Discrete Mathematics and Theoretical Computer Science 3, 1999, 155-166

Analysis of an Approximation Algorithm for
Scheduling Independent Parallel Tasks

Keqin Lif
Department of Mathematics and Computer Science, State University of New York, New Paltz, NY 12561-2499, USA

received April 14, 1998, revised May 28, 1999, accepted May 30, 1999.

In this paper, we consider the problem of scheduling independent parallel tasks in parallel systems with identical
processors. The problem is NP-hard, since it includes the bin packing problem as a special case when all tasks have
unit execution time. We propose and analyze a simple approximation algorithm Egjledherem is a positive

integer. AlgorithmH,,, has a moderate asymptotic worst-case performance ratio in the[ﬂ%\gb}—g] forallm > 6;

but the algorithm has a small asymptotic worst-case performance ratio in thgtanpgr+1)..1+1/r], when task

sizes do not exceed/r of the total available processors, where- 1 is an integer. Furthermore, we show that if the

task sizes are independent, identically distributed (i.i.d.) uniform random variables, and task execution times are i.i.d.
random variables with finite mean and variance, then the average-case performance ratio of alfjqrishmo larger

than 1.2898680..., and for an exponential distribution of task sizes, it does not exceed 1.2898305.... As demonstrated
by our analytical as well as numerical results, the average-case performance ratio improves significantly when tasks
request for smaller numbers of processors.

Keywords: approximation algorithm, average-case performance ratio, parallel task scheduling, probabilistic analy-
sis, worst-case performance ratio

1 Introduction

In this paper, we consider the problem of scheduling independent parallel tasks in parallel systems with
identical processors. Assume that we are given a list ¢disksL = (Ty,Ts,...,T,). Each taskT;
is specified by its execution time, and its sizep;, i.e., T; requiresp; processors to execute. There
are M identical processors, and apy processors can be allocated®p OnceT; starts to execute, it
runs without interruption until it completes. Tasksinare mutually independent, that is, there is no
precedence constraint nor data communication among theks. The problem addressed here is to find
a nonpreemptive schedule éfsuch that its makespan (i.e., the total execution time ofnthasks) is
minimized.

The problem is NP-hard, since it includes the bin packing problem as a special case when all tasks
have unit execution time. Therefore, one practical way to solve this problem is to design and analyze
approximation algorithms that produce near optimal solutions AI(&f) be the makespan of the schedule

TThe author can be reached at email: li@mcs.newpaltz.edu, phone: (914) 257-3534, fax: (914) 257-3571.

1365-80500) 1999 Maison de I'lnformatique et des Mathématiques Discretes (MIMD), Paris, France

156 Keqgin Li

generated by an algorithm for L, andOPT(L) be the makespan of an optimal scheduleLof The

quantity
: A(L))]
RY = lim su —
4 [OPT(B:Z<OPT(L)

Z—0

is called theasymptotic worst-case performance ratio of algorithm A. If there exist two constantsandj
such that for alll, A(L) < a- OPT(L) + f7*, wherer* = max; <;<,(7;) is the longest execution time
of then tasks, therRY < «, ande is called arasymptotic worst-case performance bound of algorithm
A. Moreover, if for any smakt > 0 and all largeZ > 0, there exists a lisk,, such thaOPT(L) > Z, and
A(L) > (a — €)OPT(L), then the bouna is called tight, i.e. Ry = a. When task sizes and execution
times are random variables, botf{L) andOPT(L) become random variables, and

Boo _ 1: E(A(L))
R¥ = JL%[E(OPT(L))]

is called theasymptotic average-case performance ratio of algorithm A, where E(-) stands for the ex-
pectation of a random variable. Of courg&Y depends on the probability distributions of task sizes and
execution times. If there exists a constargtuch that for allL, E(A(L)) < v - E(OPT(L)) asn — oo,
thenRY < v, andy is called anasymptotic average-case performance bound of algorithm A.

We notice that our scheduling problem defined above looks similar to but is quite different from the two
dimensional rectangle packing problem [1, 2, 7, 9], where eacHltaiskreated as a rectangle with width
p; and heightr;. The rectangle packing model implies that processors should be allocated in contiguous
groups. That is, th@/ processors have indices 1, 2, 3,1, and taskl; must be allocate; processors
with indicesy, j + 1, ...,7 + p; — 1 for somej. Such a scheduling problem arises in parallel systems like
linear arrays. The rectangle packing problem has been extensively studied, where a complicated algorithm
with asymptotic worst-case performance ratio as low as 1.25 has been found [1]. However, contiguous
processor allocation is not required in our model, where gnyrocessors can be allocated®p Our
problem could be regarded as a resource constraint scheduling problem [3, 6], where the resource is a
set of processors. It has applications in parallel computing systems such as symmetric shared memory
multiprocessors and distributed computing systems such as bus-connected networks of workstations. In
these systems, a processor allocation mechanism is independent of the topology of an interconnection
network. Another related problem is scheduling malleable tasks which has also been investigated in the
literature [8, 10]. In that problem, each task requests for several possible numbers of processors, i.e., a
task has adjustable size, and for each size, an execution time is also specified. The problem has several
variations depending on different ways in which the execution time of a task changes with the number of
processors allocated to it, and the performance measures to be optimized (e.g., makespan, average flow
time).

The problem we consider here is to schedule nonmalleable tasks with noncontiguous processor alloca-
tion. Even though the complicated algorithm in [1] for rectangle packing can also be applied to solve our
problem, we propose and analyze a simple approximation algorithm &gjledherem is a positive inte-
ger. AlgorithmH,,, has a moderate asymptotic worst-case performance lafé6(.. < Ry < 1.722...
for all m > 6); but the algorithm has a small asymptotic worst-case performancelrativ/(r + 1) <
R < 1+ 1/r, when task sizes do not excedd/r, wherer > 1 is an integer. We notice that the
capability to deal with small tasks is important in real applications since many task sizes are relatively
small as compared with the system size so that a large scale parallel system can be shared by many users

Scheduling Independent Parallel Tasks 157

simultaneously. However, it is not clear whether the algorithm in [1] has such capability. Furthermore,
the simplicity of our algorithm allows us to conduct average-case performance analysis. In particular,
we show that if the numbers of processors requested by the tasks are independent, identically distributed
(i.i.d.) random variables uniformly distributed in the rafije}M], and task execution times are i.i.d. ran-
dom variables with finite mean and variance, tiefi < 1.2898680..., i.e., E(H,,(L))/E(OPT(L))
is asymptotically bounded from above by 1.2898680..nas oc. For an exponential distribution of
task sizes, we havafm < 1.2898305.... As demonstrated by our analytical as well as numerical re-
sults, the average-case performance ratio improves significantly when tasks request for smaller numbers
of processors. We notice that there is lack of such results on probabilistic algorithm analysis, especially
in multi-dimensional cases [4]. The average-case performance of the algorithm in [1] is unknown.

The rest of the paper is organized as follows. We present algofthnmn Section 2. The worst-case
performance of the algorithm is analyzed in Section 3, and its average-case performance is studied in
Section 4. Finally we give a summary in Section 5.

2 The Approximation Algorithm H,,

Our algorithm H,, for scheduling independent parallel tasks dividesto m sublistsLy, Lo, ..., Ly,
according to task sizes (i.e., numbers of processors requested by tasks)ywhelrés a positive integer.
Forl <k <m-—1,definely, = {T; € L | M/(k+1) < p; < M/k}, i.e.,L;, contains all tasks i
that have sizes in the intervg| = (M/(k + 1), M/k]. DefineL,, = {T; € L | 0 < p; < M/m}, i.e.,
L,, contains all tasks whose sizes are in the rahge= (0, M /m].

Algorithm H,, produces schedules of thHg,'s sequentially and separately. To process tasksn
wherel < k < m — 1, the M processors are partitioned inkogroups,G1, Gs, -.., G, each contains
M /k processors. Each grou@; of processors is treated as a unit, and is assigned to a taBk. in
Such an allocation can be implemented using, for example, the list scheduling algorithm [4]. Suppose
Ly = (Tf,T#,..., Tk), whereny, is the number of tasks ifi;. Initially, group G; is assigned t@’F,
wherel < j < k, andT§, Ty, ..., Tf are removed frond,;,. Upon the completion of a taskF, the first
unscheduled task ifi, i.e. Tk+1’ is removed fromL;, and scheduled to execute 6fy. This process
repeats until all tasks i, are finished. Then algorithm,fibegins the scheduling of next sublist. 1 .

For L,,, there is no need to divide th& processors. The list scheduling algorithm is again em-
ployed here. Let.,, = (T{",T3",...,T;"). Initially, as many tasks ir,, are scheduled as possible,
i.e., tasksTy™, T9", ..., T.* start their execution, whergeis defined in such a way that the total size of
", Ty, ..., T3 is no larger thanV/, but the total size of ™, 73", ..., T | exceedsM. When a task
finishes, the next task ih,,, begins its execution, provided that there are enough idle processors. Notice
that it is the scheduling of tasks n,, that takes advantage of noncontiguous processor allocation.

3 Combinatorial Analysis

In this section, we analyze the worst-case performance of algorithmldt H,,, (L) be the makespan of
the schedule produced by algorithmy,Hor L, andOPT(L) be the makespan of an optimal schedule of
L. First, we show the following result.

Theorem 1. For any list L of n tasksand m > 3, we have

H, (L) < I%OPT(L) +(m - 1),

158 Keqgin Li

where 7* is the longest execution time of the n tasks. Furthermore, for mm > 6 and any large Z > 0,
there exists L, such that OPT(L) > Z, and H,,,(L)/OPT(L) = 1%. Therefore, for all m > 6, we have
1.666... < R < 1.722....

Proof. Assume that all tasks ifi are executed in the time intervi@, H,,, (L)], and that tasks i, are
scheduled infity,, tx+1], wherel < k < m, i.e., the first task i, starts at time,, and the last completion
time of the tasks il is tx41. Let sy be the starting time of the last ta.’flgk in L. Definez; =ty — ¢4,
and for all2 < k < m, definezy, = sy — tr, andry = tr+1 — sx be the remaining execution time 6,
onceTT’f,c starts. Clearlyy, < 7*, and

Hno(L) = zn+2za+23+-+2zmt+ratrs+---+ry
< zt+zm+tzs++ 2+ (m=1D1". 1)

We give several lower bounds f@PT(L). First, tasks inL; have large sizes such that no two of them
can execute in parallel. Therefore, we have

OPT(L) > .)

Second, there can be at most two tasks fibsrthat can execute at the same time, and there can be at
most one task froni, that can execute simultaneously with a task.in Thus,

22 — 21

2
OPT(L) > 2 + . ©)

2 2

Third, define the area of a task to be p;7;, and the total area ok, to be Ay, = > ;. e, PiTi for
1<k<m,andA = A4, + A; + --- + A,,,. For convenience, we assume that processor requirements
are normalized such théat< p; < 1forall 1 <4 < n. Clearly, OPT(L) > A. We give a lower bound

for A as follows. Forl < k < m — 1, we notice that all thé groupsG1, Gy, ..., Gy, are busy untill},

starts its execution. That is, during time interjal s.], at least:/(k + 1) of the processors are busy, i.e.,
we haveAy > (k/(k+1))z. For L,,, we note that during time intervil,, s,,,], the percentage of busy
processors is at leaét — 1) /m, i.e., A, > ((m — 1)/m)z,,; otherwise, some tasks should start earlier.

Hence,
m-—1 m-—1
Zm-1+t

1 2 3
OPT(L) > 241 + -zt 23+ + Zm- 4)

3 4
Now let us consider the ratio

21+22+23+ -+ 2Zm_1+2m

= . 5
9 max (21, 521 + 22, 521+ 32+ + Bl + B=lz)) ®)
Letz = 23 + - - - + z,,. Apparently,

21+2z0+x

Q< 1 1 2 3..\° (6)
max (zl, 521 + 22, 521 + 522 + Zm)
We give the proof of the following result in the appendix.
13

aAtate <1—, wherezy,zs,2 > 0. ("

i i) Ty S)
max (21, 321 + 22, 5721 + 322 + 3x) 18

Scheduling Independent Parallel Tasks 159

Combining Equations (1)—(7), we gBt,, (L) < 1$20PT(L) + (m — 1)7*.

To show the lower bound faRgY , let us consider a lisE of tasks which contains tasks of size} +e,
n tasks of size; + ¢, andn tasks of size: — 2¢, wheren is a multiple of 6, and > 0 is a very small
quantity. All tasks have unit execution time. CleaBPT(L) = n. Algorithm H,, dividesL into L1,
Ly, andLg, andH, (L) = n +n/2 4+ n/6 = 13n. Thus, we can choosea sufficiently large number
while keepingH,,(L)/OPT(L) = 12. This completes the proof of the theorem. [|

For tasks with small sizes, algorithHy,, exhibits much better performance due to increasing processor
utilization, as claimed by the following theorem.

Theorem 2. For any list L of n tasks, such that p; < M /r for all 4, wherer > 1 isan integer, we have
H,, (L) < (1 + %) OPT(L) + (m —r + 1)7%,

where 7* is the longest execution time of the n tasks. Furthermore, for m > r + 1 and any large Z > 0,
there exists L, such that OPT(L) > Z, and H,,,(L)/OPT(L) = 1 + 1/(r + 1). Therefore, we have
1+1/(r+1) < RF <1+1/r.

Proof. The proof is similar to that of Theorem 1. Since> 2, and sublistdy, L, ..., L,_1 are empty,
Equation (1) becomes

Ho(L) <z 4+ 2zpp1+ -+ 2m+ (m—r+1)7".
By using the area lower bound fOPT(L), we have

r + r+1 + n m-—1 n m—1
r+1 Er r+2 Zrt m Fm—1 m Zm

(zr+ zrp1 4+ 2m)-

OPT(L)

Y

>

- r+1
The above two inequalities give the asymptotic worst-case performance bhoubridr in the theorem.
To show the lower boundi + 1/(r + 1) for RE_, let us consider a list which containsyr tasks of size
1/(r + 1) + ¢, andn tasks of sizd /(r 4+ 1) — re, wheren is a multiple ofr + 1, ande is a sufficiently
small value. All tasks have unit execution time. Clea@PT(L) = n. Algorithm H,, dividesL into
L, andL,4, andH,,(L) = n + n/(r + 1). Thus, we can choose sufficiently large while keeping
H,,(L)/OPT(L) =1+ 1/(r +1). n

Whenr > 5, algorithmH,,, has better asymptotic worst-case performance ratio than the algorithm in

[1].
4 Probabilistic Analysis

Now let us consider the average-case performance of algorithnHdr convenience, we assume the task
sizes are normalized such tiiek p; < 1, and that the;’s are independent, identically distributed (i.i.d.)
random variables with a common probability density functfdm) in the range0, 1]. Our assumption on
the task execution times is quite general, i.e. sfeeare i.i.d. random variables with megrand variance

160 Keqgin Li

o2, wherep ando are any finite numbers independentofThe probability distributions of task sizes and
execution times are independent of each other.

Theorem 3. We have the foll owing asymptotic average-case performance bound for algorithm H,,,:

Z _f d:c+—/ zf(z

it = o [BnD)]

[o)

(Note that the bound only depends on f(z).)

Proof. It is clear that the mean task size is

p= [2sya

Since a task size falls intf), with probabllltyfl x)dz, wherel, = (1/(k+1),1/k]foralll < k <
— 1, andl,,, = (0,1/m], the expected number of taskshn is

E(ng) = [s f(w)d:c]n

forall 1 < k < m. Also, the expected size of tasksiin is

/Ik zf(x)dx

f(x)dx
Iy,

Pr =
Since the area of a tagk has expectatiopu, and tasks iff;; have to be executed sequentially, we have
E(OPT(L)) > max (npy, E(n1)p) = Dnp, (8)
where
1 1
D = max (p, E(n1)/n) = max (/ zf(z)dz, f(:c)dm).
0 3

Let Hy, be the makespan of the schedulefqr Then,E(H,,(L)) = E(Hy) + E(Hs)+---+ E(Hy,).
Clearly,

1
f(w)dm] n. 9)

For2 < k <m —1,we haveE(Hy) = E(z;) + E(ri), and

B() = Bl = |

1
2

E(z) < E(:k) W

Scheduling Independent Parallel Tasks 161

Furthermorer, is no more than the maximum éfrandom execution times. It is well known from order
statistics [5] that the mean of the maximumgafi.d. random variablex, X», ..., X, with meany and
variances? is

qg—1
< .
E(maX(XlaXZa JXP))_/J/+ \/2(]——10
Therefore,
E(nk) k-1
E(H < ——
(Hy) < — —nt+pt 51"
1 k—1
= |= 1 —— 0. 1
[k(ka(x)dx)n+],u+\/2k—_10 (10)

Finally, we considef,,,. Since
E(Am) = E(nm)pmp = [,/1 Z'f(.’L')d.QI:| n,

and the processor utilization is at ledst 1/m in the time interva(t,,, sm], we get

B, < 247 4) =

m

m

m—1

[/Im wf(a:)dw] nu+ E(ry,).

For E(rn,), the main difficulty is that when task?* starts execution, the number of active tasks still in
execution is unknown, which could be as largengs the total number of tasks ih,,. SinceE(n,,)
could be®(n), we use the following quite loose upper bound Ery,), that is,r,, is no more than the
maximum ofn random execution times,

E(ry,) < o< pu+ no.

n—1
+7
=H Voan -1 2

E(H,,) < (% [/Im mf(m)dm] n+ 1) o+ \/g 0. (11)

Combining Equations (9)—(11), we obtain

Therefore, we get

B D) < (/ o) + mizj - /_ f(a)da

1 m—1
m m m—1 k-1 n
_ d — Jo.
+m—1 | zf(x)dx + -)nu+ (;; =T +\/g>a

Notice that

162 Keqgin Li

for all k > 1. Consequently,

mzl];k \[/\/>dw<_m'

The above calculations give rises to
m—1 1 1
1 [*® m m m—1 V2 n
< — _ V4 15 n :
E(H,(L)) < (;le k/kil f(@)de + m—1/0 of(w)dz + >n,u+< i +\£>a
(12)

Using Equations (8) and (12), we obtain
BE(OPT(L)) = 5(2 E/T f(@)dz + m/o of(z)dz + T>
1 \/§ mls 1 o
+5(? n Vo);
NESEWE m [* s
5(,; z/_ s [wf(a:)dx) +o(.+ %).

Itis clear that a® — oo, we get the asymptotic average-case performance bound in the theorerm

As an example, let us consider the uniform distributions, that isptiseare i.i.d. random variables
uniformly distributed in the rang€0,1/r], wherer > 1 is a positive integer. That isf(z) = r for
0 < z < 1/r. (Notice that wher/ is sufficiently large, a discrete uniform distribution fh 2, ..., M /r}
can be treated as a continuous uniform distributioriCon /7].)

Theorem 4. If the p;'sbei.i.d. random variables uniformly distributed in the range (0, 1/r], we have
Ry < B, thatis,
E(H,(L)) < B,E(OPT(L)),

2 1 1
Bo=22|" 2 (142 4.1 -
" [" (*2” *(r—w)]’

asn — oo, where

asm — o0.

Proof. We examine the numerator and denominator of the bound in Theorem 3. The denominator is

simply .)
D = max (/0 zf(z)dw, /% f(x)dm) = 21_r’

1 1
N:T(lg Rhk+1) 2m(m—1)>'

and the numerator is

Scheduling Independent Parallel Tasks 163

Since
L U S
K2(k+1) kK k k+1’
we have
Tl (yily_L, L
— K (k+1) B k2 r o m
Note that
mfli_il T*ll i1<7r2 T711 1
2 = 12 72 2 = @ 2
k=r k k=1 k k=1 k k:mk 6 k=1 k m

Thus, we have

and

| 1 1 1
N<rl—-—-=—(14=+-- .
_T<6 r (tEt +(T—1)2>+2m(m—1)>
By choosingn sufficiently large, the average-case performance bddnB can be made arbitrarily close
to B,. [|
Whenr = 1, the asymptotic average-case performance bound given in TheoreR) 4-isr? /3 —2 =

1.2898680.... To show the quality of the average-case performance b&jnd Theorem 4, we give the
following numerical data.

B; = 1.2898680...
B, = 1.1594720...
B, = 1.1088121...
B, = 1.0823327...
B; = 1.0661449...
Bs = 1.0552487...
B, = 1.0474219...
Bs = 1.0415306...
By = 1.0369372...
Biy = 1.0332559...

It is clear thatB, < 1+ 1/r for all» > 1, i.e., B, is less than the asymptotic worst-case performance
bound in Theorem 2.

Though closed form solutions are not available, the average-case performance bounds of alyqrithm
could be calculated using Theorem 3 numerically for arbitrary probability distribution of task sizes. For
instance, let us consider a truncated exponential distribution, i.e.,

/\e—)\z
Tl

f(z) 0<z<1.

164 Keqgin Li

Theorem 5. If the p;’sbei.i.d. random variables exponentially distributed in the range (0, 1], we have
R < By, thatis,
E(H;, (L)) < BAE(OPT(L)),

asn — oo, where
e—M(k+1) _ g=A/k

=1
kZ:lE 1—e 2

By =

—)
e A

1
A 1—e?
asm — oo.

Proof. It can be easily verified by straightforward calculation that the numerator and denominator in
Theorem 3 are

N TS 1 e Mk+1) _ o=A/k N m 1 1—eMm g=A/m
_k:Ik 1—e 2 m—1 1—e X A m ’
and
D = ma 1 e e~ M2 _ =2 1 e
= Xl — — = - - —
A l1—e2 1—eA A 1—e N

respectively. By lettingn — oo, the average-case performance bodfd) can be made arbitrarily close
to By. |

To show the average-case performance baBRdn Theorem 5, we letn = 1024, and choosa in
such a way that the mean task size
1 e
P X" 1
takes the values/(2r) for r = 1,2,...,10, so that a comparison can be made between performance
bounds oftl,,, under the uniform and the exponential distributions.

A = 0.0001813..., By, = 1.2898305...
A = 3.5935119..., By = 1.2731064...
A = 5.9030000..., By = 1.2145755...
A = 7.9781077..., By, = 1.1640016...
A = 9.9954411..., By = 1.1273400...
A= 11.9991145..., By = 1.1021181...
A = 13.9998370..., By = 1.0846745...
A = 15.9999711..., By = 1.0722076...
A = 17.9999950..., By = 1.0629307...
A = 19.9999991..., By = 1.0557653...

As shown in the above listB) is slightly smaller thanr?/3 — 2, whenj = 0.5, i.e,r = 1, due to
distribution imbalance if0, 1]. However,B, is larger thamB, for all » > 1, becausé(n;) is never null.

Scheduling Independent Parallel Tasks 165
5 Conclusions

We have studied the problem of scheduling independent nonmalleable parallel tasks in parallel systems
with identical processors. We proposed a simple approximation algorithm dajlecand performed
combinatorial analysis for its worst-case performance and probabilistic analysis for its average-case per-
formance. In particular, we proved the following results. (1) The asymptotic worst-case performance
ratio Rif isin the rangél%..l %]. (2) If the numbers of processors requested by the tasks are uniformly
distributed i.i.d. random variables and task execution times are i.i.d. random variables with finite mean
and variance, then the average-case performance ra‘_ﬁﬁmisg 1.2898680.... In other words, less than
22.5% of the allocated computing power is wasted. (3) Both the worst- and average-case performance
ratios improve significantly when tasks request for smaller numbers of processors. (4) Results similar to
(2)—(3) also hold for the truncated exponential distribution of task sizes.

Acknowledgements

The author wishes to express his gratitude to the editor and two anonymous referees for their comments
on improving the paper. This research was supported in part by National Aeronautics and Space Adminis-
tration and the Research Foundation of State University of New York through the NASA/University Joint
Venture in Space Science Program under Grant NAG8-1313.

References

[1] B.S. Baker, D.J. Brown, and H.P. Katseff, “A 5/4 algorithm for two-dimensional packiiogy’nal
of Algorithms 2, 348-368, 1981.

[2] B.S.Baker and J.S. Schwarz, “Shelf algorithms for two-dimensional packing probl&ifas"Jour-
nal on Computing 12, 508-525, 1983.

[3] J. Blazewicz, J.K. Lenstra, and A.H.G. Rinnooy Kan, “Scheduling subject to resource constraints:
classification and complexityDiscrete Applied Mathematics 5, 11-24, 1983.

[4] E.G. Coffman, Jr., D.S. Johnson, P.W. Shor, and G.S. Lueker, “Probabilistic analysis of packing and
related partitioning problems,” iRrobability and Algorithms, 87-107, National Research Council,
1992,

[5] H.A. David, Order Satistics, John Wiley & Sons, 1970.

[6] M.R. Garey and R.L. Graham, “Bound for multiprocessor scheduling with resource constraints,”
S AM Journal on Computing 4, 187-200, 1975.

[7] 1. Golan, “Performance bounds for orthogonal oriented two-dimensional packing algoritBis]”
Journal on Computing 10, 571-582, 1981.

[8] R. Krishnamurti and E. Ma, “An approximation algorithm for scheduling tasks on varying partition
sizes in partitionable multiprocessor systems,” Technical Report RC 15900, IBM Research Division,
1990.

166 Keqgin Li

[9] D.K.D.B. Sleator, “A 2.5 times optimal algorithm for bin packing in two dimensiohsfdrmation
Processing Letters 10, 37-40, 1980.

[10] J. Turek, J.L. Wolf, K.R. Pattipati, and P.S. Yu, “Scheduling parallelizable tasks: putting it all on
the shelf,” Proc. International Conference on Measurement and Modeling of Computer Systems,
225-236, 1992.

Appendix. Proof of Equation (7)
The following fact is used in the proof. If
axr +b
9(z) = cx+d’
wherea, b, c,d, z > 0, theng(z) is an increasing (decreasing) functionaoff ad — be > 0 (< 0). We
consider three cases.
Casel. z; isthemaximum. Sincez; > £2z1 + 22, We havez, < £z;. Sincez; > 121 + 222 + 32, we
haver < (%21 — 22»). Hence,

z x
z1 z1
z2 4 1 2 z92
= 1 - == =.=
+21+3(2 3 21)
2 1 z2
= 14+242.2
+3+9 z1
< 142,11
- 3 9 2
13
18

Case 2. 121 + 2 isthe maximum. Sincez; < 1z + 25, we havez; < 2z. Sinceiz + 2z >
%zl + %2’2 + %w, we getr < %zz. Now,
21+ 20+ < Z1+%22

%21+z2 - %zl + 22 ’

Q=

which is an increasing function af. HenceQ) takes its maximum valule% whenz; = 22.
Case3. 321 + 22p + 2z isthemaximum. Sincejz; + 22 < 321 + 222 + 2z, we getr > 22,. Note

that
T+ 21+ 29

Q=3 1 2
IT+ 521+ 322

is a decreasing function af. Thus,Q gets its maximum value when= %zQ, i.e.,

1
21+ 3322
%2’1 + 22

Q<

?

which is an increasing function af. Since,z; < 1z + 225 + 2z, andz = 25, we havez; < 22,.
Hence(reaches its maximum valde}% whenz; = 225.

