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The latticeS,, of all permutations on a-element set has been shown tddeeinded5], which is a strong constructive
property characterized by the fact th#&t admits what we call amterval doubling schemeln this paper we char-
acterize all interval doubling schemes of the lattig a result that gives a nice precision on the bounded nature of
the lattice of permutations. This theorem is a direct corollary of two strong properties (Proposition 3 and Theorem 3)
that are also given with their proofs.
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1 Introduction

Permutations on a-element set play a fundamental role in numerous fields, especially in computer sci-
ence and pure or applied mathematics. The main reason for the importance of permutations in applied
mathematics is that they appear like a fundamental ordinal model since tBg skall permutations on
an-element set is clearly in a bijective correspondence with the set of all linear orders on a set with the
same cardinality. Guilbaud and Rosenstiehl have proved in 1963 that the set of all permutations on a finite
set is a lattice [15]: indeed the transpositions which reverse neighbours in a permutation (and which give
rise, as a generating system, to the symmetric g&pmlefine the cover relation of an order relatigg,,,

the so-calledveak Bruhat ordeon S,,, which is a lattice (Bjorner [4]). The lattices(,, <s, ) of permuta-

tions, also calledPermutoedronhas been studied by several authors (see e.g. Barbut and Monjardet [1],
Chameni-Nembua [6], Le Conte de Poly-Barbut [16, 17], Edelman and Greene [11], Markowsky [19]).
Recently, Duquenne and Cherfouh [10] (and, independently and in a more general context, Le Conte de
Poly-Barbut [18]) have proved that this latticesismidistributive This property has been reinforced in [5]
where it is proved that the lattice of permutationd@indedsee Day [8] for the origins of this concept

and for a number of characterizations), which means that the Permutoedron can be obtained from the two-
element latticeQ = ({0,1}, <) by a (finite) sequence aoublings of convex sefthe definition of this
constructive operation can be found for instance in [2] or in [14]). Another characterization of bounded
lattices is expressed in terms Aftable, a (particularly rich lattice encoding) concept defined from the
arrow relations A lattice is bounded if and only if itsl-table admits what we call anterval doubling
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schemég14]. In [2], the authors have shown how all interval doubling schemes of a bounded Iatiree
in a 1-1 correspondence with all different ways to constiuftom the two-element lattice by the dou-
bling operation mentioned above. These interval doubling schemes are also in a 1-1 correspondence with
all linear extensions of the poset of join-irreducible congruences and with all linear extensions of the poset
Jr, with respect to the — rank defined in [12] (see this reference and also [9] for more definitions and
details on this subject). The aim of this paper is to provide a simple characterization of all interval dou-
bling schemes of the lattice of permutations (Corollary 2). This characterization is obtained as a corollary
of two results: Proposition 3 which characterizes the order relation between all join-irreducible permuta-
tions (and dually between all meet-irreducible permutations) in terms of arrow relations, and Theorem 3
that generalizes our characterization result to a larger class of lattices.

In the following section, we give all necessary notions on lattices and on the arrow relations, and provide
some useful preliminaries about permutations. Section 3 presents the results with their proofs.

2 Preliminaries

A partially ordered set (or poset], <) is alattice if any pair{z,y} of elements ofL has a leastipper
bound(also calledoin) denoted by Vv y and a greatesvwer bound(also callednee} denoted byr A y.
The order relatior on L is the transitive closure of theover relation< of L, which is defined by < y
if z < y and there exists ne € L such thatz < z < y. We then say that is coveredby y (or y
coversz). An elementj (resp.m) of L is ajoin- (resp.meet) irreducibleof L if it cannot be obtained as
the join (resp. meet) of elements bfdistinct fromj (resp. fromm). Equivalently, an element (resp.
m) of L is a non-zero (resp. non-unit) join- (resp. meet-) irreducible if it covers (resp. is covered by) a
unique element i, which is then denoted by~ (resp.m™). The set of non-zero join- (resp. non-unit
meet-) irreducibles of a lattick is denoted by/;, — or J if no confusion arises — (respd, or M). We
will also identify any lattice( L, <) with its underlying sef. and all lattices will be represented by their
diagram i.e. by the transitive reduction of their cover relation, directed from bottom to top.

For other definitions about lattices not recalled here, see for instance the books by Barbut and Mon-
jardet [1], Birkhoff [3] or Davey and Priestley [7].

Let N = {1,2,...,n} be a set withn elements. Apermutationon N is a bijectiona on N that we
denotea = ay...q;...a,. FOri = 1,...,n — 1, a; anda;; are saidadjacentin the permutatiorx. We
denote bysS,, the set of all permutations aoN. It is clear thatS,, is in a bijective correspondence with
the set of alllinear orderson a set with cardinality». According to this bijection, we will freely mix
these two notions, considering a permutatioas the linear ordet = {(a;, ;) : 1 <i < j <n}and
applying all ordinal notations and concepts to permutations. In the following, an ordere@pait;)
will rather be writteno; o5

For a permutation, we noteA(«) the set of alhgreementsf ¢, i.e. the set of all ordered paifs;, «;)
of a satisfyinga; < a;. The setD(a) of all disagreementsf « is defined as the set of all ordered pairs
(o, 0) of a satisfyinga; < a;. An order relation between the permutationsSgfis defined by < g
if A(8) C A(a) (or equivalently ifD(a) € D(B)). For this order relation (which equals the weak
Bruhat order on the set of permutations), the Sgtof permutations is a lattice with the natural order
0s, = 1...k(k+1)...n as least element and the dual ortlgy = n...k(k—1)...1 as greatest element. The
cover relation on S, is defined bya < g if there exists a unique ordered pér;, a;+1) of elements
of N that are adjacent in andg and that satisfy3 = [a \ (a;, @i+1)] U (it1,@;). If @ permutation
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a admits an agreement made of two adjacent elemengda; 1 (i.e. o = a1 ...a;0441 . . . o, With
a; < a;p1), we say thate has aincreasing(in ¢) and dually, ifa admits a disagreement made of two
adjacent elements; anda; 1 (i.e. @ = a1 ... @;q41 - .. an With a1 < @;), we say thatx has an
decreasindin i).

The irreducible permutations are characterized by means of the increasings and decreasings as follows:
a permutation is join-irreducible (resp. meet-irreducible) if and only if it admits a unique decreasing (resp.
increasing).

Remark 1 Any join-irreducible permutatiory can be denoted by = A|A = Bv|uB (u,v € N), where

A = BvandA = uB are the left and right factors of compatible with the ordeds, , and wherau is the
unique decreasing of. Dually, any meet-irreducible permutatignwill be written, = D|D = Cl|pC,
with D = Cl and D = pC the left and right factors of. compatible with the ordets, and wherelp

is the unigue increasing gf. It is clear that a join-irreducible (resp. meet-irreducible) permutation is
completely determined by or by A (resp. byD or by D).

Remark 2 The unique lower cover of a join-irreducible permutatipr= A|A = Buv|uB is the permu-
tationy~ = BuvB, obtained by changing the unique decreasingof -y into the increasing:v. Dually,
the unique upper cover of the meet-irreducible permutajios= D|D = Cl|pC is the permutation
ut = CplC, obtained by changing the unique increasipgf 4 into the decreasingl.

The following fact is well known:
Remark 3 |J| = |M| (=2" — (n + 1)).

The original definition of bounded lattices can be found for instance in [12]. There exists a simple
characterization of these lattices due to Day [8] and expressed in [14] in terarsoof relationsor
equivalently, in terms ofi-table, a very useful tool for the description of numerous properties on lattices.
We start with the definition of these notions, introduced by Wille and the "Darmstadt School” (see [13]
and [20]).

Definition 1 Letj be ajoin-irreducible andn a meet-irreducible of a latticé. The three arrow relations
1, } and] are defined as follows:

(@ jtmifmismaximalin{t e L:j £ t}.
() j I mif jisminimalin{t € L:t £ m}.
(€) jImifj tmandj | m.

Equivalently,; + m if and only if 5 £ m andj < m™ and, dually,j | m if and only if 5 £ m and
Jjm <m.
Moreover it is useful to define the following "strict” arrow relations:

Definition 2 Let L, j andm be as above.
(d) j 1+ mifjtmandj Ym.
e)jd. mifjlmandj ¥m.

It is obvious that relations:, {, 1. andJ.. do not intersect. This allows us to define a fundamental concept
of lattice theory, thed-table (A for Arrow) of a lattice (Wille and the "Darmstadt School”, 1983).
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Definition 3 Let(L, <) = L be alattice and/ and M its sets of join-irreducibles and of meet-irreducibles
respectively. Thel-table of L — denoted byl — is equal to the tuplel;, = (J, M, <,3,1.,1.).

According to its definition, thed-table of a latticeL. can always be described by a two-dimensional
table, whose rows are indexed by the join-irreducibles odind whose columns are indexed by its meet-
irreducibles. Each cellj,m) in the A-table contains a crosg if 5 < m, and an arrowf, |, or}
according to the adequate case. The Geln) contains the symbadl if (j, m) does not satisfy any of the
previous conditions.

Obviously there exists many ways to presentthtable of a latticel,, according to the orders chosen
onJ and M for the indexing of rows and columns of thtable. This naturally leads to the simple and
fundamental notion dfableay that we define below:

Definition 4 Atableaul of lattice L is a tripleT = (Ar, L, Lar) whereAy, is the A-table of L and L ;
and L two linear orders respectively defined drand M and defining (from the top to the bottom and
from the left to the right) the two orders of the "rows ” and of the "columns” of tabl&au

So theA-table of L can be described b}J|! x |M|!) equivalent such tableaux and a tableau is com-
pletely determined by the two ordefs and£,,. Figure 1 shows (the diagram of) the lattice of permuta-
tionsS, and itsA-table, given by a tableau.

Remark 4 Each row and each column of this tableau contains at leastjone

In the introduction, we have recalled that the Permutoedron is semidistributive. Let us recall that a lattice
L is saidsemidistributivef for all elementse,y,z € L,z Ay = ¢ A zimplieszt Ay =2 A (y V z) and
xVy =z VzimplieszVy = 2V (y Az)). The following characterization of these lattices is well known:

Proposition 1 A finite latticeL is semidistributive if and only if the two following conditions are satisfied:
1. For anyj € J, there exists a uniquex € M such thatj { m.
2. Foranym € M, there exists a uniqug € J such thatj { m.

This result means thdt is semidistributive if and only if thel-table of L contains a uniqug on each line

and on each column. According to Remark 4, this fact implies fhabd M have the same cardinality

and that these two sets are in a bijective correspondence induced by the rglafioeorem 2 gives the
expression of this bijection in the case of the semidistributive lattice of permutations.

The characterization of bounded lattices given in Theorem 1 clearly shows that a bounded lattice is
semidistributive. We begin with one definition.

Definition 5 Let L be a semidistributive lattice arll = (A, £, L) a tableau of itsd-table. We say
thatT is aninterval doubling schemef L if it satisfies the two following conditions:

1. The|.J| double arrows] are on the principal diagonal df'.
2. All arrows? are below this diagonal and all arrowfs are above.

For an illustration of that definition see Figure 2.

Theorem 1 (Geyer, 1994 lattice L is bounded if and only if itsi-table admits at least one interval
doubling scheme.
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J\M | 3421 4231 3241 2431 4312 4213 3214 2413 4132 3142 1432
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1324
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X
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7o 0o X X X X0 & X
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>0 ¥ 0 0 0¥ X X X X

Fig. 1: The latticeS, of permutations and (a tableau of) #stable.
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T]  not
1]

noJ

7]

Fig. 2: An interval doubling scheme
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Clearly, the tableau in Figure 1 is an interval doubling scheme of the laftcelt is completely
determined by the chosen linear order.bfwhich is thelexicographicalorder onJ) since, for this linear
order, there exists a unique linear orderMrellowing to get allf of the A-table on its principal diagonal.
In [5], the author has shown the bounded nature of the Permutoedron by showing that the unique tableau
given by the lexicographical order ehand allowing the alignment of thgon the diagonal is an interval
doubling scheme a§,,. Our aim here is to characterize all interval doubling schemes of the Permutoedron.
To do so, we use the following characterization of the arrow relations in the |&ti¢@hose proof, easy,
is left to the reader):

Proposition 2 Lety = Bv|uB be a join-irreducible ang: = Cl|pC a meet-irreducible of the lattics,,.

Ap) € A(y)-

1. y<p <= D(y) CDk) <~
) andD(y) C D(u*

2. ~vtp < pleD(y )-
3. ylu <= wve A(p)andA(p) C A(y7).
-

4. ylp < ple D(y), w € A(n), D(v) C D(p*) andA(p) C A(v7).

3 The results

We have seen that a semidistributive lattice is characterized by the existence of ajumigesch line and

on each column of itsi-table, this relatiorf inducing in the lattice a bijective correspondence between
the setsJ and M. Without proof, we give the following theorem and corollary which make this bijection
explicit in the case of the Permutoedron. For the proof see [5].

Theorem2 1. Lety = Buv|uB be a join-irreducible ang: a meet-irreducible of latticé,,. Then

=({zeB:u<z}U{zeB:v<az},>)

v1p <= p=CulC wzth{ =({zeB:z<ulu{zeB:z<v},>)

2. Lety = Cl|pC be a meet-irreducible angl a join-irreducible of latticeS,,. Then

=({zeC:z<plU{zeC:z<l}, <)

viu < v=DBp|iB Wth{ =({zeC:p<alu{zeC:l<a}, <)

Corollary 1 The relationf induces a bijection between the sets of join-irreducibles and meet-irreducibles
of S, (semidistributivity ofS,,).

Definition 6 In a semidistributive lattice, the meet-irreducible image of the join-irreducible elejnient
the bijection] will be denoted byn; and conversely, the join-irreducible image of the meet-irreducible
elementn will be denoted byj,,, .

We shall now prove a strong property of the arrow relations in the lattice of permutations, that will be
used to characterize all interval doubling schemes, of

Proposition 3 Let~y be a join-irreducible ofS,, and ., its image in the bijectioff. The following asser-
tions are satisfied:
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LYY e (V1T u <= v<s,7)
2.Vp' € M, (yu b 1 = p' <s, w).

Proof: To prove point 1, we set:

v = Bv|uB

py = CuloC
pt = CvuC
' = B's|rB'

We then consider the following conditions:

(a) vu € D(v')
{ b)VeeB, (u<z=z€B
()Vz €B, (x<v=>z€B)

and we prove the equivalence of the three following conditions:

{ (i) v <s, '

(4t) conditions (a), (b) and (c) are satis fied
(#dd) v 1. iy

(i) => (ii) : v <s, +' impliesvu € D(+'). Condition () is satisfied and impliess B's andu € rB .
Letz € B be such thats < z. So we haveru € D(v), hencexu € D(v'). Thenifz € rB, we
haveuz € A(v'), which is impossible. If: = s, thenv € B'simpliesv < s, and sar = s € vuB,
which contradict € B. Finally, z € B’ and condition (b) is satisfied. Now for condition (c), let
us consider: € B such thatr < v. We havevz € D(y) and sovz € D(v'). If z € B's then
zv € A(v'), which is impossible. Ift = r thenu € rB' impliesr < u, hencez = r € Buu,
which contradicts: € B. Finally,z € B’ and condition (c) is satisfied.

(#4) = (4i1) : Let us suppose that all conditions (a), (b) and (c) are satisfied. We prove that this implies
(B'slrB' =)y 1 p,(= CulvC), i.e. (Proposition 2) that we have: € D(v') and A(ut) C
A(v"). Condition (a) givesu € D(7'). It remains to prove that(ut) C A(y'). Let us compute
the setd(u) of all agreements gfit = CvuC:
Ap?) ={av: z e Candz < v}U{uz: z € Candu < z}U{ay: z € C, y e Cand
x < y}. We now prove thatl (ut) C A(y').

e {zv :z € C andz < v}: we haveu < z sincez € C and on the other hand, € C and
z < v imply (Theorem 2 € B. Thus condition (b) implies € B'. Sincev € B's (by
condition (a)) and: < v, we obtainzv € A(y").

e {ur :z € C andu < z}: we haver < v sincex € C and on the other hand, € C and
u < z imply z € B (Theorem 2). Thus condition (c) givese B and, sinces € rB by
condition (a), we havaz € A(v').
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e{zy:zeC,yecCandr <yl zeC,yec Candr <yimplyu <z <y < v. So
we have on one hand € C andz < v that lead tar € B (Theorem 2) and since < =z,
we obtainz € B’ according to (b). On the other hand, we hgve C andu < y that lead
toy € B and sincey < v, we obtainy € B' by condition (c). Finallyz € B', y € B' and
z < yandsay € A(Y).

(711) = (@) : This fact trivially holds in any semidistributive lattice.
We have just given the proof of point 1. of the proposition. The proof of point 2. is dual. ]

Before we establish the characterization result for all interval doubling schemes of the Permutoedron
(Corollary 2) describing all possible constructions&f by doublings of convex sets starting from the
two-element lattice (details on this subject are given in [2]), we first prove the more general theorem
below.

For a semidistributive lattic& and a linear ordecf; on J, we denote byC%, the unique linear order
on M such that the tabledll = (A, L;, £%,) has allf on the principal diagonal.

Theorem 3 Let L be a semidistributive lattice satisfying conditions 1. and 2. of Proposition 3 antjjlet
be a linear order on the join-irreducible elementsiof The following conditions are equivalent:

1. T = (AL, Ly, L%) is an interval doubling scheme of lattide

2. L, is alinear extension dfJ, <;) and L3, is a linear extension ofM, >,).

Proof: 1. = 2: Let L; be alinear order od. The tablead” = (A, L, £},) satisfies the alignment
of the$ on the principal diagonal. If; is not a linear extension dfJ, <r,), there existg, j' € J such
thatj£,j' andj’ <p j. Butj’ < j impliesj 1. m; (Proposition 3). Thusj and;’ satisfy;jL;;j' and
J 1. mj, andT is not an interval doubling scheme.

Dually, we would show that a tabledu= (AL, Ls, L£},) is not an interval doubling scheme as soon
asL%, is not a linear extension ¢V, >,,).

2. = 1: Let L; be alinear extension ¢f/, <r). Let us assume that the tabl€Bu= (Ar, Ly, L3},)
is not an interval doubling scheme. So there exist§’ € J such that£;j' and (j 1. mj or j' | m;).
In this caseL?, is not a linear extension ¢/, >,). IndeedjL;j' impliesj’ £, j by hypothesis. But
this last condition implieg ¥. m; (Proposition 3). So we havg |. m;, which, according to the same
proposition, impliesn; <z m; and, sincejL;j' impliesm;L3,m;, L3, iS not a linear extension of
(M7 ZL) u

The announced result is now a direct corollary of Proposition 3 and Theorem 3.

Corollary 2 (Characterization) Let £; be a linear order on the join-irreducible permutations of the
Permutoedron. The following conditions are equivalent:

1. T = (As,, Ly, L3,) is an interval doubling scheme of lattics,.

2. L, is alinear extension dfJ, <s,) and L%, is a linear extension ofM, >s, ).
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2341 3412 4123
2314 3124 2413 1342 1423

(D 2134 (2) 1324 (3) 1243

(1) 4312 (2) 4231 (3) 3421

4132 4213 3142 2431 (7 3241
1432 2143 3214

Fig. 3: Alinear extensiorC s of (J, <s,) for which the linear ordef}, on M is not a linear extension ¢f\/, >s,).

Figure 3 shows that for a given linear extensibnof the join-irreducibles of latticé,, the linear order
L%, on the meet-irreducibles is not necessarily a linear extensi¢ifof>s, ) and so the theorem is not
trivial. Indeed, if we numerate the join-irreducible permutations from 1 to 11 as shown on the figure, a
linear extension of J,<s,)isthen:1 < 2<3<4<5<6<7<8<9<10< 11, whereas the
corresponding linear ordef}, on M is not a linear extension ¢f\/, >, ) (observe permutations 6 and
8).

4 Conclusion

We have recalled that all interval doubling schemes of a bounded l&ttce in bijection with all different

ways to construcf starting from the two-element lattice by doublings of convex sets. The result of
characterization of all interval doubling schemes of the Permutoedron appears therefore like a significant
step towards a better understanding of the constructive properties of this lattice. Moreover, in [5], the
author has conjectured that all (finit@pxeteriattices (containing the infinite family of latticeS),,>2)

could themselves be bounded lattices. In this case, the question would arise to know if there exists a
similar characterization result about the interval doubling schemes of these lattices.

At last, we have proved Proposition 3 in a particular class of lattices (semidistributive lattices satisfying
both conditions of Proposition 3) and we are interested to determine if this class is maximal for this
property on the arrow relations.
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