we considey — + and write the equation fd?(y) in the form

P(y+1) = 2[)1/2 = [ Pop <y+ W) dndx (97)

—00

We seek solutions in the WKB form
P(y) ~Gy)EY,  y— 4w (98)
where logG varies less rapidly thaR. Then ( 97) may be approximated by

FOHFUIGY)+ G (y)+-] [1+ %F” (y)+- ] = (99)

2

1—x 2 1—x dndx

After scalingx = w/[—YF'(y)], the leading term in the right side of ( 99) &Y G(y)(-2)/(yF'(y)) and

hence >
S —— 100
F'(y) (100)

After some calculation, we obtain the following linear differential equatiorGor

GI+ }F”G:

G 2G G F
2 yF/

—-yF) - =+ -—=G. 101
y YHI0g=YF)l = 5 + 2 (101)
Equation ( 100) is a first order non-linear ordinary differential equatiofrfavhich is really just a transcen-
dental equation foF'. SettingF’(y) = —w, (y) we have

Wi (y) & &
—/ 7 (? _ ?) 4 (102)

I

Fy) = —/yw*(t)dt

= —yw*+2/w*%di
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where we have used ( 100 on the preceding page) to change the variable of integration. But then the dominant
exponential terms in (88 on page 60) and ( 98 on the preceding page) agree precisely. To solve ( 101 on the
page before) we change variables> w, and write ( 101 on the preceding page) as

G(y  F'(y) dG _ INTIT R 1, 1 2F 2(y+log2)
Glyy G dw e (PV_ZF Y T Ty (103)
where we have used logyF') = Iog(Ze—F') =log2—F’. From ( 100 on the page before) we get
1 1 1
We [ — & =1 _ -
(o) RO =3 (104)
Using ( 104) in ( 103) we obtain, after some calculation,
146 :}—}L—ZW*—Z(V-HOQZ). (105)

Gdw, 2 2w, -1
Solving ( 105) we see that ( 98 on the page before) is equivalent to ( 88 on page 60), notipy that

v 2/w, exp(w,/2). Of courseG is determined only up to a multiplicative constant, which corresponds to
C./(2\/m) in ( 88 on page 60).
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