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A categorification of the chromatic symmetric
polynomial
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Abstract. The Stanley chromatic symmetric polynomial of a graph G is a symmetric function generalization of the
chromatic polynomial, and has interesting combinatorial properties. We apply the techniques of Khovanov homology
to construct a homology H.(G) of graded &,,-modules, whose bigraded Frobenius series Frobg (g, ¢) reduces to
the chromatic symmetric polynomial at ¢ = ¢ = 1. We also obtain analogues of several familiar properties of the
chromatic symmetric polynomials in terms of homology.

Résumé. Le polyndme chromatique symétrique d’un graphe G est une généralisation par une fonction symétrique
du polyndme chromatique, et possede des propriétés combinatoires intéressantes. Nous appliquons les techniques de
I’homologie de Khovanov pour construire une homologie H..(G) de modules gradués S, dont la série bigraduée de
Frobeniusse Frobg (g, t) réduit au polyndme chromatique symétrique & ¢ = ¢ = 1. Nous obtenons également des
analogies pour plusieurs propriétés connues des polyndmes chromatiques en termes d’homologie.

Keywords: symmetric functions, chromatic polynomial, Khovanov homology, &,,-modules, Frobenius series, graph
colouring

1 Introduction

Let G be a graph with vertex set V(G) = {v1,...,v,} and edge set E(G). A proper colouring of G is a
function  : V(G) — N such that (v;) # £(v;) if an edge is incident to both v; and v,.

Definition 1 The chromatic symmetric polynomial of G is

XG(X) :XG(xlanw") :an(vl)"'xn(vn), (h

where the sum is over all proper colourings r : V(G) — N.
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The polynomial X is a generalization of the chromatic polynomial x¢ in the sense that Xg(1%) =
Xc (k) (Stanley, 1995, Proposition 2.2).

The polynomial X is also a symmetric function (we refer the reader to|[Macdonald| (1995) for back-
ground material on symmetric functions). Following the standard notation used by Macdonald, let p, and
sy denote the power sum symmetric functions and the Schur functions, respectively. Given a subset of
edges I' C E(G), its partition type A\(F') is the partition associated to the sizes of the connected compo-
nents of the subgraph of G induced by the edge set F. The following formula (Stanleyl 1995 Theorem
2.5) can be proved by an inclusion-exclusion argument.

Xg = Z (=D)"prcr). (2
FCE(G)

This formula forms the basis of our categorification process.

Categorification can be thought as a way of replacing an n-category by an (n+1)-category; for example,
lifting the Euler characteristic of a topological space to its homology. One of the most successful recent
examples of categorification include Khovanov| (2000) link homology, which is a new kind of link invari-
ant that lifts the properties of the Jones polynomial and carries a rich algebraic structure. In this theory,
every link is assigned bigraded homology groups whose Euler characteristic is the Jones polynomial, and
additionally, link cobordisms are assigned homomorphisms of homology groups. This categorification
has been successfully used in determining topological properties of knots, and give a purely combinato-
rial proof of the Milnor conjecture, also known as Kronheimer-Mrowka theorem.

Chromatic graph homology, developed by|Helme-Guizon and Rong|(2005)), is one of several categorifi-
cations of polynomial graph invariants. The construction follows that of Khovanov; a bigraded homology
theory is associated to a graph and a commutative graded algebra in a way that its graded Euler char-
acteristic is the value of the chromatic polynomial at the g-dimension of the algebra. There are other
categorifications of the chromatic polynomial, and many of them possess a long exact sequence of ho-
mology that lifts the deletion-contraction formula for the chromatic polynomial, in the same vein that
Khovanov homology lifts the skein relations for the Jones polynomial.

In this paper we apply a Khovanov-type construction to the chromatic symmetric polynomial. This
process is described in Section[2] Every spanning subgraph of G is assigned a graded &,,-module, leading
to a chain complex whose differential maps are defined based on the Boolean lattice structure of the set of
spanning subgraphs of G. The Frobenius series Frobg (g, t) of the resulting bigraded homology (which we
call the chromatic symmetric homology, or the Khovanov-Stanley homology) specializes to the chromatic
symmetric polynomial, naturally expressed in the Schur basis (Theorem [J).

In Section 3] we give the analogues of several familiar properties of the chromatic symmetric polyno-
mial on the categorified level. In particular, we consider the homology of graphs which contain a loop or
multiple edges, and the homology of a disjoint union of graphs.

Unlike the chromatic polynomial x¢, the chromatic symmetric polynomial X5 does not satisfy a
deletion-contraction formula, but as |Orellana and Scott| (2014)) and |Guay-Paquet| (2013) have recently
shown, if G contains a 3-cycle, then X satisfies a recursive formula involving the deletion of two of the
edges of the 3-cycle. We present the analogous result (Theorem[I3), which lifts the recursive formula for
X to along exact sequence in homology, and in Section[d} we illustrate this result for the triangle graph.

To conclude, we provide computations of homology for small graphs in Section[5] Finally, it is our hope
that Khovanov-Stanley homology will be useful in addressing open problems regarding the chromatic
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symmetric polynomial, such as the characterization of graphs whose X is Schur-positive (Gasharov
(1996)), and whether X is a complete invariant for trees (Martin et al.| (2008))). Also, we hope that this
construction may shed light on the chromatic quasisymmetric function of Shareshian and Wachs|(2014).

2 The construction

2.1 The states
Let G be a graph with vertex set V(G) = {v1,...,v,} and edge set E(G) = {e1,...,em}.

Definition 2 A state of G is a spanning subgraph with a subset of edges F C E(QG). Let |F| denote the
number of edges in F.

A graph with m edges has 2™ states. We identify a state F' with the binary string zp = 21 - - - z,, Where

o0, ifeeFR
TV, ife ¢ F

The states of G form a Boolean lattice Q(G); that is, in the Hasse diagram of Q(G), there is an edge from
a state F' to a state F’ if and only if their associated binary strings differ in exactly one position. The
lattice Q(G) is graded by the number of edges in the states.

_dO*l

110 +d1+0 100

C3(G@) ——————— (G) ———> (G) ———— > C(G)
Fig. 1: The eight states of K3 and their signed per-edge maps.

2.2 The graded modules

We shall assign a graded &,,-module to each state. Let S* denote the irreducible &,,-module indexed by
the partition A. (We refer the reader to Fulton| (1997) for background on representations of the symmetric
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group.) For a € N, let £, denote the graded G,,-module
a—1 )
Lo=EPst. 3)
i=0

Since A'S(a=1:1) 2 S(@=i:1) e may also think of £, as the exterior algebra A*S(@=1.1).
Suppose F' C E(G) is a state with r connected components By, . .., B, of sizes by, . . ., b, respectively.
To F', we assign the graded &,,-module

S
Mp = IndGEti)meBT ('Cbl K- ‘cbr) ) 4)

where G, X --- X &p, is a Young subgroup of Gy () = &,,. For the sake of simpler notation, we will
sometimes use the shorthand

Sv(a)
Sy X xGp, " o)

IndBl|~-\Br = Ind

111 0
A

/8
A
j =92 8111 8111
A \ A
8111
A

0
A
0
A
821
j=1 g2t /321

> O

Ind12|3811®51
A

Ind13‘2811®51 0
A \ A A
821 Ind1|2381®811
A A
/ Ind12|382®81
Jj=0 g3 \ Indyy2S* 0" 2381 ST ®S!
83 Ind1‘23$1®5
ds do dq
C3(G) ——————> (5(G) ———— > C1(G) ————— > (Cy(G)

Fig. 2: The graded G3-modules corresponding to the states of K.
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2.3 The per-edge maps

For each edge ¢ in the Hasse diagram of Q(G) from a state F to a state F’, we shall define a graded
&,,-module morphism d. : Mp — Mp/. These are the per-edge maps.

Suppose the binary strings zr and zp differ in the jth position. Identify € with the sequence ¢; - - - €y,
defined by £; = *, and &; = (zp); = (2p); for i # j. See Figure[l]for an example.

To define the per-edge maps d,, there are two cases to consider. Suppose F' = F'—e where e € E(G).
Case 1. the edge e is incident to vertices from the same connected component of F’. Since M and M g/
are canonically isomorphic, we define d. : M p — Mg/ to be the identity map on M.

Case 2. the edge ¢ is incident to vertices from different connected components of F”. First consider the
case where F' consists of one connected component, and F” consists of two connected components A and
B. Suppose |A| = a and | B| = b, so that a + b = n. Then

1

3
|

Mp = L, = S("fk’lk),
k=0
n—2 o o
Mp = Indg’;xGB (Lo @ Ly) = @ @ IHngX@B (8(“_“11)®S(b_3’“)).
k=0 i+j=k

Observe thatsincet < a—1and j < b—1,theni+j < a+b—2 =mn—2,soour goal is to define maps
d§f0r0§k§n—2:

Mp S __ g1y o g1 gl
ldg ldg ldi lde i
M Mp)g—= Mp); — - ——= M),y —>0

Let a; = (a —i,1%) and B; = (b — 4, 17). The kth grading of the module M p is

min(a—1,k)

(M), = ) Idg" s, (§% @ 87). (6)
i=max(0,k—(b—1))

By the Littlewood-Richardson rule (see for example (Fulton, 1997} §5.2 Corollary 3)),
dZ) e, (57 @ &) 2 50 5 0
where U does not contain factors isomorphic to S (n—k1"), Thus, to be precise,
(M), = (SO0 gy, (®)

where mj, = min(ae — 1,k) — max(k — (b — 1),0) 4+ 1, and V does not contain factors isomorphic to
S(”*’“lk). Therefore, for 0 < k < n — 2, we define

Bmy
dt S=k1%) _ gln—kaM)F™E (... 2, 0), and d. = @d’g 9)
N——

. k>0
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See section [5.1] for an example.

It remains to consider the general case where F' has more than one connected component. The definition
of the per-edge map in this case is achieved through induction of the two component case; the map on the
components not joined by e shall be the identity.

Suppose F' is a state with r connected components By, ..., B, of sizes b1, ...,b,. Further suppose

that the removal of the edge e € E(G) decomposes B, into two components A and B of sizes a and b

respectively. Let d¢ : Loy — Indgf o (L, ® Lyp) be the per-edge map defined previously, and let

N=L), @@Ly _,. Themapd. : Mp — My is chosen to be
& :
d: =Indg) Q. xep  xep, (dv @dc). (10)

Definition 3 If an edge ¢ = €1 - - - €, in the Hasse diagram of Q(G) has k ones after the x entry, then
the signed per-edge map that corresponds to € is

sgn(e)d. = (—1)"d.. (11)

2.4 The chain complex of graded modules

Now that we have assigned a graded &,,-module M g to each state F' of GG, and defined signed per-edge
maps, we can make the following definitions.

Definition 4 For i > 0, the ith chain module for G is

Ci(G) = P Me. (12)
|F|=i
More precisely, since Mp = @jzo (MF)] is graded, then for i,j > 0, we can define
Ci(@) = @ M), . (13)

|F|=i

Definition 5 For i > 0, define d; : C;(G) — Ci—1(G) by

d; = ngn(s)ds, (14)

where the sum is over all edges ¢ in the Hasse diagram of Q(G) joining a state with i edges to a state
with i — 1 edges. We also define d; ; : C; j(G) — C;_1 ;(G) to be the map d; in the jth grading.

Proposition 6 This defines a differential; that is, d*> = 0.
Proof: (Outline) Since d is defined via per-edge maps, it suffices to show that d> = 0 on the per-edge

maps. This is achieved through case checking; up to signs, the three cases that must be considered depend
on how the removal of two edges from a state of G will disconnect graph components. o

So C,(G) is a chain complex of graded &,,-modules. See Figure for an example.
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2.5 Homology and Frobenius series
Definition 7 Fori,j > 0, the (i, 7)th homology of G is

Hi,j(G) = ker divj/im di+1,ja so that Hl(G) = @ HZJ(G) (15)
The bigraded Frobenius series of H.(G) = @ H; ;(G)is
4,520

Froba(q,t) = »  (=1)""t'q/ ch (H; ;(G)) (16)

4,520

where ch : R — Ac : [S*] ~ sy is the Frobenius characteristic map from the Grothendieck ring of
representations to the ring of symmetric functions.

Lemma 8 For any graph G,

Y (D)™ (Hij(G) = Y (-1)™eh (Ciy(@)) -

i,j>0 i,j>0

Proof: This proof is similar to that of the Euler characteristic of chain complexes. We refer the reader
to (Helme-Guizon and Rong, [2005, Proposition 2.9). O

Theorem 9 For any graph G,
Frobg(l, 1) = Xg.

Proof: Applying Lemma(8] we compute

Frobg(1,1) = > (=1)""ch(H;,;(G))

= S0 S (—1eh (€ (@)

i>0 3>0
= Z(—l)i Z Pa(F)
i>0 FCE(G):
|F|=i
= XG7

where the last equality is Equation (2)). O
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3 Properties of H.(G)
3.1 Loops and multiple edges
Proposition 10 If G contains a loop, then H,(G) = 0.

Proof: (Outline) Suppose ¢ is a loop in G. The states of G which do not contain ¢ induce a chain complex
which we denote by (C,(A),d4), while the states of G which contain ¢ induce a chain complex which
we denote by (C,(B),dP). These two chain complexes are isomorphic, and moreover,

C@j(G) = Cifl’j(B) D C@j(A), with dfj = diBiLj + idCi—Lj(B) + d;qj a7n

In other words, C,(G) is the mapping cone over id : C.(B) — C,(A). It can be shown that this is
acyclic, from which it follows that H; ;(G) = 0 for all 4, j > 0. a

Proposition 11 Let G be a multigraph with edges e and €' incident to the same pair of vertices x and y.
Then H.(G) = H.(G — ¢€).

Proof: (Outline) Consider the subgraph Z = G — ¢/, so that C; ;(Z) C C; ;(G) for all ¢, 5 > 0. Define
Ci;(G,2) = C;,;(G)/C; ;(Z). The induced chain complex (C,(G, Z), d.) leads to relative homology
H, ;(G,Z) =kerd, ;/imd; 1 ;, and for every 4, j > 0, there is a short exact sequence

0——=Ci;(2) —=Ci;(G) —=Ci;(G, Z) —=0,
that stretches out into a long exact sequence of homology

Hy(Z) —= HAG) ——= Hi(G, Z) ——= H;_1(Z) —= -

Using a similar approach as in Proposition it can be shown that H; ;(G, Z) = 0 for all 4, > 0, from
whence it follows that H,.(G) = H.(Z). O

3.2 Disjoint unions

Given graphs A and B, let A + B denote their disjoint union. Since the power sum symmetric functions
are multiplicative, one can deduce from this that X 4y 5 = X 4 X 5. We can lift this formula to homology
via the Kiinneth formula (Weibel, [1995| §3.6).

Proposition 12 Fori,j > 0,
Hij(A+B) = D W\, (Hy(4) © Hyo(B)).

p+r=1
q+s=j

Proof: (Outline) First consider the modules corresponding to each state of the graph A+ B as G 4 x & p-
modules. For i,j > 0, we have C; j;(A + B) = @ v+r=i Cp4(A) ® C, s(B) with differential maps
q+s=j

dlca ®@cp) =dalca)®cp + (fl)pcA ® dp(cp) which induce a map on homology
D (Hpo(4) ® H,o(B)) = Hij(A+ B). (18)

ptr=i
ats=j
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Since there are no torsion terms, Kiinneth’s formula implies that this is an isomorphism. Induce all
modules to G, to get the desired result. |

Corollary 13 Frobsp(q,t) = Froba(g,t) - Frobg(q,t). O

For example, if G is a graph with n vertices, then the homology of the disjoint union of G with a single
vertex g is obtained by branching (see (Fulton, |1997, §7.3 Corollary 3)). If H; ;(G) = D, (S/\)@m*,
then

H; (G +wvo) =Tndg" ' H ;(G) = P ()™,
pu=AU0
where the latter sum is over all partitions p which can be obtained by adding a box to the partitions A
indexing the irreducible factors of H; ;(G).

4 A Mayer-Vietoris sequence

If the graph G has n vertices, then X is homogeneous of degree n, so it follows that X does not
satisfy a deletion-contraction type recurrence. However, if G contains triangles, then the following result
provides a method for expressing X as a linear combination of chromatic symmetric functions of graphs
with fewer edges.

Theorem 14 (Orellana and Scott, | 2014, Theorem 3.1) and (Guay-Paquet, 2013, Proposition 3.1) Let G
be a graph where the edges e, e2,e3 € E(G) form a triangle. Then

XG - XG—(i] + XG—€2 - XG—€1—€2'

The categorical analogue of this formula is a Mayer-Vietoris sequence in homology. Let A = G — ey,
B =G — eg, and let
Ci(A+B)= @ Mr

| F|=i,
FeQ(A)uQ(B)

be the graded submodule of C;(G) that is the direct sum of the modules M where F is either a state of
the subgraph A or a state of the subgraph B. The differential d; : C;(G) — C;—1(G) sends C;(AU B) to
C;—1(AUB), so C,(AUB) forms a chain complex. It turns out that the inclusion ¢ : C,,(AUB) — C.(G)
induces an isomorphism on homology. Moreover, there exists a short exact sequence

0—> Ci(AN B) —25 Ci(A) @ Ci(B) —> Ci(AU B) —> 0

for each i > 0, where p(z) = (z, —z), and ¥(a,b) = a + b. The short exact sequence of chains induces
the long exact sequence in homology, yielding the following result.

Theorem 15 Let G be a graph where the edges ey, s, e3 € E(G) form a triangle. Let A = G — ey and
B = G — ey. Then there is a long exact sequence

= Hy(ANB) —% > Hy(A) & Hy(B) —~ Hy(G) —2> ... — = Hy(G) —— 0.
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4.1 The K5 example

Theorem[14] gives
[ ]
es /\ e1 s e1
A = L‘ + A - *—e
€3 €3 e3 e3
G A B ANB
6s111 = (s21+4s111) +  (s21+4s111) — (2821 +25111)

To condense notation, let H.(Z) = H,(ANB) and H.(Y) = H.(A)®H.(B). Using the computations
from Sections and Section combined with Corollary the Mayer-Vietoris sequence for
G= K3 is

H2Z4>H2Y4>H2G le H1Y HlG HOZ H0Y4>HQG%O

0 — 28! » 2811t 0 0 0 0 0 0—0
(. f f } I (.

OHOHO%‘SQI_«_SIII 925‘214_45‘111 9821_’_38111 0 0 0%0
(. f f i f b

0 0 0 0 0 821 821‘|—8111‘>28111‘>811190

In terms of the Frobenius series Frobg (g, 1),

Frobk,(q,1) = Froba(q,1) + Frobp(q,1) — Frobangp(g,1)
2¢°s111 = ¢*s1n1 + ¢*s1n1 - 0
q(s21 +3s111) = q(s21 +2s111) + q(s21+2s111) —  q(s21 + s111)
S111 — S21 = S111 + S111 - (821 + 8111)

5 Examples

We include computations of Khovanov-Stanley homology for several simple graphs.

5.1 A single edge
Let G = K5. The diagram of states together with the signed per-edge map is

-9 ds ° .
-
1 0

C1(G) Co(G)

The chain complex of graded G,-modules corresponding to the states is

811
A

8210 mdSe o, (ST e SY).
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Recall that 62 = <81 ‘ S% = €>. Then Indgfxgl (Sl ®Sl) = 82 (&) Sll = C[GZ} = Span{e7sl},
Choosing §? = spanc{e + s1} and S = spanc{e — s1}, then

dig : span(c{e + 81} — spanc{e, 81} (19)

is simply the inclusion map. Therefore, the chromatic symmetric homology of graded G2-modules for
G=K 2 is
1 Sll
0 0 st
| Hi(K2) Ho(K2)

and the bigraded Frobenius series is Frobg, (¢,t) = gts11 + s11 = (1 + qt)s11.

5.2 The triangle graph
Let G = K3. The Khovanov-Stanley homology of graded &,,-modules is

9 (8111)@2
1 0 S2l g (3111)@3
0 0 821 5111
‘ Hy(K3) Hy(K3) Hy(K3)

and the bigraded Frobenius series is
Frobr,(q,t) = 2¢*t*s111 + qt (521 + 38111) — ts01 + 5111
= (q - 1>t821 + (1 + qt)(l + 2qt)5111.

5.3 Some small trees

While the chromatic polynomial ¢ does not distinguish trees, it is conjectured that the chromatic poly-
nomial is a complete invariant for trees. In this example, we state results in homology for trees up to four
vertices. Let

- e——e—s Pi= o—eo—o—o T4::>_4

Their Khovanov-Stanley homology of graded &,,-modules are

2 8111

1 0 S21 g (8111)@2

0 0 0 Stit

| Ha(Ps3) Hy(Ps) Ho(Ps)

3| st
9 0 S22 g (§211)92 gy (S1111)@3
1 0 S22 @ (S211)@2 g (S1111)@3
0 0 0 0 St

| H3(Py) Hy(Py) Hy(Py) Ho(Py)
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and
3 51111
9 0 (8211)@2 ® (81111)@3
1 0 S22 S3 g 8§22 (8211)@3 ® (81111)@3
0 O O 822 Sllll
| H3(Ty) Ho(Ty) Hy(Ty) Ho(Ty)

Their bigraded Frobenius series are

Frobp,(q,t) = qtso1 + (1 +qt)?s111,

Frobp,(q,t) = qt(1+ qt)se2 + 2qt(1 + gt)sa11 + (1 + qt)351111,

Frobr,(q,t) = qtss1 —t(1 — g+ qt)s22 + qt(3 + 2qt)s211 + (1 + qt)3s1111.
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