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In [DO95], Ding and Oporowski proved that for every✁ , and ✂ , there exists a constant✄✆☎✞✝ ✟ , such that every graph
with treewidth at most✁ and maximum degree at most✂ has domino treewidth at most✄✆☎✞✝ ✟ . This note gives a new
simple proof of this fact, with a better bound for✄ ☎✞✝ ✟ , namely ✠☛✡☞✁✍✌✏✎☞✑✒✂✓✠✔✂✕✌✗✖✘✑✚✙✛✖ .
It is also shown that a lower bound of✜✕✠☛✁✢✂✢✑ holds: there are graphs with domino treewidth at least✣✣✥✤ ✁✦✂✧✙★✖ ,
treewidth at most✁ , and maximum degree at most✂ , for many values✁ and ✂ . The domino treewidth of a tree is at
most its maximum degree.
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1 Introduction
In [DO95], Ding and Oporowski proved that for every✩ and ✪ , every graph✫ ✬ ✭✥✮✰✯✲✱✧✳ with
treewidth at most✩ and with maximum degree at most✪ has a tree decomposition of width at most✴✶✵✦✷ ✭✹✸✢✺✻✺✻✩✓✼✽✪✿✾✻✯❁❀❃❂✿✺✢✺✻✪✻✾✘✳ , such that every vertex❄❆❅❇✮ belongs to at most two of the sets associated to
the nodes in the tree decomposition. Such a tree decomposition was called adomino tree decomposition
by Bodlaender and Engelfriet in [BE97], where they independently gave a similar result, but with a more
complicated proof and with a much higher constant, which was exponential, both in✩ and in ✪ .

In this note, a new and easy to understand proof for the result is given. Additionally, the constant
factor arising from the proof given here is smaller: it is shown that graphs with treewidth at most✩ and
maximum degree at most✪ have domino treewidth at most✭✥❈✻✩❊❉★❋✦✳●✪❍✭✥✪■❉❑❏▲✳◆▼❖❏ .

The proof uses amongst others a technique from [BGHK95] (inspired by a technique from [RS95]),
and some other ideas. The proof is given in Section 3.

In Section 4, it is shown that a lower bound ofP◗✭✥✩✓✪❘✳ holds: there are graphs with domino treewidth at
least ❙❙ ✼ ✩❚✪❯▼❖❏ , treewidth at most✩ , and maximum degree at most✪ , for many values✩ and ✪ .

Some final remarks are made in Section 5, and it is shown that the domino treewidth of a tree is at most
its maximum degree.
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2 Definitions and Preliminary Results
Definition. A tree decomposition of a graph✫❳✬❳✭✒✮❨✯❁✱❩✳ is a pair ✭❭❬❫❪❵❴❜❛❚❝❞❅❢❡❚❣✿✯●❤✐✬❳✭✥❡❥✯❁❦❯✳●✳ with
❬☞❪❵❴❧❛☞❝❨❅♠❡❥❣ a collection of subsets of✮ , and ❤♥✬♦✭✥❡❥✯❁❦❯✳ a tree, such that

♣❆q ❴✹r✢s ❪ ❴ ✬t✮
♣ for all edges✭✹❄❍✯✲✉■✳✕❅♠✱ there is an❝✰❅✈❡ with ❄✇✯●✉①❅✈❪ ❴
♣ for all ❝✆✯③②✢✯✆✩❞❅④❡ : if ② is on the path from❝ to ✩ in ❤ , then ❪ ❴❥⑤ ❪❵⑥❩⑦❖❪❩⑧ .

The width of a tree decomposition✭❭❬☞❪❵❴⑨❛✦❝❯❅❆❡❚❣✿✯●❤⑩✬✐✭✹❡❍✯✲❦❯✳●✳ is ✴❵✵❃✷ ❴✹r✢s❶❛ ❪✶❴❁❛✿▼t❏ . The treewidth of a
graph ✫①✬❷✭✥✮✰✯✲✱❩✳ is the minimum width over all tree decompositions of✫ .

In some cases,❤ will be considered arooted tree; a specific node of❤ is considered to be the root. A
tree decomposition✭✥❸✈✯✲❤■✳ with ❤ a rooted tree is called arooted tree decomposition. For a node❝■❅✗❡ ,
we call the set❪ ❴ thebag of ❝ .

Definition. A tree decomposition✭❭❬❫❪❵❴❨❛▲❝❹❅✏❡❥❣✻✯✲❤❇✬❺✭✹❡❍✯✲❦❯✳✲✳ of ✫❺✬❺✭✥✮✰✯✲✱❩✳ is adomino tree decom-
position, if for each vertex❄❞❅✗✮ , there are at most two nodes❝❶❅❻❡ with ❄④❅✛❪❵❴ . Thedomino treewidth
of a graph✫♦✬❢✭✒✮❨✯❁✱❩✳ is the minimum width over all domino tree decompositions of✫ .

The open neighbourhood of a set of vertices❼❽⑦❖✮ in a graph✫❢✬♦✭✒✮❨✯❁✱❩✳ is

❾ ✭✒❼❢✳✰✬❇❬❫❄❿❅✛✮❇▼➀❼➁❛❫➂❘✉❢❅✛❼❽➃✓❬☞❄✇✯●✉❊❣❯❅✈✱✶❣
For a graph✫♦✬❢✭✒✮❨✯❁✱❩✳ , and ❼➁⑦❑✮ , the subgraph of✫ , induced by❼ is denoted as

✫❵➄ ❼➆➅✚✬❢✭✒❼➀✯✘❬✻❬☞❄✇✯●✉❊❣❯❅✈✱➇❛☞❄✇✯●✉❢❅♠❼➇❣▲✳
Lemma 2.1 Let ❤❑✬❷✭✹❡❍✯✲❦❯✳ be a tree. Let ➈ ❙ ⑦❆❡ . Then there exists a set ➈ ✼ ⑦★❡ with

♣ ❛➉➈ ✼ ❛✓➊★➋➍➌✻❛➉➈ ❙ ❛❃▼❖❏ .

♣ ➈ ❙ ⑦➆➈ ✼ .

♣ Every subtree of ❤✧➄ ❡❊▼❆➈ ✼ ➅ is adjacent to at most two nodes in ➈ ✼ .

Proof: Choose an arbitrary root➎ in ❤ .
Let ➈ ✼ ✬①➈ ❙❧➏ ❬✆②❵❅✈❡❵❛✲② is the lowest common ancestor of two nodes in➈ ❙ ❣ . We claim that this set➈ ✼

fulfils the conditions. Clearly,➈ ❙ ⑦t➈ ✼ .
Let ❤■➐ be a subtree of❤❩➄ ❡◗▼➑➈ ✼ ➅ . If ❝③➒❊❅✗➈ ✼ is adjacent to a node in❤❜➐ , then there are two cases:

♣ ❝ ➒ is an ancestor of a node in❤❜➐ . Then ❝ ➒ is the unique parent of the root of❤■➐ .
♣ ❝ ➒ is a child of a node in❤❜➐ . We claim that there can be only one node fulfilling this case (for this

tree ❤❜➐ ): suppose❝ ➒ ❅⑩➈ ✼ and ❝ ❙ ❅➇➈ ✼ are children of nodes in❤❜➐ . Then, the lowest common
ancestor❝ ✼ of ❝ ➒ and ❝ ❙ belongs to❤❜➐ . However,❝ ➒ and ❝ ❙ belong to ➈ ❙ or are ancestor of a node
in ➈ ❙ . So, ❝ ✼ is the lowest common ancestor of two nodes in➈ ❙ , which is a contraction with the
observation that it belongs to❤❜➐ .
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As for ❤❜➐ , each case can appear only once,❤❜➐ is adjacent to at most two nodes in➈ ✼ .
To show that❛➓➈ ✼ ❛➔➊❢➋❩➌❥❛➉➈ ❙ ❛✻▼♥❏ , build a tree→ in the following way: ➈ ✼ is the set of nodes in→ . If

②✈❅➑➈ ✼ has an ancestor that also belongs to➈ ✼ , then take an edge from② to the closest ancestor that also
belongs to➈ ✼ . One can observe that→ is indeed a tree. Every node②♠❅❆➈ ✼ ▼★➈ ❙ must have at least two
children. So→ is a tree with at most❛➓➈ ❙ ❛ leaves, and without nodes with one child. A well know fact
about trees tells us that→ has at most➋❍❛➓➈ ❙ ❛❃▼❖❏ nodes, hence❛➉➈ ✼ ❛✓➊❖➋➍➌✿❛➉➈ ❙ ❛❃▼❖❏ . ➣

Lemma 2.2 Let ✭↔❬☞❪❵❴■❛❚❝❞❅♦❡❥❣✻✯✲❤↕✬➙✭✥❡❥✯❁❦❯✳●✳ be a tree decomposition of ✫➙✬➛✭✥✮✰✯✲✱✧✳ . Let ❼ ⑦➜✮ ,
❛ ❼➝❛✢✬♥➎ . Let ➞❊➟❖➎ .

1. There exists a set of ➠☛➎✢➡✓✭✥➞➍❉❢❏▲✳③➢ nodes ➈ ❙ ⑦❺❡ , such that each connected component of ✫❵➄ ✮⑩▼q ⑧ r✻➤☞➥ ❪❵❴✹➅ contains at most ➞ vertices from ❼ .

2. There exists a set of ➋➔➠✔➎✢➡✓✭✒➞❊❉⑩❏❫✳❭➢➦▼❢❏ nodes ➈ ✼ ⑦↕❡ , such that each connected component ➧
of ✫❵➄ ✮❺▼ q ⑧ r✻➤✘➨ ❪ ❴ ➅ contains at most ➞ vertices from ❼ , and for each connected component of
✫❵➄ ✮❢▼ q ⑧ r✻➤✘➨ ❪ ❴ ➅ there are nodes ❝ ❙ ✯✲❝ ✼ ❅➩➈ ✼ , such that every vertex ❄ that is adjacent to a vertex
in ➧ belongs to ➧ ➏ ❪ ❴➫➥ ➏ ❪ ❴ ➨ .

Proof: 1. First, observe that for any➈➆⑦❺❡ , ✫❵➄ ✮⑩▼ q ⑧ r✻➤ ❪❵❴☛➅ consists of a number of connected
components, such that for any connected component➧ of ✫❵➄ ✮①▼ q ⑧ r✻➤ ❪❵❴☛➅ , we have a subtree➈✿➭ of the
forest ❤❩➄ ❡❯▼❖➈➯➅ with ➧❷⑦ q ⑧ r✻➤☞➲ ❪ ⑧ , i.e., removing➈ from ❡ splits ❤ in a number of disjoint trees, and
each connected component has its vertices in the bags of the nodes in only one of these subtrees.

Choose an arbitrary root➎➦❅④❡ , and view❤ as a rooted tree. We will process❤ in a bottom-up order: a
node is processed after all its children are processed. While processing vertices, we maintain a set➈ ❙ ⑦❆❡ ,
which is initially empty, and a set❼①➐✚⑦❖❼ , for which initially ❼①➐➯✬♥❼ . The idea is that nodes are added
to ➈ ❙ until finally the requested set is found, and that❼①➐ gives those vertices in❼ that still can belong to
a connected component with too many vertices in❼ in it.

For a node❝❨❅♠❡ , let ✮❥❴❧✬ q ⑧ r✢s③➳ ❪❵❴ , with ❡✘❴ the set containing❝ and all its descendants in❤ .
While processing a node❝ , compute➵❍❴✍✬❺✮❍❴ ⑤ ❼①➐ . If ❛ ➵✇❴❁❛➔➸❷➞ , put ❝ in ➈ ❙ , and set❼①➐❨✬➝❼➺▼❆➵❍❴ .

Otherwise, nothing is done when processing node❝ .
We now claim that the set➈ ❙ which is obtained after processing root node➎ fulfils the requirements

of the lemma. Consider a connected component➧ of ✫❵➄ ✮➻▼ q ⑧ r✻➤❫➥ ❪❵❴☛➅ . Let ❝↔➭ be the highest node
in ❤ whose bag contains a vertex in➧ . Clearly, ❝↔➭➽➼❅⑩➈ ❙ , as ➧➾⑦➜✮➝▼ q ⑧ r✻➤☞➥ ❪❵❴ . Hence, when❝❭➭
was processed,❛ ➵❍❴✔➲➚❛➚➊➪➞ . Now we note that➧ ⑤ ❼ ⑦➝➵❍❴✔➲ : suppose❄❖❅➆➧ ⑤ ❼ . By choice of ❝↔➭ ,
❄❢❅➇✮❥❴✔➲ . If ❄❢❅⑩❼➶▼➆❼①➐ , then ❄ belongs to a bag that is below a node in➈ ❙ or in ➈ ❙ , and hence
either ❄ belongs toq ⑧ r✻➤ ➥ ❪❵❴ or is separated from➧ by q ⑧ r✻➤ ➥ ❪❵❴ . This contradicts that❄➑❅❑➧ , hence
➧ ⑤ ❼➁⑦♥➧ ⑤ ❼①➐➹⑦❆➵ ❴ ➲ , and we have❛ ➧ ⑤ ❼➝❛❚➊❇❛ ➵ ❴ ➲➚❛❘➊❑➞ .

To each node❝❨❅✗➈ ❙ , we can associate the➞❧❉➘❏ or more vertices that are removed from❼①➐ when ❝ was
added to➈ ❙ . As each vertex in❼ is associated with at most one❝❨❅✗➈ ❙ , we have❛➉➈ ❙ ❛❘➊❺➠☛➎✢➡✓✭✥➞✕❉♥❏❫✳③➢ .

2. First, obtain a set➈ ❙ as above. As in Lemma 2.1 on the preceding page, create set➈ ✼ , such that

♣ ❛➉➈ ✼ ❛✓➊★➋➔➠✔➎✢➡✓✭✒➞❶❉♥❏❫✳③➢✍▼❖❏ /
♣ ➈ ❙ ⑦➆➈ ❙ .
♣ Every subtree of❤❩➄ ❡◗▼➑➈ ✼ ➅ is adjacent to at most two nodes in➈ ✼ .
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Now, let ➧ be a connected component of✫❵➄ ✮❇▼ q ⑧ r✻➤✘➨ ❪ ⑧ ➅ . By the properties of tree decompositions,
it follows that there is a subtree❤➹➭ of ❤❩➄ ❡❊▼❆➈ ✼ ➅ , such that all vertices of➧ only belong to bags of nodes
in ❤➹➭ . Thus, the vertices that neighbour a vertex in➧ but do not belong to➧ must belong to a bag❪✶❴ ,
with ❝❶❅❻➈ ✼ one of the at most two nodes in➈ ✼ that are adjacent to❤➹➭ . ➣

Corollary 2.3 Let ✫➴✬➴✭✒✮❨✯❁✱❩✳ have treewidth at most ✩ and maximum degree at most ✪ . Let ❼➷⑦❷✮ ,
❛ ❼➝❛❘➊❖➎ . Let ➞❯➟➑➎ . There exists a set ➬❆⑦★✮ of at most ✭✥✩❜❉❆❏▲✳✚➌❃✭✥➋➔➠✔➎✢➡✓✭✒➞◆❉❆❏▲✳③➢⑨▼➘❏❫✳ vertices, such every
connected component ➧ in ✫❵➄ ✮①▼➩➬❧➅ contains at most ➞ vertices from ❼ and at most ✭✒➋✢✩❊❉❖➋✢✳●✪ vertices
that are adjacent to a vertex in ➬ . If ✩ is a constant, such a set ➬ can be found in linear time.

Proof: The non-algorithmic result follows directly from the previous lemma. (Note that for such a
component❼ , there are at most➋✢✩➦❉♥➋ vertices in ➬ adjacent to vertices in❼ (namely the vertices in
at most two bags of the tree decomposition), hence at most✭✒➋✢✩❩❉★➋✻✳↔✪ vertices in❼ that are adjacent to
a vertex in➬ .) To effectively obtain the set➬ , first apply the algorithm in [Bod96] to obtain an arbitrary
tree decomposition of width at most✩ . It is not hard to see that the proofs given above then can be carried
out in linear time.➣

3 The domino treewidth theorem
In this section, we prove the main result of this section. The technique is inspired by a technique from
[BGHK95], which was again inspired by a technique from [RS95].

Theorem 3.1 Let ✫♦✬❷✭✥✮✰✯✲✱❩✳ be a graph with treewidth at most ✩ and maximum degree at most ✪ . Then
the domino treewidth of ✫ is at most ✭✥❈✻✩❊❉❆❋✢✳↔✪✇✭✹✪◗❉❑❏▲✳❧▼❆❏ .

Proof:
We first give a recursive procedure, calledMAKEDEC, called with two arguments: a graph➮ ✬

✭✥✮❍➱✧✯❁✱✍➱◗✳ (which is always an induced subgraph of✫ , and is assumed to have treewidth at most✩ ,
and maximum degree at most✪ ), and a set of vertices❼❽⑦t✮ ➱ . The procedure outputs a rooted domino
tree decomposition of➮ , ✭❭❬☞❪✏➐❴ ❛✞❝✰❅✈❡✻➐✹❣✻✯✲❤❜➐❥✬♦✭✥❡✻➐✒✯❁❦❊➐✃✳✲✳ of width at most✭✹❈✿✩■❉➘❋✢✳↔✪✇✭✹✪❜❉❆❏❫✳❐▼➩❏ , such that
the vertices in❼ only belong to the bag of the root node of the domino tree decomposition.

ProcedureMAKEDEC (graph ➮➽✬❷✭✥✮ ➱ ✯✲✱ ➱ ✳ , vertex set❼ ) has the following steps:

1. Obtain a set➬❆⑦❑✮❥➱ , such that every connected component of➮➩➄ ✮❥➱❖▼✏➬❧➅ contains at most❂✿✩➍❉➀➋
vertices from❼ and at most✭✥➋✻✩❵❉t➋✻✳↔✪ vertices that are adjacent to a vertex in➬ , (as in Corol-
lary 2.3.)

2. Set❒①✬ ❾ ✭✥➬ ➏ ❼❢✳ .
3. Compute the connected components➮ ❙ ✬♦✭✥✮ ❙ ✯❁✱ ❙ ✳ , . . . , ➮✶❮✕✬❷✭✥✮✇❮▲✯✲✱❜❮✞✳ of ➮➩➄ ✮❍➱❑▼➀➬✏▼➘❼➆➅ .
4. For each❝ , ❏❊➊❆❝❨➊❑➞ , call MAKEDEC( ➮✶❴ , ✮❥❴ ⑤ ❒ ).

5. Combine the tree decompositions obtained in the previous step in the following way: Take a new
node➎ with ❪✶❰❜✬t❒ ➏ ➬ ➏ ❼ . This is the root of the new tree decomposition. Make➎ adjacent to
the roots of each of the tree decompositions, obtained in the previous step. The result is the output
of the procedure.
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Assume that the set➬ found in Step 1 is at most of the size, guaranteed to exist by Corollary 2.3 on the
preceding page, i.e., we have:

❛ ➬✍❛❘➊①✭✥✩❊❉♥❏❫✳◆➌✢✭✒➋❐➠ ➎
➞❶❉♥❏ ➢✍▼❖❏❫✳

Claim 3.1.1 Let ➮✐✬➇✭✥✮❍➱❩✯❁✱✍➱➍✳ be a connected graph, and ❼❽⑦★✮❍➱ , ❼Ï➼✬tÐ . When MAKEDEC( ➮♠✯✆❼ )
is called, the procedure outputs a rooted domino tree decomposition of ➮ , such that vertices in ❼ only
belong to the root bag of the domino tree decomposition.

Proof: First, observe that the first parameter of a recursive call toMAKEDEC always is a connected
graph, and the second parameter of every recursive call toMAKEDEC is always a non-empty set: every
connected component of➮➩➄ ✮ ➱ ▼➩➬✗▼➘❼➆➅ must contain vertices adjacent to➬ ➏ ❼ . Thus, the recursive
calls done toMAKEDEC involve graphs with fewer vertices, hence the procedure terminates.

Let ❬☞Ñ❧✯●❄❍❣✧❅❻✱❜➱ . If ❬☞Ñ❧✯●❄❍❣ ⑤ ✭✥➬ ➏ ❼❢✳❊➼✬①Ð , then Ñ and ❄ belong both to the root bag❪ ❰ . Otherwise,Ò and Ó belong to the same connected component➮✶❴ of ➮➩➄ ✮❍➱❖▼❻➬✈▼❻❼➆➅ , and by induction, there will be
a bag containing bothÒ and Ó . In both cases, there is a bag in the resulting decomposition that contains
both Ò and Ó .

Let ❄❞❅✈✮❍➱ . There are three cases.
If ❄❞❅✛➬ ➏ ❼ , then ❄ does not belong to any connected component of➮➩➄ ✮ ➱ ▼➩➬✏▼➘❼➆➅ , hence❄ only

belongs to bag❪✶❰ , and no other bag of the decomposition.
If ❄❑❅➆❒ , then ❄ belongs to❪ ❰ . In addition, ❄ belongs to exactly one connected component➮✶❴ of

➮➩➄ ✮❍➱❇▼➩➬➀▼➑❼➆➅ . By induction, ❄ belongs to the root bag of the domino tree decomposition yielded by
the call ofMAKEDEC( ➮✶❴ , ✮❍❴ ⑤ ❒ ) and no other bag. Thus,❄ belongs to exactly two bags that are adjacent.

If ❄➇➼❅❷❒ ➏ ➬ ➏ ❼ , then ❄ belongs to exactly one connected component➮ ❴ of ➮➩➄ ✮ ➱ ▼t➬❖▼t❼➆➅ ,
and by induction to one or two adjacent bags in the decomposition made by the recursive call to
MAKEDEC( ➮ ❴ , ✮ ❴❍⑤ ❒ ). ❄ does not belong to any other bag.

Hence, the claim follows.➣

Claim 3.1.2 If MAKEDEC( ➮♠✯❁❼ ) is called with ➮❳✬Ô✭✥✮ ➱ ✯❁✱ ➱ ✳ a connected graph of maximum degree
✪ and treewidth at most ✩ , and ❼ ⑦❺✮❍➱ a set of vertices of size at most ✭✹✸✻✩✶❉❖❂❘✳↔✪ , then the resulting
domino tree decomposition has width at most ✭✹❈✿✩◗❉❖❋✦✳●✪❍✭✥✪➍❉♥❏❫✳❧▼❖❏ .

Proof: First, we estimate the size of the root bag of the resulting domino tree decomposition. We
have ❛ ❼➝❛❘➊❇✭✹✸✿✩◗❉➩❂✿✳●✪ . By Corollary 2.3 on the page before, we can take:

❛ ➬✍❛❘➊①✭✥✩❯❉♥❏❫✳✘✭✒➋❐➠●✭✹✸✻✩◗❉➩❂✿✳↔✪✓➡✓✭✹❂✿✩❊❉➑Õ✻✳③➢✍▼❖❏❫✳⑨➟❖Õ❥✭✒✩❯❉❑❏▲✳↔✪

Now

❛ ❒❵❛➾➊ ✪❯➌✻❛ ➬ ➏ ❼➝❛
➊ ✪❯➌✢✭✲✭✹✸✿✩❯❉➘❂❘✳↔✪■❉➑Õ❥✭✒✩◗❉♥❏❫✳●✪✿✳
✬ ✭✹❈✿✩◗❉❖❋✦✳●✪❍✭✥✪➍❉♥❏❫✳

So,
❛ ❒ ➏ ➬ ➏ ❼➝❛❘➊➆✭✥❈✻✩❊❉❖❋✦✳↔✪✇✭✹✪◗❉❑❏▲✳
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Secondly, we estimate the size of a set✮❥❴ ⑤ ❒ in a recursive callMAKEDEC( ➮✶❴ , ✮❥❴ ⑤ ❒ ). Write

✮ ❴❥⑤ ❒①✬♦✭✒✮ ❴❥⑤ ❾ ✭✒➬❨✳●✳ ➏ ✭✒✮ ❴✇⑤ ❾ ✭✥❼❢✳●✳
Each connected component➮ ❴ of ➮➩➄ ✮ ➱ ▼❞➬✶▼❞❼➆➅ is contained in a connected component➮ ➐❴ of ➮➩➄ ✮ ➱ ▼
➬❧➅ . ➮✛➐❴ contains at most❂❘✩❩❉★➋ vertices from❼ , hence at most✭☛❂✿✩✧❉❑➋✢✳●✪ vertices of

❾ ✭✥❼❢✳ . Also, by
construction of➬ , ➮✛➐❴ contains at most✭✒➋✢✩❊❉❆➋✢✳↔✪ vertices in

❾ ✭✥➬❨✳ . As a consequence,

❛ ✮ ❴❥⑤ ❒❵❛❘➊①✭☛❂✿✩❊❉❆➋✢✳●✪■❉♥✭✒➋✢✩❊❉❆➋✢✳↔✪➦✬♦✭✥✸✻✩❊❉➘❂❘✳↔✪
Now, we can use induction: each recursive call ofMAKEDEC is called with as second parameter a set of

size at most✭✥✸✻✩❹❉❻❂✿✳●✪ , hence the recursive calls give tree decompositions of width at most✭✹❈✻✩❹❉➀❋✦✳●✪❍✭✥✪⑨❉
❏❫✳❧▼❖❏ , which proves the claim.➣

So, from these two claims it follows, that when we callMAKEDEC( ✫ , ❼ ) for a connected graph✫ of
treewidth at most✩ , and maximum degree at most✪ , and any non-empty vertex subset❼ which has size
at most ✭✥✸✻✩❊❉➘❂❘✳↔✪ , we obtain a domino tree decomposition of✫ of width at most✭✥❈✻✩❊❉❖❋✦✳↔✪✇✭✹✪◗❉❑❏▲✳❧▼❆❏ .

If ✫ is not connected, then make separate domino tree decompositions for each connected component,
and connect these to a tree in an arbitrary way.➣

The new idea in the proof can be found in step 2 of the procedureMAKEDEC: by adding the neighbours
of the vertices in set➬ ➏ ❼ to the root bag of the tree decomposition to make, we do not have to use
these vertices at lower levels of the tree decomposition anymore. Apart from this idea, the structure of the
algorithm is similar to algorithms found in [RS95, BGHK95].

Corollary 3.2 Let ✩ be a constant. Given a graph with treewidth at most ✩ and maximum degree at most
✪ , a domino tree decomposition of ✫ of width at most ✭✥❈✻✩❊❉❖❋✦✳↔✪✇✭✹✪◗❉❑❏▲✳❧▼❆❏ can be built in Ö✶✭✹×➹✼❫✳ time.

Proof: Use the procedure, given in the proof above. Excluding the time spent in recursive calls of
MAKEDEC, one call ofMAKEDEC usesÖ✶✭✹×❐✳ time. There areÖ✶✭✹×❐✳ such calls (e.g., every vertex belongs
to at most two bags, hence a tree decomposition withÖ✶✭✹×❐✳ nodes is obtained, and the number of recursive
calls of MAKEDEC equals the number of nodes of the resulting tree decomposition), so the total time is
bounded byÖ✶✭☛×➹✼▲✳ . ➣

4 A lower bound
In this section, we show that a general bound like obtained in the previous section must always be of order
P◗✭✥✩✓✪❘✳ .

We first start with the following lemma, which is also interesting on its own. For a graph✫➇✬⑩✭✥✮✰✯✲✱❩✳ ,
let

✫ ✼ ✬♦✭✥✮✰✯✘❬✢❬❫❄❍✯✲✉❊❣❯❛❃❬❫❄❍✯✲✉❊❣❯❅♠✱★Ø✈➂ Ò ❅✈✮⑩➃✓❬❫❄❍✯ Ò ❣❯❅✈✱♥Ù❻❬ Ò ✯✲✉❊❣❯❅✈✱✶❣▲✳
Lemma 4.1 Let ✫❢✬❷✭✥✮✰✯✲✱✧✳ be a graph with domino treewidth at most ✩ . The treewidth of ✫❊✼ is at most
➋✢✩ .

Proof: W.l.o.g., suppose✫ is connected. Let✭❭❬❫❪ ❴ ❛✽❝❶❅④❡❥❣✻✯✲❤❑✬♦✭✹❡❍✯✲❦❯✳●✳ be a domino tree decompo-
sition of ✫ of width at most✩ . Note that (by the properties of tree decompositions and the assumption of
connectedness of✫ ) each two adjacent bags intersect. Choose an arbitrary root➎ . If we add to each bag
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Fig. 1: Grid with added verticesÚ✘Û

❪ ❴ the bag of the parent of❝ (unless❝✕✬❷➎ ), then we obtain a tree decomposition of✫ of width at most
➋✢✩ . (The union of two bags with a non-empty intersection and with size at most✩◗❉♥❏ each is taken.)

For every edge❬☞❄✇✯●✉❯❣ in ✫❊✼ , we have a bag containing both❄ and ✉ : this is trivially true if ❬❫❄❍✯✲✉❊❣❯❅✈✱ .
If ❄ and ✉ have a common neighbourÒ in ✫ , then either there is a bag❪ ❴ containing both❄ , ✉ , Ò , or
there are two adjacent bags, one containing❄ and Ò , and one containing✉ and Ò . One must be a child in
❤ (with root ➎ ) of the other. Thus,❄ , ✉ , and Ò all three belong to a common bag in the constructed tree
decomposition.➣

A ❏❃➡❃Õ❯▼★➋✻➡✦Õ -separator of a set W in a graph✫➴✬➽✭✒✮❨✯❁✱❩✳ , is a set of vertices➬ , such that❼ can be
partitioned into sets❼ ❙ , ❼ ✼ , and ❼ ✾ , with ❼ ✾ ✬❢➬ ⑤ ❼ , ❛ ❼ ❙ ❛✇➊❇➋✿➡❃Õ✇❛ ❼➝❛ , ❛ ❼ ✼ ❛✇➊➆➋✿➡❃Õ❍❛ ❼➝❛ , and every
path from a vertex in❼ ❙ to a vertex in❼ ✼ uses a vertex in➬ .

The following lemma is well known. See e.g. [BGHK95, GRE84, Liu90, RS86].

Lemma 4.2 Let ✫Ü✬Ý✭✒✮❨✯❁✱❩✳ be a graph of treewidth at most ✩ . Let ❼ ⑦❳✮ . Then ✫ contains a
❏▲➡❃Õ➍▼➘➋✻➡✦Õ -separator of ❼ of size at most ✩◗❉♥❏ .

Lemma 4.3 For all ✪➩Þ➻❀ , ✩❖Þ❺➋ , ✩ even, there exists a graph ✫ with treewidth at most ✩ , maximum
degree at most ✪ , and domino treewidth at least ❙❙ ✼ ✩✓✪❩▼➀➋ .

Proof: Consider the following graph.
First, we take a grid of size✩❥➡✢➋ by ✪✻✼❫✩ . I.e., we have vertices of the form❄✦❴☛ß ⑧ , ❏➆➊à❝➀➊➙✩❥➡✢➋ ,

❏❩➊➩②❞➊♥✪✻✼▲✩ , and ❄✦❴☛ß ⑧ is adjacent to❄✦❴✃á✹ß ⑧ á , iff ❛ ❝➔▼➀❝❭➐③❛☞❉❇❛ ②❩▼✛②✿➐✒❛✓✬❷❏ . To this grid, we add✩❍➡✦➋ additional
verticesâ ❙ ✯☞ã✞ã✞ã✞✯✲â ⑥✘ä ✼ , with, for each❝ , ❏❞➊❢❝➍➊❷✩❍➡✦➋ , â ❴ adjacent to each vertex❄ ❴✹ß ⑧✘å æ✽⑥ , ❏❞➊t②✗➊♦✪ . Let
✫①✬❷✭✥✮✰✯✲✱❩✳ be the resulting graph.

See Figure 1 for an illustration of the construction. (In order to make the figure not too large, the
distance between successive neighbours of the verticesâ▲❴ is 4 in the figure, instead of✪❘✩ .)

The maximum degree of✫ is ✴❵✵❃✷ ✭✥❀❚✯✲✪❘✳ : vertices of the form❄✦❴☛ß ⑧ have degree at most five, while
vertices of the formâ▲❴ have degree✪ . It is also not hard to see that the treewidth of✫ is at most✩ . The
✩❥➡✦➋ by ✪✻✼❫✩ grid graph has treewidth exactly✩❥➡✢➋ (see e.g. [Bod98].) As✫ contains✩❥➡✦➋ vertices such that
when these are deleted from✫ , ✫ becomes a graph of treewidth✩❥➡✦➋ , the treewidth of✫ is at most✩ . (See
e.g. [Bod98], Lemma 72.)

Call the ❝ th row the set of all vertices of the form❄✦❴✹ß ⑧ , ❏➦➊❖②✈➊❇✪ ✼ ✩ . Similar, the set of all vertices of
the form ❄✦❴✹ß ⑧ , ❏❊➊❖❝❨➊❑✩❥➡✦➋ is called the② th column.

Now, we claim that✫❊✼ has treewidth at least❙ç ✪❘✩❵▼t❏ . Note that all vertices in the❝ th row that were
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adjacent toâ▲❴ form a clique in✫❊✼ . Call the set of these vertices the❝ th row-clique. Let

❼➺✬①❬❫❄ ❴☛ß ⑧➍❛✻❏❊➊➑❝❶➊★✩❍➡✦➋✓✯✰❏❊➊✗②❵➊❑✩✓✪ ✼ ❣

I.e., ❼ is the set of the grid vertices in✫ .
Suppose➬ is a ❏❃➡❃Õ❿▼①➋✻➡✦Õ -separator of❼ of minimum size in ✫❊✼ , partitioning ❼ into ❼ ❙ , ❼ ✼ ,❼ ✾ ✬t➬ ⑤ ❼ .
We will now show that❛ ➬✍❛❘Þ ❙ç ✪❘✩ . Assume❛ ➬✍❛✿➟ ❙ç ✪❘✩ .
Note that ❛ ❼ ❙ ❛✓➊ ✼✾ ➌❫✪✻✼❫✩✓✼❫➡✢➋ , hence❛ ❼ ✼ ⑤ ❼ ✾ ❛❘Þ➝❙ç ✪✿✼☞✩✓✼ , and likewise❛ ❼ ❙ ⑤ ❼ ✾ ❛✓Þ❺❙ç ✪✻✼▲✩✓✼ .
Every column that contains both a vertex in❼ ❙ and a vertex in❼ ✼ must also contain a vertex in➬ .

Thus, we may assume there are fewer than❙ç ✪❘✩ such columns. So, fewer than❙❙ ✼ ✪❘✩✓✼ vertices in❼ can
belong to such a column. It follows that there are at least✭ ❙ç ✪✻✼▲✩✓✼✇▼ ❙❙ ✼ ✪❘✩✓✼❫✳✲➡✓✭✒✩❥➡✦➋✻✳➚✬ ❙✾ ✪✻✼❫✩❨▼ ❙ç ✪❘✩ columns
that only contain vertices in❼ ❙ , and thus, every row contains❙✾ ✪✻✼❫✩➚▼ ❙ç ✪✿✩ vertices in❼ ❙ . Likewise, every
row contains❙✾ ✪✿✼❫✩✧▼♦❙ç ✪❘✩ in ❼ ✼ .

We now will show that every row contains at least❙✾ ✪❘✩ vertices in➬ .
Consider the❝ th row. Note that either all vertices in the❝ th row-clique belong to❼ ❙◆➏ ➬ or all vertices

in the ❝ th row-clique belong to❼ ✼ ➏ ➬ . Without loss of generality, we suppose the former; the other case
is identical.

We partition the vertices in the❝ th row in ✪ intervals, where the è th interval contains vertices
❄ ❴☛ß➓éëê■ì ❙↔í æ✽⑥✘î ❙ ✯✲❄ ❴☛ß➓é✃ê❜ì ❙↔í æ✽⑥✽î ✼ ✯☞ã✞ã☞ã✞✯●❄✦❴✹ß ê æ✽⑥ . At least ï↔✭ ❙✾ ✪✿✼☞✩✈▼ ❙ç ✪✿✩❥✳✲➡✓✭✥✪✿✩❥✳③ð➩Þ ❙✾ ✪ of these intervals must
contain vertices in❼ ✼ . However, each interval also contains a vertex in the❝ th row-clique, hence it con-
tains a vertex in➬ ➏ ❼ ❙ . So, each interval that contains a vertex in❼ ✼ must contain a vertex in➬ , hence
the ❝ th row contains at least❙✾ ✪ vertices in➬ .

As we have✩❥➡✦➋ rows, it follows that ❛ ➬✍❛❍Þ➽❙ç ✪✿✩ . By Lemma 4.2 on the page before, we have that the
treewidth of ✫❊✼ is at least ❙ç ✪✿✩❿▼♥❏ , hence by Lemma 4.1 on page 146, the domino treewidth of✫ is at
least ❙❙ ✼ ✪❘✩➦▼➘➋ . ➣

5 Final remarks
It is possible to give a modified version of the procedure of Corollary 3.2 on page 146, that yields domino
tree decompositions of somewhat larger width (but still ofÖ✶✭✥✩✓✪✿✼❃✳ , but that usesÖ✶✭☛×◗ñëò✻ó✰×❐✳ time instead
of Ö✶✭☛×➹✼▲✳ time. However, the proof in [BE97] can be turned into an algorithm that uses linear time. It is
not known how much time a procedure based upon the proof by Ding and Oporowski [DO95] would take.

The proof given in this paper seems unable to yield linear time algorithms - the approach typically leads
to algorithmic results ofP◗✭☛×◗ñëò✻ó❨×❐✳ time. It is open whether domino tree decompositions ofÖ✶✭✒✩✓✪✻✼❃✳ width
can be obtained with a linear time algorithm.

Another interesting open problem is whether a bound ofÖ✶✭✒✩ ✼ ✪✿✳ can essentially be improved. It would
be interesting to see if better bounds, e.g., a bound ofÖ✶✭✥✩✓✪❘✳ can be proved, and whether better lower
bounds are possible.

In some special cases, better bounds can be obtained. For instance, for trees we have the following easy
result.

Theorem 5.1 The domino treewidth of a tree is at most its maximum degree.
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Proof: Let ❤ be a tree with maximum degree✪ . Choose an arbitrary root➎ , and view❤ as a rooted
tree. Let❤❜➐➯✬⑩✭✥✮❯➐✥✯✲✱❩➐➫✳ be the tree, obtained by removing all leaves from❤ . Consider the following tree
decomposition of❤ : ✭↔❬☞❪❵ô◗❛✆❄õ❅♠✮❯➐✹❣✻✯✲❤❜➐ë✳ , where each set❪❵ô consists of❄ and all children of❄ in ❤ . One
easily verifies that this is a domino tree decomposition of❤ with width at most✪ . ➣

So for trees (and similarly for forests), the domino treewidth is linear in its degree. (Note also that the
domino treewidth of a graph with maximum degree✪✈Þ➇❏ is at leastï↔✭✥✪◗❉➆❏▲✳✲➡✦➋❃ð❜▼★❏ : at most two bags
can contain a vertex of degree✪ and all its neighbours.) It seems interesting to see if it is also possible
to obtain similar bounds for other restricted classes of graphs of bounded treewidth, e.g., series parallel
graphs, Halin graphs, or arbitrary graphs of treewidth two.
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