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In [DO95], Ding and Oporowski proved that for eveky andd, there exists a constaag 4, such that every graph
with treewidth at mosk and maximum degree at mashas domino treewidth at most 4. This note gives a new
simple proof of this fact, with a better bound far 4, namely(9% + 7)d(d + 1) — 1.

It is also shown that a lower bound €6f(kd) holds: there are graphs with domino treewidth at leastd — 1,
treewidth at mosk, and maximum degree at magtfor many valuesk andd. The domino treewidth of a tree is at
most its maximum degree.
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1 Introduction

In [DO95], Ding and Oporowski proved that for eveky and d, every graphG = (V,E) with
treewidth at mosk and with maximum degree at modthas a tree decomposition of width at most
max(600k2d?,5400d%), such that every vertex € V belongs to at most two of the sets associated to
the nodes in the tree decomposition. Such a tree decomposition was cddleiha tree decomposition

by Bodlaender and Engelfriet in [BE97], where they independently gave a similar result, but with a more
complicated proof and with a much higher constant, which was exponential, botnid ind.

In this note, a new and easy to understand proof for the result is given. Additionally, the constant
factor arising from the proof given here is smaller: it is shown that graphs with treewidth a&raost
maximum degree at modthave domino treewidth at mo@k + 7)d(d + 1) — 1.

The proof uses amongst others a technique from [BGHK95] (inspired by a technique from [RS95]),
and some other ideas. The proof is given in Section 3.

In Section 4, it is shown that a lower bound(®fkd) holds: there are graphs with domino treewidth at
Ieast11—2kd — 1, treewidth at mosk, and maximum degree at maktfor many values: andd.

Some final remarks are made in Section 5, and it is shown that the domino treewidth of a tree is at most
its maximum degree.

This research was partially supported by ESPRIT Long Term Research Project 20244 (project ALCSIgbiithms and
Complexity in Information Technology).
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2 Definitions and Preliminary Results

Definition. A tree decomposition of a grapghi = (V, E) is a pair({X; | i € I},T = (I, F)) with
{X; | i € I'} acollection of subsets &f, andT = (I, F') a tree, such that

e Uier Xi=V
e for all edgeqv,w) € E there is an € I withv,w € X;
e foralli,j,k € I if j is on the path from to k in T, thenX; N X, C X;.

The width of a tree decompositig{ X; | € I},T = (I, F)) is max;er | X;| — 1. The treewidth of a
graphG = (V, E) is the minimum width over all tree decompositions(af

In some cased; will be considered aooted tree; a specific node & is considered to be the root. A
tree decompositiofY', T') with T' a rooted tree is called roted tree decomposition. For a node € I,
we call the sefX; thebag of 4.

Definition. A tree decompositiof{X; |i € I},T = (I, F)) of G = (V, E) is adomino tree decom-
position, if for each vertex € V, there are at most two nodég I with v € X;. Thedomino treewidth
of a graphG = (V, E) is the minimum width over all domino tree decompositiongof

The open neighbourhood of a set of verti¢8sC V in a graphG = (V, E) is
NW)={veV-W|3weW:{v,w}€E}
For a graphG = (V, E), andW C V, the subgraph off, induced by is denoted as
GW]=W,{{v,w} € E|v,w e W})
Lemma2.1lLetT = (I, F) beatree. Let J; C I. Thenthereexistsa set Jo C I with
o || <2-|Jy| -1
o J; C Js.

e Every subtreeof T'[I — J»] isadjacent to at most two nodesin .J,.

Proof:  Choose an arbitrary roetin 7.

LetJ, = J1 U {j € I|jisthe lowest common ancestor of two nodedif. We claim that this sef
fulfils the conditions. Clearly/; C Js.

LetT' be a subtree df[I — Ja]. If ig € J» is adjacent to a node Ifi’, then there are two cases:

e ig is an ancestor of a node . Theni, is the unique parent of the root 8Y.

e iy is a child of a node iff”. We claim that there can be only one node fulfilling this case (for this
treeT'): supposey € J, andi; € J, are children of nodes ii”. Then, the lowest common
ancestori, of 9 andi; belongs tal”. However,ig andi; belong toJ; or are ancestor of a node
in J;. So,i- is the lowest common ancestor of two nodes/in which is a contraction with the
observation that it belongs 0.
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As for T', each case can appear only oriEéjs adjacent to at most two nodes.ip.

To show thatJ| < 2 - |Ji| — 1, build a treeT in the following way: .J» is the set of nodes iff. If
j € J2 has an ancestor that also belongg{pthen take an edge frogto the closest ancestor that also
belongs taJ,. One can observe thdt is indeed a tree. Every nodgee J» — J; must have at least two
children. SoT is a tree with at mosit/; | leaves, and without nodes with one child. A well know fact
about trees tells us th&t has at mos2|.J;| — 1 nodes, hencg/ly| < 2-|J;|— 1.0

Lemma2.2Let ({X;|i € I},T = (I, F)) be a tree decomposition of G = (V, E). Lee W C V,
[W|=r.Lets<r.

1. There exists a set of |r/(s + 1)] nodes.J; C I, such that each connected component of G[V —
Uje, Xi] contains at most s vertices from W.

2. There exists a set of 2|r/(s + 1)] — 1 nodes J, C I, such that each connected component Z
of GV — U, ¢, Xi] contains at most s vertices from W, and for each connected component of
G[V = Uje,, Xi] thereare nodes iy, 12 € J», such that every vertex v that is adjacent to a vertex
in Z belongsto Z U X;, U X;,.

Proof: 1. First, observe that for any C I, G[V — |, X;] consists of a number of connected
components, such that for any connected compodesftG[V — UJ.EJ X;], we have a subtreg; of the
forestT[I — J] with Z C U, X;, i.e., removing/ from I splitsT' in a number of disjoint trees, and
each connected component has its vertices in the bags of the nodes in only one of these subtrees.

Choose an arbitrary roete I, and viewI" as a rooted tree. We will proce$sin a bottom-up order: a
node is processed after all its children are processed. While processing vertices, we maintaina ket
which is initially empty, and a sé¥’ C W, for which initially W’ = W. The idea is that nodes are added
to J; until finally the requested set is found, and ti#at gives those vertices i that still can belong to
a connected component with too many verticeBirin it.

Foranode € I, letV; = U].EL, X;, with I; the set containing and all its descendants .

While processing a node computey; = V; N W'. If |Y;| > s, puti in Ji, and sef?V’ = W - Y;.
Otherwise, nothing is done when processing node

We now claim that the sel; which is obtained after processing root nadtulfils the requirements
of the lemma. Consider a connected comporgnif G[V — |J;;, Xi]. Letiz be the highest node
in T whose bag contains a vertex 1 Clearly,iy ¢ Ji,asZ C V — UJ.EJ1 X;. Hence, when
was processedY;,| < s. Now we note tha N W C Y;,: supposeyr € Z N W. By choice ofi,

v €V, Ifv e W — W, thenv belongs to a bag that is below a nodeJnor in J;, and hence
eitherv belongs ta J,. ;, X; or is separated fron¥ by (J,.;, X;. This contradicts that € Z, hence
ZNWCZNnW'CY;,,andwe haveZ NW| < |Y;,| <s.

To each node € .J;, we can associate thet+ 1 or more vertices that are removed fré#i wheni was
added taJ;. As each vertex iWW is associated with at most on& J;, we havd J;| < |r/(s + 1)].

2. First, obtain a sef; as above. As in Lemma 2.1 on the preceding page, creatl,s&ich that

o [B] <2lr/(s+1)] — 1
L] Jl Q Jl.

¢ Every subtree of'[I — J,] is adjacent to at most two nodes.Jp.
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Now, let Z be a connected component@fV — [_JJ.EJ2 X;]. By the properties of tree decompositions,
it follows that there is a subtreB; of T'[I — J»], such that all vertices o only belong to bags of nodes
in Tz. Thus, the vertices that neighbour a vertexZitbut do not belong td& must belong to a bad;,
with ¢ € J, one of the at most two nodes i that are adjacent t8;. [

Corollary 2.3 Let G = (V, E) have treewidth at most & and maximum degreeat most d. Let W C V,
[W| <r.Lets <r. ThereexistsasetS C V ofatmost (k+1)- (2|r/(s+1)] — 1) vertices, such every
connected component Z in G[V — S] contains at most s vertices from W and at most (2k + 2)d vertices
that are adjacent to a vertexin S. If k isa constant, such a set S can be found in linear time.

Proof:  The non-algorithmic result follows directly from the previous lemma. (Note that for such a
componenf¥, there are at mogk + 2 vertices inS adjacent to vertices iV (namely the vertices in
at most two bags of the tree decomposition), hence at (2&st 2)d vertices inW¥ that are adjacent to
a vertex inS.) To effectively obtain the sef, first apply the algorithm in [Bod96] to obtain an arbitrary
tree decomposition of width at mot It is not hard to see that the proofs given above then can be carried
outin linear time ™

3 The domino treewidth theorem

In this section, we prove the main result of this section. The technique is inspired by a technique from
[BGHK95], which was again inspired by a technique from [RS95].

Theorem 3.1 Let G = (V, E) be a graph with treewidth at most £ and maximum degree at most d. Then
the domino treewidth of G isat most (9% + 7)d(d + 1) — 1.

Proof:

We first give a recursive procedure, call®dkKeEDEC, called with two arguments: a grapf =
(Vu, Ex) (which is always an induced subgraph @f and is assumed to have treewidth at mhbst
and maximum degree at ma#t and a set of vertice C V. The procedure outputs a rooted domino
tree decomposition o, ({X/ | i € I'},T' = (I, F")) of width at most{9% + 7)d(d + 1) — 1, such that
the vertices i/ only belong to the bag of the root node of the domino tree decomposition.

ProcedurenakeDEC (graphH = (Vg, Eg), vertex sef¥) has the following steps:

1. Obtain a ses C Vg, such that every connected componentig¥y — S] contains at mostk + 2
vertices fromW and at mos{2k + 2)d vertices that are adjacent to a vertexdn(as in Corol-
lary 2.3.)

. SetR=N(SUW).
. Compute the connected componetits= (V1, E1), ..., Hs = (V,, E;) of H[Vg — S — W].

. Foreach, 1 <i < s, callMAKEDEC(H;, V; N R).

ga b~ W DN

. Combine the tree decompositions obtained in the previous step in the following way: Take a new
noder with X,, = RU S U W. This is the root of the new tree decomposition. Maladjacent to
the roots of each of the tree decompositions, obtained in the previous step. The result is the output
of the procedure.
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Assume that the sé& found in Step 1 is at most of the size, guaranteed to exist by Corollary 2.3 on the

preceding page, i.e., we have:
r

-1
s+ 1J )
Claim 3.1.1 Let H = (Vy, Ex) be a connected graph, and W C Vg, W # (. When MAKEDEC(H, W)

is called, the procedure outputs a rooted domino tree decomposition of H, such that verticesin W only
belong to the root bag of the domino tree decomposition.

S| < (k+1)- (2L

Proof:  First, observe that the first parameter of a recursive calAREDEC always is a connected
graph, and the second parameter of every recursive calhtEDEC is always a non-empty set: every
connected component & [Vy — S — W] must contain vertices adjacent$dJ W. Thus, the recursive
calls done tamAKEDEC involve graphs with fewer vertices, hence the procedure terminates.

Let{u,v} € Eg. If {u,v} N (SUW) # 0, thenu andv belong both to the root ba§,. Otherwise,

z andy belong to the same connected comporfinof H[Vy — S — W], and by induction, there will be
a bag containing botl andy. In both cases, there is a bag in the resulting decomposition that contains
bothz andy.

Letv € Vy. There are three cases.

If v € SUW, thenv does not belong to any connected componeif ffy — S — W], hencev only
belongs to badX,., and no other bag of the decomposition.

If v € R, thenv belongs toX,.. In addition,v belongs to exactly one connected componEptof
H[Vyg — S — W]. By induction,v belongs to the root bag of the domino tree decomposition yielded by
the call ofMAKEDEC(H;,V; N R) and no other bag. Thus,belongs to exactly two bags that are adjacent.

If v ¢ RUS UW, thenv belongs to exactly one connected compondptof H[Vyg — S — W],
and by induction to one or two adjacent bags in the decomposition made by the recursive call to
MAKEDEC(H;,V; N R). v does not belong to any other bag.

Hence, the claim follows]

Claim 3.1.2 If MAKEDEC(H, W) iscalled with H = (Vg, Eg) a connected graph of maximum degree
d and treewidth at most k, and W C Vp a set of vertices of size at most (6k + 4)d, then the resulting
domino tree decomposition has width at most (9% + 7)d(d + 1) — 1.

Proof:  First, we estimate the size of the root bag of the resulting domino tree decomposition. We
have|lWW| < (6k + 4)d. By Corollary 2.3 on the page before, we can take:

1S] < (k + 1)(2|(6k + 4)d/(4k + 3)| — 1) < 3(k + 1)d

Now
R < d-[SUW|
< d-((6k+4)d+ 3(k+1)d)
= (9k+7)d(d+1)
So,

[RUSUW| < (9% + 7)d(d + 1)
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Secondly, we estimate the size of a®en R in a recursive calMAKEDEC(H;,V; N R). Write
VinR = (V;NN(S9)) U (V;nNW))

Each connected componeti} of H[Vy — S — W] is contained in a connected componékitof H[Vy —
S]. H] contains at mostk + 2 vertices fromiW, hence at mosf4k + 2)d vertices of N (). Also, by
construction ofS, H} contains at mos2k + 2)d vertices inN(S). As a consequence,

Vi N R| < (4k + 2)d + (2k + 2)d = (6k + 4)d

Now, we can use induction; each recursive callekEDEC is called with as second parameter a set of
size at mos{6k + 4)d, hence the recursive calls give tree decompositions of width at (dbst 7)d(d +
1) — 1, which proves the claini]

So, from these two claims it follows, that when we calkepec(G,W) for a connected grap@ of
treewidth at mosk, and maximum degree at magtand any non-empty vertex sub$&twhich has size
at most(6k + 4)d, we obtain a domino tree decomposition(®bf width at most(9k + 7)d(d + 1) — 1.

If G is not connected, then make separate domino tree decompositions for each connected component,
and connect these to a tree in an arbitrary viay.

The new idea in the proof can be found in step 2 of the procedarEDEC: by adding the neighbours
of the vertices in sef U W to the root bag of the tree decomposition to make, we do not have to use
these vertices at lower levels of the tree decomposition anymore. Apart from this idea, the structure of the
algorithm is similar to algorithms found in [RS95, BGHK95].

Corollary 3.2 Let k be a constant. Given a graph with treewidth at most £ and maximum degree at most
d, a domino tree decomposition of G of width at most (9% + 7)d(d + 1) — 1 can be builtin O(n?) time.

Proof:  Use the procedure, given in the proof above. Excluding the time spent in recursive calls of
MAKEDEC, one call ofMAKEDEC usesO(n) time. There ar€(n) such calls (e.g., every vertex belongs
to at most two bags, hence a tree decomposition @(th) nodes is obtained, and the number of recursive
calls of MAKEDEC equals the number of nodes of the resulting tree decomposition), so the total time is
bounded byD(n?). O

4 A lower bound

In this section, we show that a general bound like obtained in the previous section must always be of order
Q(kd).
We first start with the following lemma, which is also interesting on its own. For a giaph(V, E),
let
G?* = (V,{{v,w} | {v,w} € EVIz € V : {v,z} € EA{z,w} € E})
Lemma 4.1 Let G = (V, E) be a graph with domino treewidth at most k. The treewidth of G? is at most
2k.

Proof:  W.L.o.g., supposé is connected. Let{ X; | i € I},T = (I, F)) be a domino tree decompo-
sition of G of width at mostk. Note that (by the properties of tree decompositions and the assumption of
connectedness @) each two adjacent bags intersect. Choose an arbitrary-rabtve add to each bag
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Fig. 1: Grid with added vertices;

X; the bag of the parent a@f(unlessi = r), then we obtain a tree decomposition@fof width at most
2k. (The union of two bags with a non-empty intersection and with size at ingst each is taken.)

For every edgév, w} in G2, we have a bag containing battandw: this is trivially true if {v,w} € E.
If v andw have a common neighbourin G, then either there is a bay; containing bothy, w, z, or
there are two adjacent bags, one containiramdz, and one containing andz. One must be a child in
T (with rootr) of the other. Thusy, w, andz all three belong to a common bag in the constructed tree
decompositiond

A 1/3 — 2/3-separator of a set W in a grapgh = (V, E), is a set of vertice§, such thai¥ can be
partitioned into set§V;, Wy, andWs, with W = SNW, |[Wy| < 2/3|W|, [W| < 2/3|W|, and every
path from a vertex if¥; to a vertex inlW, uses a vertex i%.

The following lemma is well known. See e.g. [BGHK95, GRE84, Liu90, RS86].

Lemma4.2 Let G = (V, E) be a graph of treewidth at most k. Let W C V. Then G contains a
1/3 — 2/3-separator of W of sizeat most k + 1.

Lemma 4.3 For all d > 5, k > 2, k even, there exists a graph G with treewidth at most &, maximum
degree at most d, and domino treewidth at least 11—2kd - 2.

Proof:  Consider the following graph.

First, we take a grid of siz&/2 by d?k. l.e., we have vertices of the formy ;, 1 < i < k/2,

1 < j < d*k, andv;; is adjacent ta;: ji, iff |i —i'| + |7 — j'| = 1. To this grid, we add:/2 additional
verticeszy, . .., 22, With, for eachi, 1 < i < k/2, 2; adjacent to each vertex ;.q;, 1 < j < d. Let
G = (V, E) be the resulting graph.

See Figure 1 for an illustration of the construction. (In order to make the figure not too large, the
distance between successive neighbours of the vertjdegl in the figure, instead afk.)

The maximum degree dF is max(5,d): vertices of the formy; ; have degree at most five, while
vertices of the fornme; have degred. It is also not hard to see that the treewidth(bfs at mostk. The
k/2 by d*k grid graph has treewidth exactty 2 (see e.g. [Bod98].) A& containsk/2 vertices such that
when these are deleted fraf) G becomes a graph of treewidtii2, the treewidth of7 is at most. (See
e.g. [Bod98], Lemma 72.)

Call theith row the set of all vertices of the form ;, 1 < j < d*k. Similar, the set of all vertices of
the formw; ;, 1 < i < k/2is called thejth column.

Now, we claim thatG? has treewidth at Iea%ldk — 1. Note that all vertices in th&h row that were
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adjacent tey; form a clique inG2. Call the set of these vertices tftl row-clique. Let
W ={vi;|1<i<k/2,1<j<kd’}

l.e., W is the set of the grid vertices @.

SupposeS is a1/3 — 2/3-separator of ¥ of minimum size inG2, partitioningW into Wy, W,
Ws=8nW.

We will now show tha{S| > dk. AssumelS| < &dk.

Note that| Wy | < 2 - d®k?/2, hencd W, N W3| > ¢d?k?, and likewise W, N Ws| > £d*k>.

Every column that contains both a vertexiify, and a vertex if¥; must also contain a vertex isi.
Thus, we may assume there are fewer tlédh such columns. So, fewer thaﬂgdk2 vertices inW can
belong to such a column. It follows that there are at lépgt k> — 1 dk?)/(k/2) = $d*k— gdk columns
that only contain vertices i1, and thus, every row contair%sl% - %dk vertices inW; . Likewise, every
row containstd?k — tdk in W.

We now will show that every row contains at legstk vertices inS.

Consider theth row. Note that either all vertices in thith row-clique belong tdV; U S or all vertices
in theith row-clique belong té¥, U S. Without loss of generality, we suppose the former; the other case
is identical.

We partition the vertices in théh row in d intervals, where themth interval contains vertices
Vi (m—1)dk+1> Vi, (m—1)dk+25 - - - » Vimak- At least[(3d’k — #dk)/(dk)] > 3d of these intervals must
contain vertices ifW,. However, each interval also contains a vertex initheow-clique, hence it con-
tains a vertex ir6 U W;. So, each interval that contains a verte¥lih must contain a vertex if, hence
theith row contains at Iea%td vertices inS.

As we havek/2 rows, it follows that|S| > tdk. By Lemma 4.2 on the page before, we have that the
treewidth ofG? is at Ieast%dk — 1, hence by Lemma 4.1 on page 146, the domino treewidth f at
least5dk — 2. O

5 Final remarks

Itis possible to give a modified version of the procedure of Corollary 3.2 on page 146, that yields domino
tree decompositions of somewhat larger width (but stilDgkd?), but that use®)(n logn) time instead
of O(n?) time. However, the proof in [BE97] can be turned into an algorithm that uses linear time. It is
not known how much time a procedure based upon the proof by Ding and Oporowski [DO95] would take.
The proof given in this paper seems unable to yield linear time algorithms - the approach typically leads
to algorithmic results of2(n logn) time. Itis open whether domino tree decomposition® (d?) width
can be obtained with a linear time algorithm.
Another interesting open problem is whether a boun@ @f2d) can essentially be improved. It would
be interesting to see if better bounds, e.g., a boun@(@d) can be proved, and whether better lower
bounds are possible.
In some special cases, better bounds can be obtained. For instance, for trees we have the following easy
result.

Theorem 5.1 The domino treewidth of a tree is at most its maximum degree.
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Proof: LetT be atree with maximum degréde Choose an arbitrary roet and viewI" as a rooted
tree. LetT” = (V', E") be the tree, obtained by removing all leaves frdmConsider the following tree
decomposition of: ({X, | v € V'},T"), where each seX,, consists ofy and all children ob in T'. One
easily verifies that this is a domino tree decompositioft’ efith width at mostd. O

So for trees (and similarly for forests), the domino treewidth is linear in its degree. (Note also that the
domino treewidth of a graph with maximum degeee 1 is at least{(d + 1)/2] — 1: at most two bags
can contain a vertex of degredeand all its neighbours.) It seems interesting to see if it is also possible
to obtain similar bounds for other restricted classes of graphs of bounded treewidth, e.g., series parallel
graphs, Halin graphs, or arbitrary graphs of treewidth two.
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