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1 Introduction

The purpose of this article is to give a bijective proof for Stanley’s hook-content formula [15, Theo-
rem 15.3] for a certain plane partition generating function. In order to be able to state the formula we
have to recall some basic notions from partition theorypahtition is a sequencg = (A, Ao, ..., Ar)

with Ay > Ay > --- > X, > 0, for somer. TheFerrers diagramof A is an array of cells withr left-
justified rows and\; cells in rows:. Figure 1.a shows the Ferrers diagram correspondirid,t& 3,1).
Theconjugate of) is the partition(A, ..., X} ) where)’; is the length of thg-th column in the Ferrers
diagram ofA. We label the cell in thé-th row andj-th column of (the Ferrers diagram of)by the pair
(i,7). Also, if we writep € A we mean p is a cell of \'. The hook lengthi, of a cellp = (i, ) of X is

(Ai = J) + (A\j —4) + 1, the number of cells in theookof p, which is the set of cells that are either in
the same row ag and to the right op, or in the same column asand belowp, p included. Thecontent

¢, ofacellp=(i,j) of Aisj —i.
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Figure 1
Given a partitionA = (Ay, A2,..., \), areverse plane partition of shapeis a filling P of the cells

of A with integers such that the entries along rows and along columns are weakly increasing. Figure 1.b
displays a reverse plane partition of shape3, 3, 1). A reverse plane partition is calledlumn-strictif
in addition columns arstrictly increasing. Figure 1.c displays a column-strict reverse plane partition of
shape(4, 3,3, 1). We write P, for the entry in cellp of P. We call the sum of all the entries of a reverse
plane partitionP thenormof P, and denote it by.(P).

Now we are in the position to state Stanley’s hook-content formula [15, Theorem 15.3].

Theorem 1 (Stanley). LetA = (A1, A2, ..., A,) be a partition ancz be an integet> r. The generating
function’>" ¢™F), where the sum is over all column-strict reverse plane partitiBhef shapeX with
entries betweei anda, is given by

1— qa.—i—c,o

IR
q 1 H 1 _ th . (11)
PEA

Stanley proved this theorem by showing that the generating function in question equals a determinant,
and then evaluated the determinant. However, such a proof does not explain why the generating function
equals such a nice product. In particular, it does not give any clue why in (1.1) the hook lengths and
contents appear. The desire to have an explanation for these phenomenons provides the motivation for
the search for a bijective proof of this result. A bijective proof for Stanley’s Theorem 1 was given earlier
by Remmel and Whitney [10]. Though being a significant advance, one cannot claim that this proof is
really enlightening or explains formula (1.1) in a satisfying way. Aside from making use of the involution
principle of Garsia and Milne [2] (which creates bijections in an indirect way), it was based on bijections
that mimicked recurrence relations, which is certainly not the most direct route to attack the problem. Our
proof of Theorem 1 explains the appearance of hook lengths and contents in a straight-forward way. It is
based on the Hillman-Grassl algorithm [3] and on Schiitzenberger’s [14] jeu de taquin. It does not need
the involution principle. However, the careful reader will notice that we set up a bijection between two
sets of objects that are different from those for which Remmel and Whitney set up their bijection. In order
to find a bijection between the sets that Remmel and Whitney consider, also we have to use the involution
principle. However, the resulting bijection is considerably simpler than Remmel and Whitney'’s.

We remark that a bijective proof of Theorem 1 for one-rowed shapes (i.e. the case of (ordinary) parti-
tions with< A; parts, each part a) can be found in Sagan’s paper [11, proof of Theorem 8]. However,
this proof is different from our proof when restricted to one-rowed shapes. Besides, this proof does not
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seem to generalize to arbitrary shapes. In the same paper, which has bijective proofs of hook formulas
as its theme, also the problem of finding a bijective proof of MacMahon'’s product formula [7, Sec. 429,
proof in Sec. 494] for the generating function of plane partitions of rectangular shapes with bounded en-
tries is posed. Since MacMahon's formula is actually contained in Theorem 1 (which is seen by an easy
transformation of plane partitions into column-strict reverse plane partitions), our bijection also provides
a solution to this problem. See also Section 4.

Our paper is organized as follows. In Section 2 our bijective proof of Theorem 1 is described. (A
complete example for our bijection is carried out in the appendix of this paper). Then, in Section 3, we
discuss some related bijections. In particular, it is there where we explain how our bijection described in
Section 2 can be used to provide a much simpler (involution principle-based) bijection between the sets
that Remmel and Whitney use in their bijective proof [10] of Theorem 1. Finally, in Section 4, we list
some more plane partition formulas that also desire to receive bijective proofs.

In conclusion of the Introduction, a few comments on the relation of the present work to the recent
beautiful bijective proof [8] of the Frame—Robinson—Thrall hook formula for the number of standard
Young tableaux of a given shape by Novelli, Pak and Stoyanovskii (announced in [9]) are in order. Clearly,
the Novelli-Pak—Stoyanovskii algorithm as well as our algorithm described in Section 2 are based on jeu
de taquin (a modified jeu de taquin in our case). Still, | am not able to name an immediate, direct relation.
However, | discovered that it is possible to merge the Novelli-Pak—Stoyanovskii idea of how to keep track
of the hooks with the modified jeu de taquin idea of this paper to obtain a new bijective proof of the hook-
content formula (1.1), which also avoids the involution principle. (In fact, it sets up a bijection between
the sets Remmel and Whitney consider in their paper [10].) This will be the subject of a forthcoming
publication [5].

2 Bijective proof of Stanley’s hook-content formula
First, we rewrite (1.1) in the form (here CRPP is short for ‘column-strict reverse plane partition”)

1 T i 1
Z qn(P)) . H T qa+_cp = qu=1 WA H 1= g (2.1)

P a CRPP of shapa PEA PEA
with 1<entries<a

Let us call ararbitrary filling of the cells of A with nonnegativéntegers aabloid of shape\. Further-
more, let us define thieook weightwy, (T') of a tabloidT" of shapeX by >° ., T, - h,, and thecontent
weightw,.(T) of a tabloidT by Zpa T, - (a + ¢,). Then the right-hand side of (2.1) is the generating
functiony” ¢™(o)gw»(Tr)  where the sum is over all pait®;, Tr), with P, being the “minimal” column-
strict reverse plane partition of shapevith entries> 1, i.e. the column-strict reverse plane partition with
all entries in row equal toi for all 4, and withT'g varying over all tabloids of shape Similarly, the left-
hand side of (2.1) is the generating functiphq™(Fz) g(Tt) where the sum is over all pai(®r, Tr.),
with Py, varying over all column-strict reverse plane partitions of shapégth entries betweei anda
andTy, varying over all tabloids of shaple So the task is to set up a bijection that maps a right-hand side
pair (P, Tr) to a left-hand side paiiP.,, Ty ), such that(Py) + wy (Tr) = n(Pr) + w(Ty).

One step in our bijection was already done much earlier. In their celebrated paper [3], Hillman and
Grassl constructed an algorithmic bijection between tablgig®f shape\ and reverse plane partitions
Pr of shape) with nonnegative entries such thatPr) = w,(Tr). If we add such a reverse plane
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partition Pg to P, cell-wise, then we obtain eolumn-strictreverse plane partitios of shape) with
entries> 1, and we havei(Pg) = n(P) + n(Pr) = n(P) + wi(Tr). Therefore the new task is to
set up a bijection that maps a column-strict reverse plane partition of shajte entries> 1 to a pair
(Pr,TL), wherePy, is a column-strict reverse plane partition of shapwith entries betweet anda,
and wherdl;, is a tabloid of shapg, such that

n(Pr) =n(Pr) +wc(TL). (2.2)

We claim that the following algorithm performs this task.

Algorithm C. The input for the algorithm is a column-strict reverse plane partifigrof shapei with
entries> 1.
(C0) Set(P,T) := (Pr,0), where0 denotes the tabloid of shapewith 0 in each cell.

(C1) If P does not contain any entty a then stop. The output of the algorithm(iB, T").

Otherwise, consider atlorner cellsof A (which are the cells with no right and bottom neighbour cells).
Choose all corner cells that contain the maximal entrf? oghnd among all these pick the left-most, cell
say. (Note that the maximal entry &fmustappear in a corner cell d? sinceP is a column-strict reverse
plane partition. Hence, in our situation it mustbe:.) Replace the entrf,, in cellw by P,, — (a + ¢,).
Call this entryspecial Continue with (C2).

(C2) If a column-strict reverse plane partition is obtained then continue with (C3).
If not, i.e. if the special entry say, violates increase along rows or strict increase along columns, then
we have the following situation,

2. (2.3)

IS

where at least one af > s andy > s holds. (One ofc or y is also allowed to be actually not there.) If
x > y then do the move

Yyl 2.4)
s+1|x
If x <y then do the move
s—1
(2.5)
Ty

The new special entry in (2.4) is+ 1, the new special entry in (2.5) is— 1. Repeat (C2). (Note that
always after either type of move the only possible violations of increase along rows or strict increase along
columns involve the new special entry and the entry to the left or/and above.)

(C3) Let P be the column-strict reverse plane partition just obtained. If we ended up with the special
entry in cellp then addl to the entry in cellp of T. The tabloid thus obtained is the néW Continue
with (C1). O
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ExAMPLE C. A complete example for Algorithm C can be found in the appendix. There we choose
a = 4 and map the column-strict reverse plane partition of sHdp#, 3,1) on the left of Figure 2 to

the pair on the right of Figure 2, consisting of a column-strict reverse plane partition of ha@p8, 1)

with entries< 4 and a tabloid of shap§t, 3,3,1), such that the weight property (2.2) holds. In fact,
the norm of the column-strict reverse plane partition on the left of Figuret9,ig/hile the norm of the
column-strict reverse plane partition on the righ2ésand the content weight of the tabloid28.

1]1]3]s] 1]1]1]3] [1]o]1]o
2 2|2 1
— ,
5 3|3 3
7] 4] 1]
n(.) =49 n(.) =26, w.(.) =23
Figure 2

The appendix has to be read in the following way. First of all, ignore all double circles, and all even
rows in the right columns. What the left columns show is the (&jf") that is obtained after each loop
(C1)-(C2)-(C3). Together with the pafiP, T') a filling of the shap€4,3,3,1) is displayed that shows
all valuesP, + 4 + ¢, for all cells p with T}, # 0. This will be important for understanding Lemma C
but can be ignored for the moment. At each stage, the entry that is chosen by (C1) is circled. Then each
intermediate step during the loop (C1)-(C2)-(C3) is displayed in the odd rows of the right columns. The
special entry is always underlined. When a column-strict reverse plane partition is reached, the special
entry is boxed. The entry in the corresponding cell of the tabloid is subsequently increabéu step
(C3). O

It should be noticed that, aside from adding/subtractitg/from the special entry, what happens from
(2.3) to (2.4), respectively (2.5), is@u de taquin forward movef. [14, Sec. 2], [13, pp. 120/169]).

It is obvious that this algorithm mag3z to a pair(Pr,TL), whereTy, is a tabloid of shapa and P,
is a column-strict reverse plane partition of shapeith entries< a. In fact, the entries of’;, have to
be > 1. This is seen as follows. The only problem could arise with our special entry. However, when
we arrive at (C3), a special entry 0 can only occur in cel(1, 1), because otherwise step (C2) was not
finished. Each loop (C1)-(C2)-(C3) of the algorithm starts with some &Rjry> a in a corner cell.
It is replaced byP,, — (a + ¢,,). Then it is (possibly) moved according to (2.4) and (2.5). It is easy to
check that at each stage during performing the steps (C2), the special entry, if locateg,mvdeéqual
P, — (a+c¢,). This is a property so important that it has to be recorded for later use,

(special entry irp) = P, — (a +¢,). (2.6)

Suppose we reach cdll, 1). When we arrive af1,1), by (2.6) and since;, ;) = 0, our special entry
has becomé’, — a. But this is> 1 sinceP,, > a.
So we have an algorithm that maps right-hand side objégtsf (2.1) to left-hand side object®’,, Tr)
of (2.1). Besides, this mapping satisfies the weight property (2.2). This is immediate from (2.6).
What remains is to establish that our algorithm is actualtjjection between right-hand side and left-
hand side objects. This will be accomplished by constructing an algorithm, Algorithm C* below, that will
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turn out to be the inverse of Algorithm C. We could exhibit Algorithm C* immediately. However, we
prefer to provide motivation for the definition of Algorithm C* first, in form of the following lemma. On

the other hand, readers who are not interested in the details can safely skip the lemma and jump to the
description of Algorithm C* at this point.

LemmaC. Let(P,T) be obtained after some lod@1)-(C2)-(C3)during Algorithm C. Suppose that the
loop terminated in celly when reaching (C3). Then among all ceflsvith T,, # 0, «y is a cell for which
the valueP, +a + ¢, attains its minimum, and if there are several celisith T, # 0 where the minimum
is attained, thery is the right-most and top-most of those. Besides, there holds

P, + a + c, > max{entries inP}. (2.7)

PROOF. We prove the assertions by induction on the number of loops (C1)-(C2)-(C3).
The assertions are certainly true for the gdh, 7") obtained after the very first loop (C1)-(C2)-(C3)
from (Pg, 0). This is because there is only one aglh T' with T, # 0, and, what regards (2.7), because

P + a+ ¢ = max{entries inPg} > max{entries inP}, (2.8)

the equality holding because of (2.6), the inequality holding because of the following facts. In the tran-
sition from P to P the multiset of entries remains the same, except for one €ifg),,, wherew is

the corner cell that is chosen when applying (C1P®. At the beginning of the loop (C1)-(C2)-(C3)
leading fromPg to P, (Pg)., is replaced by(Pg)., — (a + c,), which is less thar{Pg),, because of

a > r >max{—c, : p € A} (recall thata > r is one of the assumptions in Theorem 1.) Then the special
entry(Pr). — (a + ¢,) is (possibly) moved inwards according to (2.4) and (2.5). At the end of the loop
(C1)-(C2)-(C3) a column-strict reverse plane partition is obtained, therefore the special entry in the end
has to be< max{entries inPg} in any case.

The cells, ¢, w, the jeu de taquin path
from w to ¢, and the four regions determined fy

Figure 3

So, let us assume that the assertions are trugfgr), obtained after some loop (C1)-(C2)-(C3). Let
~ be the cell where the last loop, which gave ris ®T'), terminated at (C3). Let be the cell where
the next loop starts, i.e. the corner cellBfchosen by (C1), and I€t be the cell where this next loop
terminates at (C3). See Figure 3. &, T) be the outcome after this loop. Note that by construction the
cellsp with T, # 0 are¢ and the cells withf, # 0. In particular,T, # 0 impliesT, # 0.
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First we prove (2.7) fol® and(. By (2.6), the entry o in cell ¢ is
P: =P, —(a+c). (2.9)
This immediately implies
P + a + ¢ = P, = max{entries inP} > max{entries inP}. (2.10)
The last inequality follows from the arguments that proved (2.8), just reffacley P in the paragraph

after (2.8). Obviously, (2.10) proves (2.7) fBrand(, as desired.

Next we show thaP’, + a + ¢,, evaluated at cellp with T, # 0, attains its minimal value at. By
induction hypothesis, (2.7) holds fét and~y. Hence we have

P, +a+ ¢, > max{entriesinP} = P, = P: + a + c. (2.11)
Let p be any cell withT, # 0. Recall that this means= ¢ or T,, # 0. We want to show
P,+a+c,> P +a+c. (2.12)

If p = ¢ then there is nothing to show. So fet4 (. Then we havé, # 0. By induction hypothesis for
v, we haveP, + a + ¢, < P, 4+ a + ¢, for all cells withT, # 0. So, if we supposé, = P,, then we
conclude, using (2.11),

Pp+a+cp=Pp+a+cp2P7+a+cvzpc—|—a—|—cc,

which verifies (2.12) in this case. However, the only entries that are changed during the performance
of the loop (C1)-(C2)-(C3) are located in cells (weakly) to the right and (weakly) below of cekte
Figure 3. For these cells there holds the following basic computation. For convenience; Igt, j1 ),

and letp = (i2, j2) be in this region to the right and below ¢fi.e. i, < i» andj; < j». Then, sinceP
is a column-strict reverse plane partition, we have

P,+a+c,=P,+a+ (jo—iz)
> (P +ia—i1)+a+ (ja—i2) = P +a+j2—i1
>Pc+a+ji—i1=FP+a+ec. (2.13)
Therefore the valu®, +a-+c, for anycell p in the region to the right and below ¢iis at least?; +a+cc,
so also for the cells witlf,, # 0, which verifies (2.12) in this case, too. For later reference we remark that

the computation (2.13) also shows that the only cells in this region for which we could have equality are
in the same column &5

Finally we show that is the right-most and top-most among all celiwith T, # 0whereP, +a+c,
attains its minimal value. Let be a cell withT,, # 0 whereP, + a + ¢, attains its minimal value. In
particular, we have

P,+a+c,=P+a+c. (2.14)

First, suppose thatis a cell with P, # P,. Thenp has to be located in the region (weakly) to the right
and (weakly) below of. As we noted after the computation (2.13), the only celis this region for
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which we could have equality in (2.13) lie in the same columij.aéis the top-most and right-most of
these, in agreement with our claim.

The more delicate case is wheiis a cell withT, # 0 andP, = P,. Of course, nothing is to show for
p = ¢, SO we may assume+# ¢. This impliesT, # 0,and soP, + a+c, = P, +a+c, > P, +a+c,,
the inequality holding by induction hypothesis farCombining this with (2.11) and (2.14) we are forced
to conclude

P,+a+c,=Py+a+c,=PFP +a+c. (2.15)

We shall show thag has to lie in the region (weakly) to the right and (weakly) above @s is indicated
in Figure 3). Sincey was the right-most and top-most of all the cellwith T}, # 0 where the minimal
value of P, 4+ a + ¢, is attained, this would establish th@is the right-most and top-most of all the cells
p with T, # 0 where the minimal value af, + a + ¢, is attained, as desired.

We prove the claim of the previous paragraph by excluding the other three quarter regions that are
determined by the horizontal line and the vertical line running throygtee Figure 3.

First, suppose thatlies in the region strictly to the right and (weakly) belowyofThenP, = P,, since
~ was not met during the loop (C1)-(C2)-(C3) leading fréhto P. However, then the basic computation
(2.13) applies witl( replaced byy, andp replaced by. Since we assumed thais strictly to the right
of v, the remark below (2.13) tells that actually strict inequality in (2.13), with the above replacements,
holds, i.e.P; +a + ¢¢ > P, + a + ¢,. This contradicts (2.15) becauseBf = P,. Thus, this region is
excluded.

Next we show that cannot lie in the region (weakly) to the left and (weakly) belowypf excluded.

This would follow immediately from the claim that if two successive loops (C1)-(C2)-(C3) start with the
same size of entry in the corner cells chosen by (C1) (which applies in our case since the loop that lead to
P started with an entry, + a + ¢, in some corner cell, and the loop that lead fréhto P started with

P: + a + ¢, both quantities being the same by (2.15)) then the second path of moves has to stay to the
right of the first path of moves.

To check this claim, once again note that both loops started with the same size of entries in the cells
chosen by (C1). By the rules in (C1), this means that either the second loop started strictly to the right
of the first, or we started in the same cell, where in this case the first loop started with a left move (2.4).
(Note that if we start with an upward move (2.5) then, by column-strictness, a smaller entry is moved into
the corner cell than has been there before.) Now, it is an easy-to-check property of our modified forward
jeu de taquin (C2) that if the second “jeu de taquin path” is to the right of the first “jeu de taquin path”
somewhere, then it has to stay to the right from thereon. To make this precise, suppose that during the
first loop the special entry,; say, went up by (2.5), see the left half of Figure 4. (The arrows mark the
direction of move of the special entry.)

during during
Y | 2| firstloop | * | 2 * | 2 | second loop| * | %
— —
S1 [ * Y|* Y|S2 Y|z
Figure 4

Since rows are weakly increasing, we hgve z. Suppose that during the second loop we reach the cell
neighbouringy and z with a special entry», see the right half of Figure 4. Then the definition of the
algorithm forces us to stop here or to move up in the next step (C2). We already checked that the second
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“jeu de taquin path” starts to the right of the first, therefore it has to stay to the right always. So also this
region is excluded.

Finally, we examine if could be located in the region strictly to the left and (weakly) above @nce
more the computation (2.13), wiihreplaced byy, applies and, together with the remark below (2.13)
(note that we assumeglto be strictly to the right of), implies P, + a + ¢, > P + a + ¢¢, Which
contradicts (2.15) because of the simple fB¢t> P, .

This completes the proof of the Lemma. O

From Lemma C it is pretty obvious what the inverse algorithm of Algorithm C could be.

Algorithm C*. The input for the algorithm is a pa(,, 71), wherePy, is a column-strict reverse plane
partition of shape\ with entries betwee anda, and wherel';, is a tabloid of shapa.

(C*0) Set(P,T) := (Pr,TL).

(C*1) If T' = 0 then stop. The output of the algorithm#s

Otherwise, consider all cellswith 7, # 0. Among these choose the cells for whieh + a + ¢, is
minimal, and among all these pick the right-most and top-most{aaly. (Observe that among two cells
attaining the same value @1, + a + ¢, one is always (weakly) to the right and (weakly) above of the
other, again because of the computation (2.13), Witlteplaced byP, and the remark below (2.13). So
the right-most and top-most of these does exist.) Replace the Bntrycell { by P; + a + c¢. Call this
entryspecial Continue with (C*2).

(C*2) If the special entrys say, is located in a corner cell afthen continue with (C*3).
If not, then we have the following situation,

S|T
(2.16)
1Y)
(One ofz or y is also allowed to be actually not there.xli< y then do the move
TS
(2.17)
Y]
If x > y then do the move
T
Ay (2.18)
S

The new special entry in either casesiRepeat (C*2).

(C*3) Let P be the column-strict reverse plane partition just obtained. (The fact that indeed a column-
strict reverse plane partition is obtained will be proved in the subsequent Lemma C*.) Suilftcawtthe
entry in cell¢ of T'. The tabloid thus obtained is the n&Ww Continue with (C*1). O
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ExAMPLE C*. A complete example for Algorithm C* can be found in the appendix. There we choose
a = 4 and map the pair on the right of Figure 2, consisting of a column-strict reverse plane partition of
shape(4, 3,3, 1) with entries< 4 and a tabloid of shapgt, 3, 3,1), to the column-strict reverse plane
partition of shapé4, 3, 3, 1) on the left of Figure 2, such that the weight property (2.2) holds. It is simply
the inverse of the example for Algorithm C given in Example C. Therefore, here the appendix has to be
read in the reverse direction, and in the following way. First of all, ignore all single circles, and all odd
rows in the right columns. What the left columns show is the (&jf") that is obtained after each loop
(C*1)-(C*2)-(C*3) together with a filling of the shap@, 3,3, 1) that shows all value®, + 4 + ¢, for

all cellsp with T}, # 0. At each stage, the entry that is chosen by (C*1) is doubly circled. Then each
intermediate step during the loop (C*1)-(C*2)-(C*3) is displayed in the even rows of the right columns.
The special entry is always doubly underlined. When a column-strict reverse plane partition is reached,
the special entry is doubly boxed. The entry in the corresponding cell of the tabloid is subsequently
decreased by in step (C*3). O

Again, it should be noticed that (2.17) and (2.18) are exgetlyde taquin backward movésf. [14,

Sec. 2], [13, pp. 120/169]), which reverse the forward moves (2.4) and (2.5), respectively, except for the
subtraction/addition of in (2.4) and (2.5).

In order to show that Algorithm C* is always well-defined, we have to confirm that when arriving at
(C*3) we always obtained a column-strict reverse plane partition. This is established in the following
lemma. Besides, this lemma contains the facts about Algorithm C* that are needed to prove that the
Algorithms C and C* are inverses of each other.

Lemma C*. Let(P,T) be obtained after some loqg*1)-(C*2)-(C*3) during Algorithm C*. Then for
all cells p with T, # 0 there holds

P, 4+ a + ¢, > max{entries inP}. (2.19)

Also, P is a column-strict reverse plane partition. Besides; i the corner cell that contained the special
entry at the end of the loafC*1)-(C*2)-(C*3) that lead toP, thenw is the left-most corner cell i that
contains the maximal entry .

PROOF. We prove the assertions by induction on the number of loops (C*1)-(C*2)-(C*3).
To begin with, we know that when we start with Algorithm C* we have a p&rT), whereP is a
column-strict reverse plane partition with entries betwkanda. So foranycell p = (4, j) we have

P,+a+c, =P, jta+tcqy
>it+a+(j—1)
>a
> max{entries inP}. (2.20)

So the assertion (2.19) and the assertion tha a column-strict reverse plane partition hold at the very
beginning. This will suffice for the start of the induction.

As induction hypothesis let us assume that the assertions of the Lemma are tfliz Tgrand all
preceding pairs occuring in step (C*3) during the process of the algorithm, except of course that the
assertion about the corner celldoes not hold for the initial pair (because it does not make sense for the
initial pair).
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Let ¢ be the cell where the loop (C*1)-(C*2)-(C*3) starts frofi,T'), i.e. the cell that is chosen
by applying (C*1) to(P,T'), and letx be the corner cell where the loop stops at (C*3). See Figure 5.
Furthermore, le{P, T') be the outcome after this loop. Then, by definition of the algorithm we have

P,c =FP;+a+c. (2.21)

Note that, also by definition of the algorithm, the cellsvith T, # 0 are those witil,, # 0, except
possibly for¢. In particular,T,, # 0 impliesT, # 0.

The cellsy, w, ¢, &, the jeu de taquin paths
from « to w and from( to .

Figure 5

First we prove (2.19) foP. Let p be any cell different fromx with T, # 0. By definition of (C*2) we
haveP, > P,. Besides, we already saw tHBj # 0 impliesT, # 0. Therefore, by construction gfin
(C*1), we have

P,+a+c,>P,+a+c,> P +a+c. (2.22)

Note that (2.22) also holds fgr= « since by (2.21) we havB, + a + ¢, = (P +a+¢¢) +a+ ¢, >
Pr+a+c¢, the inequality being true becausexof r > max{—c, : p € A} (recall thaia > r is one of the
assumptions in Theorem 1.) Also by constructiog ofre havel; # 0, and hence by induction hypothesis
(2.19) thatP; + a + c¢¢ > max{entries inP}. This implies that?’; + a + ¢, = max{entries inP} since
the set of entries aP is the same as the set of entriesirexcept for the special entd#; + a + ¢, created
in (C*1) and finally located in celk in P. Hence, (2.22) proves (2.19) wiff replaced byP, as desired.

Now we prove thaf is a column-strict reverse plane partition.Rf + a + ¢ > max{entries inP}
then this assertion certainly holds, sinlgg= P + a + ¢ is the only new entry if. Note in particular,
that by (2.20) we are in this case at the very beginning.

By induction hypothesis, (2.19) holds f¢r so the only other case is

P + a + ¢¢ = max{entries inP}. (2.23)

Observe that the only difficulty arises when we reach cornercatithe end of a loop (C*1)-(C*2)-(C*3)
from above, and when in additiad®, = P, holds. In this case column-strictnessifvould be violated.
We have to show that this case cannot occur.
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Let (P',T") be the pair precedingP, T, i.e. (P,T) is obtained by applying one loop (C*1)-(C*2)-
(C*3) to (P',T"). As we just noted(P’,T") exists, since i{ P,T') were the initial pair we would not be
in this case because of (2.20). Furthermoreyleé the cell where this loop starts, anddebe the corner
cell where it stops, see Figure 5. By definition of the algorithm we have

P, =P, +a+c,. (2.24)
Now, by induction hypothesis and the definition of the algorithm,
P, + a + ¢, = max{entries inP}. (2.25)

Furthermore, there hoIdE’C’ < P, by the definition of (C*1) if{ # w, but also if{ = w because
of (2.24) and the induction hypothesis (2.19) 8t andp = ~. Hence, again by definition of (C*1),
P +a+cy < Pi+a+c < P +a+c. Combining this with (2.23) and (2.25), we are forced to
conclude

P 4+a+c, =P +a+tc (=P +a+c). (2.26)

Therefore, again by definition of (C*14,lies (weakly) to the left and (weakly) below ¢f as is indicated
in Figure 5.

It is an easy-to-check property of backward jeu de taquin (C*2) that if the second “jeu de taquin path”
is to the left of the first “jeu de taquin path” somewhere, then it has to stay to the left from thereon. To
be precise, suppose that during the first loop (C*1)-(C*2)-(C*3) the special entsgy, went down by
(2.18), see the left half of Figure 6. (Again, the arrows mark the direction of move of the special entry.)

during during
* | 81 | firstloop | * S9 second loo
Stoop Zi Y | second) pj Yy
zZly 2| * 2 | * *

Figure 6

Since rows are weakly increasing, we have y. Suppose that during the second loop we reach the cell
neighbouringy and z with a special entry,, see the right half of Figure 6. Then the definition of the
algorithm forces us to stop here or to move down in the next step (C*2).

We already saw that the second “jeu de taquin path” stagtsatich is (weakly) to the left and (weakly)
below of v, the starting cell of the first “jeu de taquin path”. Therefore, if we suppose that the first path
does not meet, we are to the left of the first path when we start the second path. Then, if at the end of the
second path we reach the same corner cell as the first path did, we have to reach it from the left. As noted
above, this guarantees thiis a column-strict reverse plane partition. If we do not reach the same corner
cell, then we reach a corner callto the left. In this case our induction hypothesisdgrthe corner cell
that was reached at the end of the first path, saysRhas strictly less tharP,, = max{entries inP}.
Therefore, by using (2.21) and (2.23) we hag < max{entries inP} = P,. Hence,P will be a
column-strict reverse plane patrtition, regardless from which direction we reached cell

Now we have to consider the only remaining case that the first path, startingaets(. In this case,
¢ would have to lie in the same column agand below). First suppose th@is left by the first path by
a downward move. In this case, by (2.18), we would hBye> P/, which contradicts (2.26). So the
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first path has to leavé by a right move. Hence, we are to the left of the first path at the beginning of the
second path. Thus, the above considerations apply again.

Finally, we prove thak is the left-most corner cell i that contains the maximal entry . This is
trivially true if P; +a + ¢ > max{entries inP}, again by remembering (2.21). Note that this inequality
is in particular true at the very beginning of Algorithm C*, because in this case (2.20) holds even for all
cells p, so also for¢. Because of the induction hypothesis (2.19), the only other caBe-isa + ¢, =
max{entries inP}. Since we arenot at the very beginning, we are allowed to assume that this last
assertion of Lemma C* holds faP andw. However, we already considered the c#&%e+ a + ¢, =
max{entries inP} before (see (2.23)) and showed that the “jeu de taquin path” leading¢frams has
to stay to the left of the “jeu de taquin path” leading fronto w. Hencex is (weakly) to the left ofv.
By induction hypothesisy was the left-most corner cell containing the maximal entry?ofSox, which
by (2.21) containg; + a + ¢, = max{entries inP} in P, is the left-most corner cell aP containing
max{entries inP} (= max{entries inP}), as desired.

This completes the proof of the Lemma. O

From Lemmas C and C* it is abundantly clear that the Algorithms C and C* are inverses of each other.
This finishes the bijective proof of (2.1).

3 Related bijections

In this section we discuss bijections related to the bijection in Section 2. It is mainly intended to serve the
true purist among combinatorialists.

It is two items that we want to address in this section. First, one might argue that we did not prove
Theorem 1 directly, but the variant (2.1). Well, as we show in the first part of this section, it is not difficult
to construct a bijective proof of Theorem 1 directly, i.e. of

- 1
(P)) = Zimride : gt
q" )—q || =g [T —q*), 3.1)

P a CRPP of shapa PEX PEAX
with 1<entrieXa

by using our Algorithms C and C*. Secondly, Remmel and Whitney [10], in the first bijective proof of
Stanley’s hook-content formula Theorem 1, gave an involution principle-based bijective proof for even
another variant of Theorem 1, namely

) qn(P)) 1re] = = T]la+ ¢, (3.2)

P a CRPP of shapa PEAX PEA
with 1<entriexXa

where[n] := 1+ ¢+ ¢> + --- + ¢" . While we do not know how to construct a direct bijection (in
the sense of avoiding the involution principle) for (3.2), we are able to find a much simpler involution
principle-based bijective proof of (3.2) by using our Algorithms C and C*. This is subject of the second
part of this section.

Before we start, we introduce some special tabloids to be used in the course of the following bijections.
Let f be some function from the set of all cells of a Ferrers diagkdnio the integers, that maps the cell
p to the valuef,, say. Then we call a tabloifl of shape\ a (< f)-tabloidif T, < f, for all cellsp € A,
and we calll’ a(0—f)-tabloid if T, equalsd or f,, for all cellsp € A. The sigrnsgn(T") of a (0—f)-tabloid
is always defined to be_ l)number of nonzero entries il
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3.1 Bijective proof of (3.1)

As was already used in Section 2, the Hillman—Grassl correspondence [3] bijectively shows that
gri=1 Mi/HpO(l — ¢"r) is the generating functiol_ ¢"(P%), where the sum is over all column-strict
reverse plane partitions of shapewith entries> 1. Thus the right-hand side of (3.1) is the generating
function 3" sgn(Tr)g™ 7 ¢™(Tr) where the sum is over all pait¥g, Tr), with Pg being a column-
strict reverse plane partition of shapevith entries> 1 and withTg being a(0—(a + ¢))-tabloid of shape

A (viewing (a+c) as a function that maps a cglke A toa+c,). There is a straight-forward embedding of
the set of column-strict reverse plane partitidhsf shape\ with entries betweei anda (the “left-hand
side objects” in (3.1)) into the above pairs, namely by mapgirtg (P, 0). Therefore, in order to prove
(3.1) bijectively, we have to find a sign-reversing (with respecigigTr)) and weight-preserving (with
respect tay"(Fr)+n(Tr)) involution on the set of all pairéPg, Tx) as above, where eithd?; contains
some entry> a or whereT'g contains some nonzero entry.

Such an involution is simply described. Fix some total ordering of the cells dfonsider such a
pair (P, Tr). Apply Algorithm C to Pg to obtain(Pg, Tr), WwherePy is a column-strict reverse plane
partition of shape\ with entries betweem anda and wherel's is some tabloid of shape Pick the least
cell p (in the chosen fixed total order) such thag or Tr contain a nonzero entry in this cell. (Note that
by assumption there must be at least one such cell.) If the entry is nonZEgdlen replace it by, thus
obtainingT}, and addl to the entry in celp of Tg, thus obtaining’s,. Otherwise, replace tHein cell p
of Tg by a+ ¢,, thus otainind’g,, and subtract from the entry in celp of Tg, thus obtaining’z. Apply
Algorithm C* to the pair(Pg,Ty), thus obtainingPg. The image of Pr,Tr) under our involution is
defined to b Py, Ty). The reader should not have any difficulty to verify that this mapping is indeed an
involution and is sign-reversing and weight-preserving in the above sensgl

3.2 Bijective proof of (3.2)

First we have to recall the involution principle of Garsia and Milne [2] (see also [17, Sec. 4.6])X Let

be a finite set with a signed weight functiandefined on it. Furthermore, 1, and Xz be subsets of

X, both of which containing elements with positive sign only. Suppose that there is a sign-reversing and
weight-preserving involutiofy, on X that fixesX 1, and a sign-reversing and weight-preserving involution

ir on X that fixesX . Then there must be a weight-preserving bijection betw€gand X z. And such

a bijection can be constructed explicitly by mapping X, to (iL o ig)™(x) wheren is the least integer

such thaiir, o ig)™(z) is in Xg.

Now we turn to our promised bijective proof of (3.2). The right-hand side of (3.2) can be seen as
the generating functio®y ¢"(7)¢™(Tr) where the sum is over all pai$%, Tr), with P, being the
“minimal” column-strict plane partition with entries 1 as explained in Section 2, and wiffy being
a (< a + c)-tabloid of shape\. Call this set of pair€)g. Similarly, the left-hand side of (3.2) can be
seen as the generating functipng™(¥2)¢(Tt) where the sum is over all paif®., Ty,), with P, being
a column-strict reverse plane partition of shap&ith entries between anda, and withTy, being a
(< h)-tabloid. Call this set of pair®y,.

We need to set up a bijection between these two sets of objects. We want to use the involution principle.
Therefore we have to say which choices we take for theXsehe signed weighiv, the subsetX;, and
Xg, and the involutiong;, andig. Of courseDr, andOg should correspond t& ;, and X g, respectively,
the latter being subsets of the bigger Xetthat has to be described next.
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We defineX to be the set of all triple6P, T, T?) whereP is a column-strict reverse plane partition os
shape\ with entries> 1, T! is a(0—min{h, a + c})-tabloid of shapé\, andT? is a(< max{h,a + c})-
tabloid of shape\. The signed weighi on X is defined by

w((P,T",T?)) = sgn(T") g" (P74, (3.3)

We define the seX}, to be the subset of all tripleP, T, T?), whereP is a column-strict reverse
plane partition of shapg with entries betweei anda, whereT! = 0, and wherél'? is a(< h)-tabloid.
Note in particular that the sign @&((P, Tl,TZ)) for all these triples isgn(0) = 1 which is positive.
Obviously, X, is in bijection withO,,. Besides, there holds ((P,0,T2)) = ¢*®+n(T*) which is
exactly what we need.

We define the seX i to be the subset ok consisting of all triple Py, T, T?), whereT! = 0 and
whereT? is a(< a + c)-tabloid. Again, the sign ofv((Py,T*,T?)) for all these triples is positive.
Obviously, X  is in bijection withOg, andw((Py,0,T2)) = ¢"(P)+n(T*) which is exactly what we
need.

For defining the involutions;, andig we fix a total ordering of the cells of, as we did before in the
bijective proof of (3.1).

First we define the involutioiy, that fixesX,. Let (P, T, T?) be a triple inX that is not inX7, i.e.
P contains an entry- a or T! contains a nonzero entry. We distinguish between two cases. For the first
case we assume that there is a pafi A with

hy <Ty +T; <a+cy. (3.4)

Without loss of generality, let be the least such cell in our fixed total order. Note in particular, that (3.4)
impliesh,, < a+c,, and therefore by definition @* andT™® we havel’; = 0 orh,, and0 < T? < a+c,.

If T} = 0then we replac& by h,, thus obtaining™, and we replac&? by T2 — h,,, thus obtaining™.

If T} = h, then we replac’, by 0, thus obtainindl"", and we replac& by T + h,, thus obtaining

T2. It is easy to check that because of (3.4) in both c&3ewill be a (0~min{h, a + c})-tabloid and

T? will be a (< max{h,a + c})-tabloid. We define, ((P,T*,T?)) to be(P,T!,T?). Obviously, there
holdsw((P,T*,T?)) = —w((P,T*,T?)), as required.

In the second case, i.e. if we have a triplg T',72) where (3.4) is false for any cefl, then in the
first step we transforniP, T, T?) into a quadrupléP’, S°, S1, S?), whereP' is a column-strict reverse
plane partition of shap# with entries betweei anda, S° is a tabloid of shapa, S! is a(< h)-tabloid
of shape\, andS? is a(0—(a + c))-tabloid of shape\, such that

w((P,T",T?)) = sgn(§?) g7 =S tn(SH (s, (3.5)

The pair(P’, S°) is obtained by applying Algorithm C t®. S! and S? are obtained by doing the
following operation onT™ andT* for each cellp in X. If h, > a + ¢, then interchangd, andT}.

If h, < a+c,andifT) +T; < h, (which impliesT, = 0) then again interchangg) andT;. If

h, < a+c,andifT) + T > a + c, (which impliesT) = h,) then replac&, by T, + T, — (a + ¢,)

andTp2 by a +¢,. By a simple case-by-case analysis the following facts can be checked: The new tabloid
S1is a(< h)-tabloid and the new tabloif? is a (0—(a + c))-tabloid, in all cases. The relation (3.5) is
satisfied. Also, this transformation can be reversed. Fin@lly# 0 if and only if S2 # 0 under this
transformation.
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In the second step, we choose the leastc@il our fixed total order such thaﬂf} or Sf, is nonzero. If
52 is nonzero then replacg? by 0, thus obtainingS?, and addl to S9, thus obtaining5®. If S2 is 0 then
replaceS? by a + c,, thus obtaining5?, and subtract from S9, thus obtainingS®. Finally, in the third
step we apply the inverse of the above transformatidiPto.S°, S!, S?), thus obtainind P, T*, T?). We
defineir, (P, T*,T?)) to be(P,T*,T?). By construction we have ((P,T*,T?)) = —w(P,T*,T?),
as required.

We leave it to the reader to verify thad is a sign-reversing and weight-preserving (with respect to the
signed weight (3.3)) involution oX \ X|,.

The definition ofir proceeds in a similar spirit. LéP, 7", T?) be a triple inX with either P being
different from P, or T containing a nonzero entry.

Again, we distinguish between two cases. For the first case we assume that there jsia Eellith

a+c, <Ty+T; <h,. (3.6)

Without loss of generality, lep be the least such cell in our fixed total order. Note in particular, that
(3.6) impliesa + ¢, < h,, and therefore by definition &' and7” we haveT, = 0 ora + ¢,, and
0 < T? < hy. If T} = 0then we replacd, by a + ¢,, thus obtainindgl™, and we replacd’; by
T? — (a + ¢,), thus obtainingl™. If T} = a + ¢, then we replacd’) by 0, thus obtainingl™, and we
replacel’; by T? +a+c,, thus obtaining’™. Itis easy to check that because of (3.6) in both cdsesill
be a(0—min{h, a + c})-tabloid andl'? will be a (< max{h, a + c})-tabloid. We define ((P,T*,T?))
to be(P,T*,T?). Obviously, there holds ((P,T*,T?)) = —w((P,T*,T?)), as required.

In the second case, i.e. if we have a triffe T*, T?) where (3.6) is false for any ced| then in the first
step we transforniP, T, T2) into a quadruplé P, S°, S*, 52), whereS° is a tabloid of shapa, S! is
a(< (a + c))-tabloid of shape\, andS? is a(0-h)-tabloid of shape\, such that

w((P,T",T?)) = sgn(§?) g"Fo)+Hen(S)+n(SHn(sh) (3.7)

The pair(F, S°) is obtained fromP by using the Hillman—Grassl algorithm as described in Section 2.
S! andS? are obtained by doing the following operationBhand7™? for each celpin X. If a+c¢, > h,
then interchang@, andT. If a+c, < h, and if T, + T, < a + ¢, (which impliesT} = 0) then again
interchangd’) andT;. If a+c, < h, andifT} +T; > h, (which impliesT, = a+c,) then replacd’,
by Tp1 + Tp2 —h, andTp2 by h,. Similarly as above, by a simple case-by-case analysis the following facts
can be checked: The new tabloifisis a(< (a + ¢))-tabloid and the new tabloif? is a(0—h)-tabloid,
in all cases. The relation (3.7) is satisfied. This transformation can be reversedl"Agd0 if and only
if S? # 0 under this transformation.

In the second step, we choose the leastc@il our fixed total order such thé’tg or Sg is nonzero. If
52 is nonzero then replacg? by 0, thus obtainingS?, and addl to S9, thus obtainingS®. If S2 is 0
then replaces? by h,, thus obtaining5?, and subtract from S9, thus obtainingS®. Finally, in the third
step we apply the inverse of the above transformatidiPt9.S°, S!, 5?), thus obtainind P, T*, T?). We
defineig ((P,T*,T?)) to be(P,T*,T?). By construction we have ((P,T*,T?)) = —w(P,T*,T?),
as required.

Also here, we leave it to the reader to verify thatis a sign-reversing and weight-preserving (with
respect to the signed weight (3.5)) involution &n\ X . O
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4 Conclusion

There are many other product formulas for plane partition generating functions, and only for a few of
them combinatorial proofs are known. However, many of the formulas for which no combinatorial proof
is known allow nice combinatorial formulations. Therefore there should also be nice combinatorial proofs
that explain these forms of the formulas. Below we list a few candidates that desire to be proved combi-
natorially.

(1) In [4] it is proven that the number of plane partitions of a given staircase shape with bounded entries
is a product involving the hook-lengths and some generalized contents of the staircase shape. Is it possible
to extend the ideas of Section 2 to this case? Of course, it cannot be that easy since there does not exist a
weightedversion of this result.

(2) Counting plane partitions subject to various symmetries acquired a lot of attention during the past
25 years. There are 10 symmetry classes (see the survey in Stanley’s paper [16]), for each of which there
is a nice product formula. Now all the formulas are proven (except fogtaealogue of Case 4; the
formulas that were only conjectured at the time of [16] are proved in [1, 6, 18]). Case 1, MacMahon’s
generating function [7, Sec. 429, proof in Sec. 494] for plane partitions of rectangular shape with bounded
entries, is easily seen to be contained in Theorem 1. Therefore this paper provides a bijective proof for
Case 1. In all other cases the existing proofs are to the more or lesser extent non-combinatorial. Case 2,
the generating function for symmetric plane partitions of square shape with bounded entries, looks like
a promising candidate to be proved combinatorially. This is because symmetric plane partitions can be
seen as shifted plane partitions, by forgetting about one half of the symmetric plane partition, where the
entries of the shifted plane patrtition off the diagonal contribute twice their size to the norm. There exists
a shifted version of the Hillman—Grassl correspondence, due to Sagan [11, Sec. 3,4], that would provide
the analogue for the first step in our bijection in Section 2. So it remains to find the shifted analogues of
Algorithms C and C*. Though there is also a shifted version of jeu de taquin (cf. [12]), it does not seem
to help here. And the fact that there is a nice product formula for the generating function for symmetric
plane partitions of square shape only (and not for an arbitrary fixed symmetric shape) adds to the evidence
that a new idea is needed in this case.

On the other hand, in all the Cases 1-4 the formulas can be written in a form such that the product is
indexed by the boxes of the region in which the plane partitions under consideration are contained, which
is a highly combinatorial description. So there must be bijective proofs explaining these forms of the
formulas.

Acknowledgement. This work was carried out while the author visited the University of California at
San Diego. He thanks the University of California and in particular Adriano Garsia for making this visit
possible. Besides, he is indebted to Adriano Garsia for drawing his attention to the problem of finding
“nice” combinatorial proofs of hook formulas.

Appendix

The appendix contains a complete example for Algorithms C and Cx fer(4, 3,3, 1) anda = 4, setting
up a mapping between the two sides of Figure 2. See the specific descriptions given in Examples C and
C* of how to read the following tables.
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