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The theory and practice of polytypic programming is intimatebypmmected with the initial algebra semantics of
datatypes. This is both a blessing and a curse. It is a blessitabe the underlying theory is beautiful and well
developed. Itis a curse because the initial algebra semastiestricted to so-called regular datatypes. Recent work
by R. Bird and L. Meertens [3] on the semantics of non-regular otededatatypes suggests that an extension to
general datatypes is not entirely straightforward. Here we proposéiernative that extends polytypism to arbitrary
datatypes, including nested datatypes and mutually reeudsitatypes. The central idea is to use rational trees over a
suitable set of functor symbols as type arguments for polgtigpictions. Besides covering a wider range of types the
approach is also simpler and technically less involving ti@vious ones. We present several examples of polytypic
functions, among others polytypic reduction and polytypicadityy The presentation assumes some background in
functional and in polytypic programming. A basic knowledge afmads is required for some of the examples.
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1 Introduction

A polytypic function is a function that is defined by induction on steicture of types. The archetypical

example of a polytypic function isize:: f a — Int, which counts the number of values of tygp@n a given

value of typef a. The functionsizecan sensibly be defined for each polymorphic type and it is usually a

tiresome, routine matter to do so. A polytypic programming langadigess to progransizeonce and for

all times. The specialization sfzeto concrete instances bfs then handled automatically by the system.
Polytypic programming is usually based on the initial algebra sewwnfi datatypes. To illustrate,

consider the following definition of polymorphic lists.

dataLista = 1+4+axLista

The meaning otist ais given by the initialF,-algebra of the functofF,(b) = F(a,b) = 1+ ax b. The
initial algebra can be seen as the least solution of the equiaiba = F(a,List a@). The initial algebra
approach, however, has its limitations. It fails, for example, to gimeeaning to so-called non-regular or
nested datatypes such as the type of perfectly balanced, binary leaf trees [9]

dataPerfecta = a+ Perfect(axa) .

TAn extended abstract of this article appeared in the prasgeaf the 3rd Latin-American Conference on FunctionalgPam-
ming (CLaPF'99).
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Since the recursive call #ferfecton the right-hand side is not a copy of the declared type on the left-han
side, the equation cannot be rewritten into the f&enfect a= G(a, Perfect g for someG.

A way out of this dilemma is to consider initial algebras of higher-ofdectors [3]. If we lift coproduct
(+) and produc{x) to functors,(F1+F2) T=F1 T+F2 Tand(F1 x F2) T=F1 T x F2 T, the above
type definitions can be rewritten as functor equations:

List = KI1+IdxList,
Perfect = Id+ Perfect (Id x Id) ,

whereKT is the constant functotd is the identity functor, and-) denotes functor composition. The
meaning ofList andPerfectcan now be defined as the initial algebra of the associated higher-order func-
tor. While this approach shares some of the elegance and ease of thediénsgpproach, it also has its
drawbacks. It appears that the associdtéd-operations, which are at the heart of polytypic program-
ming, are limited in expressibility. The crucial point is thald operates on natural transformations, ie it
takes polymorphic functions to polymorphic functions. Foramse, thdold operator orPerfecttakes a
function of typeva.a+f(ax a) — f ato a function of typeva.Perfect a— f a for some fixed. This is,
however, too restrictive for many applications, for instance, for simgmp a tree of integers. Therefore,

it is at least questionable whether initial algebras of higher-order ftscn serve as a viable basis for
polytypism on nested datatypes.

Back to the first-order case. In a polytypic language the fundios: f a — Int is parametrised by the
functorf and is defined by induction on the structuref ofAs an aside, sincsizeis parametrised by a
functor, we will qualifysizemore precisely as polyfunctorialfunction. The qualifiepolytypic will be
used as a general term for functions that are parametrised by functors cdrgrbrity. Now, inspired by
the initial algebra semantics the structure of functors is usuallyngby the following grammar, see [15]
or [12].

B = KT|Fst|SndB+B|BxB|F-B
F = puB

The non-terminaB generates the language of bifunctors. [lB/we denote the unary functérgiven as
the least solution of the equatiéra = B(a, F a). The functo- = uBis also known as &/pe functor This
representation entails that a non-recursive, polymorphic fuictermodelled byuB with B(a,b) = F a,
whereas a non-polymorphic, recursive datatype induced by a fuRdsamodelled byuB with B(a,b) =
F b. Thus,u(K1+ Fst) encodes the datatypdaybeand (K1 + Snd encodes the datatype of Peano
numerals.

One can reasonably argue that the definition of unary functors via mizatiah of bifunctors is not
the most direct way to go. An alternative that we explore in this ariédle define functor expressions as
rational tree46] over the following grammar of unary functors.

F = KT|Id|F+F|FxF|F-F

This approach is, of course, inspired by the way types are introduced infomzsional programming
languages. Type definitions usually take the formmexfursion equationdf we interpret these equations
purely syntactically, each equation defines a unique rational tree. Recall thadreakébr regular) tree
is an infinite tree that has only a finite number of subtrees. Fig. lajisghe rational trees defined by
the type equations above. Note that the pictorial representation alreadlyysrtipe defining property of
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Fig. 1: Types interpreted as rational trees.

rational trees. Since the set of subtrees is finite, we can always draw aatat&mas a finite tree with
additional back or cross edges.

The major difference to previous approaches lies in the use of infirstead of finite trees as type
arguments for polytypic functions. This change is not as problemato@snight think at first sight. For
instance, we can still define polytypic functions recursively and prakgtypic properties inductively.
Of course, to make things work we must impose the usual conditfanstions must be continuous and
properties must be chain complete. In essence this means that the class ofsfisidself modelled
by a non-strictdatatype as opposed to an inductive datatype. We could even consider $ugiceor by
arbitrary infinite trees. The focus on rational trees is, however, necessguyalctical considerations. It
guarantees that the specialization of polytypic functions always terminates

The rest of this article is organized as follows. Sec. 2 introduces ratie@®as &nd functor expressions.
Sec. 3 and Sec. 4 give several examples of polyfunctorial functions, antbeis @ polytypianapand
polytypic reduction. We will see that nested datatypes add an interestimglimension to polytypic
programming. For instance, efficiency becomes a concern: a straightforwalehientation ofizehas
a quadratic running time for some nested datatypes. Improvingitsrg time makes a nice example in
polytypic program derivation. Sec. 5 extends the approanfatty functors and presents further examples,
among others polytypic equality and a polytypic monadic map. Thissweotiquires a basic knowledge
of monads. Finally, Sec. 6 reviews related work and points out directarfuture work.

2 Functor expressions

There are several ways to represent rational trees, see, for instance, [6, See #joSttobvious and,
in fact, the most convenient way is to use systems of recursion equatieh®. = 5o Zn be a set of
function symbols an& be a set of variables, we denote ByZ, X) the set of first-order terms ovéer
andX. A system of recursion equations owers of the form{x; =t1,...,X, =tq} with t; € T(Z,X),
X ={X1,...,%}, andx; # x; fori # j. The elements oX are termedecursion variables

A system of recursion equations is éanonical formif the right-hand side of each equation is of the
form f(xq,...,X,) wheref € Z, is ann-ary function symbol and thg are recursion variables. Each
system can be transformed into an equivalent system that is in canonicalForrmstance, the system
{x=1d+x-(Id x Id) } has the canonical forfix = x1 + X2,x; = Id,x» = X-x3,X3 = Id x Id }. Note that
the canonicalization introduces additional recursion variables. Furtlieyme tacitly assume that an
equation of the forrx = x is replaced by = Q whereQ is a new nullary function symbol representing
the ‘bottom’ tree.

It is well-known that each canonical system of recursion equations has aewotjtion in the realm
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of rational trees. An unrestricted system has in general otfdgstsolution. Each tree is, for instance, a
solution of the trivial systergx = x}.
Now, afunctor treeis a rational tree over the following set of ‘functor’ symbols

F = KT|Id|F+F|FxF|F-F,

ieX=3oUZpwithZg={Kt|teT}uU{ld} andZ; = {+, x,-}. We agree upon tht) binds more tightly
than(x), which in turn takes precedence oyer). For instancef + G x H-H meand= + (G x (H - H)).
Let us consider some examples. Finite functor trees correspond to soalyedmialfunctors.

A Id x Id
Maybe = K1+Id

The functorA is called the diagonal or square functiglaybe ais the type of optional values of tyfze

Let us call a functor compositiof- G non-trivial if neither F nor G equals the identity functdr.Pos-
sibly infinite functor trees where cycles only pass through the igimd branches of non-trivial functor
compositions are known asgularfunctors.

List = K1+IdxList
Tree = Id+A-Tree
Rose = Id x List-Rose

The functorList corresponds to the ubiquitous datatype of polymorphic [Begencompasses polymor-
phic, binary leaf trees, ari@oseis the datatype of multi-way branching trees.

If cycles pass through the left-hand branches of non-trivial functorpasitions (or through both
branches), we haweon-regulafunctors.

Perfect = Id+ Perfect A
Nest = K1+Idx NestA
Bush = K1+Idx Bush Bush

The meaning of these functor expressions becomes more intelligible ifnroll the definitions a few
steps and massage the result using the following laws.

KT-F = KT (1)
Id-F = F 2)
Fid = F 3)
(F1+F2)-G = F1-G+F2-G 4)
(F1xF2)-G = F1-GxF2-G (5)
(F1-F2)-F3 = Fy-(F2-Fa) (6)
Unrolling Perfectyields
Perfect = ld+(A+ (A% +(A%+--1))) ,

* By ‘equal’ we mean semantic equality of functors, see below.
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whereF" is given byF? = Id andF™?! = F . F". If we interpretA” as the type of perfectly balanced,
binary leaf trees of height, we have thaPerfectcomprises perfect trees of arbitrary height.

The functoNesthas a similar reading.
Nest = Kil+Idx (K1+Ax (K1+A%x (K1+A3x--+)))
If we compareNestto
List = Kl+4Ildx (K1+Ildx (K1+Ildx (K1+Ildx---))) ,

we see thaNestcomprises ‘lists’ whoséth element is a perfect tree of heightAlternatively, we may
view values of typéNestasnode-orientegherfect trees, where theh list element describes the sequence
of labels at depth

Partially unrollingBushyields
Bush = Ki1+Idx (K1+Bushx (K14 BusH x (K1+Busi x---))) .

Thus,Bushcontains ‘lists’ whosé-th element is a member &usH. A truly bewildering form of recur-
sion.

Interestingly, the laws above can be used to eliminate functor corigpoBivm the definitions of regu-
lar functors. Consider the definition of rose trees, which containsgh®ositiorList- Rose Introducing
a new functor for the composition, sdgrestwe obtain

Rosé = Id x Forest
Forest K1+ Roséx Forest .

Since both typesRoseandRosé, have the same structure, they are equivalent from a polytypic perspec-
tive. This statement can be made precise if we interpret type equatiafgedigaic equatiori$, Sec. 5.1].
Then, botrRoseandRoséindeed denote the same rational tree. This implies, in particular, that cate mu
be taken to ensure that polytypic functions behave the same on batitide$ (see Sec. 3). As an aside,
note that mutually recursive definitions like the two above are covereddursion equations in a natural
way.

3 Polytypic map

Our first example of a polytypic function is the functiorap which describes the action of a functor on
arrows (ie functions). This is, of course, not a coincidence. As we sajlirapis an important building
block for virtually all polytypic functions.

To definemapwe make use of the following auxiliary functions which, as a matterof,festablish
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(+) and(x) as bifunctoré
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The polytypicmapis then given by the following definition.

map(f)
map(Kt) ¢
map(ld) ¢
map(f +g) ¢
map(f x g) ¢
map(f - g) ¢

(a—=b)—>(fa—fb)
id

¢

map(f) ¢ +map(g) ¢
map(f) ¢ x map(g) ¢
map(f) (map(g) ¢)

The first line specifies the type afiap The notatiormap(f) has been chosen to emphasize thapis
parametrised by a functor. Polytypic functions are always writtenguaigle brackets, which makes it
easy to distinguish them from ordinary functions.

In general, a polyfunctorial functiopoly(f) ::

1(f) is given by a set of functionds:: t(f1) x ... x

1(fn) — t(s(f1,...,fn)), one for each functor symbsle ~. We usually define the functions implicitly
using equations of the forpoly(s(f1,...,fn)) = ds(poly(f1),...,polyfn}). Furthermore, we assume that
dq = L for the ‘bottom’ treeQ. In the example above we have, for instartjg,= id andd(,)(ml,mz) =
my o mp. This information is sufficient to define a unique functjpoly(f) for each functor expressidn

[6, Prop. 2.4.2]. However, there is one further
respect to the functor equations (1), ..., (6), ie

poly(KT - F)
poly(ld - F)

poly(F - Id)
poly((F1 +F2)-G)
poly{(F1 x F2) - G)
poly((F1-F2) - F3)

requirement. Thgfyattorial should be invariant with

poly(KT)

poly(F)

poly(F)
poly(F1-G+F2-G)
poly(F1 -G x F2-G)
pOly(Fl . (Fz . F3)> .

If poly(f) violates one of these constraints, then it is sensitive to the fomiohf is written, a situation
which is clearly undesirable. For instanpe)y{Rosé andpoly(Rosé) should be identical sindeoseand
Rosé define the same functor. It is immediate from its definition thap(f) satisfies these conditions.

8 Examples are given in a pidgin based on the functional progriag language Haskell 98 [21]. We assume, however, thatifpre
functions are non-curried, ig\) has typeBool x Bool — Boolrather tharBool — (Bool — Bool).
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From the definition omap(f) we can derive specializations for different instance$.oHere is the
familiar definition ofmapon List.

map(List) ¢ =id + ¢ x map(List) ¢

Note that the process of specialization always terminates since the ‘fangtonent’ is given by a rational
tree, which has only a finite set of subtrees. Now, if we speciatiapfor non-regular functors something
interesting happens.

mapPerfec} ¢ = ¢+ mapPerfec} (¢ x ¢)

The type ofmap(Perfec} is (a — b) — (Perfect a— Perfect ). The recursive call on the right-hand
side, however, has typ@ a — A b) — (Perfect(A a) — Perfect(A b)), which is a substitution instance
of map(Perfec}’s type. This means thahap(Perfec} is a so-callegpolymorphically recursivéunction
[19]. It should be noted that the Hindley-Milner type system,ckhinderlies most of today’s functional
programming languages, does not allow polymorphic recursion. éumibre, a suitable extension of the
system has been shown to be undecidable [8]. The functional programaningdge Haskell [21] allows
polymorphic recursion only if an explicit type signature is po®d for the function. We will assume
henceforth that polymorphic recursion is supported by the underfyiogramming language.

In general, the specialization of a polytypic functipaly(f) for a given instance of is defined as
follows. Assume that the functor is given by a canonical system of riscuegjuations. For each equation
f = s(f1,...,fn) a function definition of the fornpoly{f) = ds(poly(f1),...,polyf,)) is generated. It is
straightforward to generalize the process of specialization to arbitratgrag of recursion equations.

To prove properties of polytypic function we can employ the prireeipfi fixpoint induction If P is a
chain completeroperty of functor trees, it suffices to show

P(Q)
P(K1)
P(1d)
P(F)AP(G) => P(F+G)
P(F)AP(G) => P(FxG)
P(F)AP(G) = P(F-G)

Using a simple fixpointinduction we can prove, for instance, thevdlhg functorial properties ahap(f).
mapf)id = id
map(f) (poy) = mapf) domapf) Y
The proof for coproduct and product relies on the fact {hatand(x) are themselves bifunctors.
(fi+f2)o(g1+92) = (fiog1)+(f2002) @)
(fixf)o(gixgz) = (fiogs)x(f2002) (8)

Only the proof ofmapQ) id = id requires a bit of fudging. We have thaiap/Q) ¢ = Aa— L so we
must in effect show thata — L = id. This equation holds, however, sineaccommodates only the
bottom element.
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4 Polytypic reduction

A reductionis a function of typd a — athat collapses a structure of values of tygdiato a single value of
typea. Because of its destructive nature reductions are also knowruabesThe archetypical example
of a reduction is the function that sums a structure of integersn&ance, a list or a tree of integers. It
is well-known that reductions can be defined completely generically for allaefunctors [15]. In the
sequel we show how to generalize reductions to non-regular functorsability to define reductions
on nested datatypes is of some importance since it is not possiblenta sested datatype using a fold.
Note that this implies that reductions are in a sense more general tiian Tdley are, however, also less
general since, for instance, mapping functions on regular functors can hedlasing folds, but cannot
be expressed in the form of a crush. Thus, reductions [15] and foljsafg different, incomparable
generalizations of the classic reduction operéfgron join-lists [5]. For a more detailed comparison we
refer the interested reader to [15].

To define a reduction we require two ingredients: a vau@ and a binary operatioop::A a — a.
Usually but not necessarilyis the neutral element afp.

reducef) T a—-(Ma—a—(fa—sa)
reducéf) eop = red(f)

where

red(Kt) = conste

red(ld) = id

red(f+g) = red(f) vred(g)

red(f xg) = opo (red{f) x red(g))

red(f - g) = red(f) omapf) (red(g))

The definition coincides with the one given by L. Meertens [15], the oiffgrénce is that the treatment
of recursion is implicit—the specialization automatically takes care of remursrather than explicit.
This alone suffices to defimeducéf) for all datatypes including nested datatypes sudheafect

The most interesting equation is probably the last one: to reduce a vialymed (g a), the reduction
red(g) is first mapped off to give a value of typé a, which is then reduced to a value of typeTo see
reducef) in action let us specialize the definition to the type of perfect trees (hatesd(A) = op).

red(Perfecj = id v red{Perfec} o mapPerfec} op

Assume that we want to reduce a perfect tree of heighThe functionmap(Perfec} op, which has
type Perfect(A a) — Perfect g takes a tree of heiglit+- 1 to a tree of height, which is then reduced
by a recursive call teed(Perfec}. After n iterations we obtain the desired value of typeWhat about
red({Perfec}’s running time? Let us assume thgtis a constant-time operation. The aalhpPerfec} op
then takes time proportional to the size of the tree. Since the sizedfdh is halved in each step, we
obtain a running time of

42 4 241=0(2") .
Thus, thered(Perfec} takes time proportional to the size of the tree. Does this hold in géhberafortu-
nately not, as the following example shows.

Maybe = Nothing(K1)+ JustlId
Tower = End ld+ RecursdéTower-Maybg
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We have added fancy names for the injection functions to make the exampiesreadable. Now, el-
ements of typelower are either of the forniRecurs8 (End (Just"Nothing) with m< n or of the form
Recurs@ (End (Just'a)). The reduction offoweris given by the following equation.

red(Towel) = id v red(Towel) o mapTowen (const eV id)

The crush oRecurs8 (End(Just'a)) proceeds essentially as befoneap Towel) (const v id) maps the
valueRecursk(End (Just™'a)) to Recursk(End(Justa)), which is then reduced by a recursive call to
red{Tower). The major difference to the preceding example is that in each step the shearigument
is only decreased by a constant amount. Consequently, we have a tofabrtime of

n+n—1+---42+1=0(n) ,

which shows thated({Towen’s running time is quadratic with respect to the size of its argumemt. |
terestingly, the efficiency afeducdf) is not a problem iff is a regular functor. In this caseducef)
always takes time linear to the size of the crushed structure. The argurnghtyouns as follows: Re-
call that each regular functor has an equivalent, composition-free definitimmctor composition is not
usedred(f) clearly runs in linear time. The asymptotic running timeed(f) is, however, the same for
equivalent functor definitions.

Fortunately, it is straightforward to improve the efficiencyreducdf). We simply define a function
that combines a reduction with a map, ie we seek for a funeéidmagf) that satisfies

redmagf) ¢ red{f) omapf) ¢ ,
red(f) = redmagf)id .
This idiom is, in fact, a very old one. It appears, for instance, in [5] witdeeshown that each homo-

morphism on lists (ie each fold) can be expressed in this form. Theatiervofredmagf) is a simple
exercise in program calculation and proceeds almost mechanically. For thasecéses we have

redmagKt) ¢ = red(Kt) omapKt) ¢ = consteid =conste,
redmagld) ¢ =red(ld)omap(ld) ¢ =idop=¢ .

The derivation for coproducts and products rests on their propertiedlaxtors, ie on equations (7)
and (8).

redmagf +9) ¢ = red(f +g)omapf +g) ¢

(red(f) v red(g}) o (map(f) ¢ +mapg) ¢)
(red(f) omap(f) ¢) v (red{g) o map(g) ¢)
redmagf) ¢ v redmagg) ¢

red(f x g) omap(f x g) ¢

opo (red(f) x red{g)) o (map(f) ¢ x mapg) ¢)
opo ((red(f) o map(f) ¢) x (red(g) o map(g) 9))
= opo (redmagf) ¢ x redmagg) ¢)

And finally, for the composition of functors we obtain

red(f - g) omap(f - g) ¢
red(f) o map(f) (red(g)) o map(f) (map(g) ¢)

red(f) o map(f) (red(g) o map(g) ¢)
redmagf) (redmagdg) ¢) ,

redmagdf x g) ¢

redmagf - g) ¢
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sum(f) 2 (Nump=fn-on

sum(f) = reducdf) 0(+)

and(f) = f Bool— Bool

and(f) = reducdf) True(A)
minimun{f) :: (BoundedaOrda)=fa—a
minimun{f) = reducdf) maxBound min
sizgf) 2 (Numnp=fa-n

sizef) = reducemaff) O (+) (constl)
all{f) . (a— Bool) — (f a— Bool)
all{f) p = reducemaff) True(A) p
flatten(f) i fa—Lista

flatten(f) = reducemaff) [] (++) wrapwherewrap a= [a]

Fig. 2. Examples of reductions.

which shows that we succeeded in eliminating the annoying cathdp Apart from improving the
efficiency ofreducdf) the synthesized function is also interesting in its own right sinaajitures a
common pattern of recursion.

reducdf) e op = reducemaff) e opid
reducemaff) D a—»(Aa—»a)—o(b—oa)>(fb—a)
reducemaff) eop = redmagf)

where

redmagKt) ¢ = conste

redmagld) ¢ = ¢

redmagf +g)d = redmagf) ¢ v redmagg) ¢
redmagf x g) ¢ opo (redmagf) ¢ x redmagg) ¢)
redmagf - g) ¢ redmagf) (redmagg) ¢)

Let us again specialize the definition to the type of perfect trees.

redmagPerfec) ¢ = ¢ v redmagPerfec} (opo (¢ x 9))

It is interesting if not revealing to contrast the two definitions eductions on perfect trees. The first
one,red{Perfec}, essentially proceeds bottom-up. In each step the ‘nodes’ (ie pairsgdoviBst level
are reduced. This step is repeated until the root is reached. By corgtm{Perfech operates in two
stages: first a suitable reduction function is constructed, which thercesdhe perfect tree in a single
top-down pass. Clearly, the latter procedure is more efficient than theefo

Fig. 2 lists some typical applications mfducéf) andreducemaff). Further examples can be found,
for instance, in [15] or [11].
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Polytypic reduction satisfies a fusion law analogous to the fusiarfor folds [15].

horeducemaff) e opp = reducemaff) € op ¢’
hol =1

hoconst e= const é

hoop=op o (hx h)

hot = ¢’

>>>ﬂ

The law can be shown using a straightforward fixpoint induction,ctvhig left as an exercise to the
reader. Instead we apply the fusion law to derive an efficient implementftisingPerfec}. A simple
consequence of the fusion law is

reducemaff) 0 (+) (constny = mult noreducemaff) 0 (+) (constl) wheremultab=axb .
Now, we reason
sizgPerfec) = reducemagPerfec} O (+) (constl)
constl v reducemafPerfec} 0 (+) (reducemaf) O (+) (constl))

constl v reducemagPerfec} 0 (+) (const2)
= constl v mult2osizgPerfec} .

Defined this waysizgPerfec} runs in®(logn) time.

5 Extending the approach to n-ary functors

By now we have seen several examples of polyfunctorial functions,nietiins that are parametrised
by an unary functor. In this section we extend the approach from unamatyg functors. It is relatively
straightforward to extend functor expressions to the general case:afwfunctor expressiois a rational
tree over the following set of ‘functor’ symbols.

F = KT
| P (1<ign)
| F 4 F(n
| FMW xFO
| FOLFDLLLRD) (1K

The superscript it (" denotes the arity of the functor. As befokeT denotes tha-ary constant functor.
The n-ary projection functoP] is given byP} T=TforT = (T1,...,Th). Forn=1 andn= 2 we
use the following more familiar namesd = P}, Fst= P%, andSnd= P%. The coproduct and product
of n-ary functors are defined as usu@fy + F2) T=F1 T+Fo T and(F1 x F2) T=F; T x F, T. Finally,
F-(Gy,...,Gy) denotes the composition of theary functorF with k n-ary functorsi(F - (Gy,...,G)) T =
F(G1T,...,Gc T). We omit the parentheses whier: 1, ie we writeF - F1 instead ofF - (F1).
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From the definitions oKT, P{", (+), (x), and(-) we can easily derive the following laws.
KT-(Fy,...,Fn) = KT
P (Fy,...,Fn) = F;
F-(P),...,P") = F
(F1+F2)-(G1,...,Gn) = Fl-(Gl,...,Gn)+F2-(G1,...,Gn)
(leFz)-(Gl,...,Gn) = F1-(G1,...,Gn)XF2-(G1,...,Gn)

(F-(G1,...,Gn))-(H1,...,Ho) = F-(G1-(H1,...,Ho),...,Gm-(H1,...,Ho))

Forn = 0= 1 we obtain the laws given in Sec. 2.
Coproduct and product are the simplest examples of bifunctors.

Coproduct = Fst+ Snd
Product = FstxSnd

Itis easy to verify tha€Coproduct (F1,F2) = F1 + F2 andProduct (F1,F2) = F1 x F2, which shows that
we could have adde@) and(x) as constants t6(?. The infix notation is, however, more convenient
to use.

External search trees make nice examples of bifunctors. An external search type 8T a bhas
external nodes (ie leafs) labelled with values of typand internal nodes (ie branches) labelled with
values of typéb.

Branch = Fstx Sndx Fst

ST = Fst+ Branch (ST,Snd
PST = Fst+PST- (BranchSnd

External search trees come in two flavou83:is the standard textbook type whiRSTis the type ofper-
fect external search trees. Note tl&kis right recursive wheredSTis left recursive. The classification
of functors into polynomial, regular, and non-regular functors akries over to the-ary case. Itis easy
to see thaBranchis a polynomial ST a regular, and®STa non-regular bifunctor.

5.1 Polytypic and polyfunctorial functions

Our first (and our last) example of a polytypic function that is keteby a nullary functor is polytypic
equality. Besides implementing a fundamental operation the exampleaisondtrates the interaction
between polytypic and polyfunctorial functions. Note that the dédimibf equality is based upon the
approach taken in PolyLib [11]. In PolyLib, however, equality is pararsetrby an unary functor. Now,
to be able to give the definitions in a point-free style, we make fisieecauxiliary functions shown in
Fig. 3. The first cases @fqft) are straightforward. We assume that the primitive types atatland
Doubleand that suitable equality functions flmt andDoubleare predefined.

eqt) I txt— Bool

eqgK1) = const True

eqKint) = eqint

eqKDoubled = eqdouble

ety +t2) ok (et1) V eqt2)) o couple

eqty x tp) (A) o (eq{t1) x eq(t)) o transpose
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(p—f,g9)a = ifpathenfadsega
couple(inl az,inl bq) = Just(inl (az,b1))
couple(inl az,inr by) = Nothing

couple(inr a,inl by) = Nothing

couple(inr az,inr by) = Just(inr (az,bp))
transposeg(ay,az), (b1,b2)) = ((as1,b1),(az,b2))
ok Nothing = False

ok¢ (Justg = ¢a

Fig. 3: Auxiliary functions for polytypic equality.

It remains to defineqt) for the case thdtis a composition of &-ary functor withk nullary functors. To
keep the example manageable we confine ourselves to unary functors. Hosvpgtoceed it takes the
formf u? Now, two elements df u are equal if they have the same shape and the elements ai gtpe
corresponding positions are equal. To bring corresponding elemegeth&y we make use of an auxiliary,
polyfunctorial function calledip(f). As the name indicategip(f) :: (f a,f b) - Maybe(f (a,b)) turns a
pair of structures into a structure of pairs. If the structures havthe same shapeip(f) returnsNothing
otherwise it yieldslust zwherez is the desired structure. Usizgxf) the last case aft) can be defined
as

eqf-u) = ok(all{f) (equ)))ozip(f) ,
which is more or less a translation of the english description above.

The auxiliary functiorzip{f) makes a nice example of polytypigjonadicprogramming. Before we
discuss its definition let us briefly review the basics of monads. Ruore in-depth treatment we refer the
interested reader to P. Wadler’s papers [23, 24, 25], which also contailesugyary pointers to relevant
work. One can think of a monad as an abstract type for computations. IrelHagkads are captured by
the following class declaration.

classMonad mwhere
return :: a—ma
(>>=) & ma-s(a—-mb-—-mb

The essential idea of monads is to distinguish betweemputationsand values This distinction is
reflected on the type level: an elementofarepresents a computation that yields a value of gpé
computation may involve, for instance, state, exceptions, or nondeismmifhe trivial computation that
immediately returns the valueis denoted byreturn a The operato(>=), commonly called ‘bind’,
combines two computationm>>=k appliesk to the result of the computation

The monadic operations must be related by the following so-calledad laws

returna>=k = ka (9)
m>=return = m (10)
(m>=Kk)y>=¢ = m>=Aa—-ka>s=/{() (11)
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Roughly speakingeturnis the neutral element ¢fs=) and(>=) is associative. The monoidal structure
becomes more apparent if the laws are rephrased in terms of the monadics@t@mpsee below.

Haskell supports monadic programming by providing a more readatstepfder syntax fo(>=), the
so-calleddo-notation The syntax and semanticsad-expressions are given by the following identities:

do{x+me} = m>=Ax—do{e}
do{e} = e.

Several datatypes have a computational content. For instance, thBlaytecan be used to model
exceptions:Just xrepresents a ‘normal’ or successful computation yielding the valybile Nothing
represents an exceptional or failing computatiariptf) employsMaybein this sense. The following
instance declaration shows how to defiatirn and(>==) for Maybe

instance Monad Maybevhere

return = Just
Nothing==k = Nothing
Just a==k = ka

Thus,m>>=k can be seen as a strict postfix applicationmis an exception, the exception is propagated;
if msucceeds, thekis applied to the resulting value.

In the previous examples we have made heavy use of general combinimg$ach ago), (+), and
(x). The functionzip(f) can be defined quite succinctly if we raise these combinatqosdtoeduresA
procedure is by definition a function that maps values to computatiitgsia function of typea— mb
wheremis a monad.

(hhehy)a = do{b+ hxah;b}

(h®hy) (ag,82) = do{bs+ hyas;by + hyap;return(by,by)}
(hl@ hz) (inl al) = do { by < h; a;;return (inI b1)}

(h@hy) (inrag) = do{by+ hyay;return(inrby)}

While the definitions fo@) and(®) are inevitable, there is a choice to be made in the cagepfThe
two computations; a; andh; a; can be sequenced in two possible ways, either; beforeh, a, or vice
versa. Fortunately, the two definitions coinciderioe= Maybe™ From the definitions above we can easily
derive the following equations:

fe(goh) = (feg)oh (12)
foreturn = f (13)
returnef = f (14)
fe(geh) = (feg)eh (15)
(hoefh)e(meg) = (hog)e(00) (16)
fhoeh)e(ney) = (fog)®(fe@gy) if miscommutative a7)

' We tacitly assume that computations do not diverge. Otlsenthiis property does not hold, take, for instarteea; = Nothing
andhy ap = L.
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Note that equations (13), (14), and (15) are the monad laws statedria téithe monadic composition
(@). These equations furthermore show that procedures (for arfixéatm the morphisms of a category,
the so-calleKleisli category where the identity iseturn and the composition i6®). The last equation
only holds for so-calledommutative monadhat satisfy

do{ai + my;ax + mp;return(ag,a2)} = do{ax + mp;aq « my;return(ag,a) } .

For instance, the identity monad, tMaybemonad, and reader monads all have this property. On the
other hand, the list monad, the state monads, ant#Qhmonad are not commutative. This implies that
(x) is not a bifunctor in the corresponding Kleisli category.

Now for the definition ofzip(t). The first case falls back on the equality of values. Thaggt) and
zip(f) are mutually recursive functions, which is not surprising sif® andrF? are mutually recursive
as well (we tacitly identify nullary functors; (9, and typesT).

zip(f) i faxfb— Maybe(f (ax b))
zip(Kt) = (eq(t) — returno outl,const Nothing
zip(ld) = return

zip(f +9) = (zip{f) ®zip{(g)) © couple

zip(f xg) = (zip(f) ®zip{g)) otranspose
zipf-g) = mapMf) (zip(g)) @ Zip(f)

The last case is again the most interesting one. To zip two values of tigpe) andf (g b) we first
apply zip(f), which yields a value of typMaybe(f (g ax gh)). To obtain a value of the desired type,
Maybe(f (g (ax b))), we then magzip(g) onf. However, since we are working within a monad we
cannot use the ‘ordinary’ map operation as defined in Sec. 3. Instead we npisy@monadic mag7],
which is defined as follows (note thatapMf) is termedmaplin [18]).

mapMf) = (Monadn) = (a— mb) — (f a— m(f b))
mapMKt) ¢ = return

mapMid)¢ = ¢

mapMf+g) ¢ = mapMf) ¢ ® mapMg) ¢

mapMf xg) ¢ = mapMf) ¢ © mapMg) ¢

mapMf-g)¢ = mapMf) (mapMg) )

Abstractly speakingmapM(f) defines the action on arrows in the Kleisli category inducednbyf we
specializem to Id, the identity monad, we obtain the ‘ordinanylapoperation. SincenapM(f) is the
morphism part of a functor, it satisfies the following two funcablaws.

mapM(f) return = return
mapMf) (o) = mapMTf)$oe mapMf) P if mis commutative

Since the proof of the last law employs equation (17), it is restrii@dmmutative monads, as well. The
monadic map is surprisingly versatile. It may be used, for exampleréadl a monad through a structure,
see [11].

threadf) : (Monadm =f (ma — m(f a)

threadf) = mapMf)id
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What about the running time afp(f)? From the last equation oip(f) we are lead to suspect thaf)
suffers from the same problemsraslucdf). And this indeed is the case. Consider the specialization of
zip(f) to Tower(note thatzip{(Maybe = couple.

zip(Towen = (return® mapMTower couple® zip{Tower)) @ couple

It is not hard to see that zippindRecursé (End (Just'a)), Recurs@ (End(Just'b))) takes@(n?) time.
However, we can easily improve the efficiency by combining a monadic mitpaviip.

zipWithify ¢ = mapMf) ¢ @ zip(f)
zip{fy = zipWithf) return

The derivation ozipWithf) is again a simple exercise in program calculation. It pays off that we have
definedzip(f) in terms of the admittedly abstract operators on procedures.

zipWith Kt) ¢ = mapMKt) ¢ @ zip(Kt) = return® zip{Kt) = zip(Kt)
zipWith(ld) ¢ = mapM(ld) ¢ @ zip(ld) = p ® return= ¢

zZipWith(f +g) ¢ mapM(f + g) ¢ © zip(f + g)

(mapM(f) ¢ ®mapMg) §) ® (zip(f) & zip(g)) © couple
(mapM(f) ¢ @ zip(f) ® mapMg) ¢ ® zip(g)) ® couple
(zipWith(f) ¢ @ zipWithg) ¢) @ couple

The derivation for products and compositions relies on the commuyadf/Maybe

zipWith{f x g) ¢ mapMf x g) ¢ @ zip(f x g)

(mapMf) ¢ ® mapMg) ¢) © (zip(f) ® zip(g)) o transpose
(mapM(f) ¢ @ zip({f) ® mapMg) ¢ ® zip(g)) o transpose
(zipWith(f) ¢ ® zipWith[g) ¢) o transpose

mapM(f -g) ¢ © zip(f - g)

mapMf) (mapMg) ¢) @ mapM() (zip(g)) @ zip(f)
mapM(f) (mapMg) ¢ © zip(g)) © zip(f)

ZipWith(f) (zipWith(g) ¢)

Putting things together we obtain

ZipWithf - g) ¢

zip(f) = zipWith(f) return

zipWith(f) (ax b— Maybe ¢ — (f ax f b— Maybe(f c))
ZipWith(Kt) ¢ = (eq(t) — returno outl,const Nothingy
zipWitk1d) ¢ = ¢

zipWith(f +9) ¢ = (zipWith(f) ¢ @ zipWith(g) ¢) @ couple
zipWithf xg) ¢ = (zipWith(f) ¢ ® zipWith(g) ¢) o transpose
zZipWith(f-g) ¢ = zipWith(f) (zipWithg) ¢) .

Interestingly, the two definitions a@iip(f) are equivalent for arbitrary monads, not just fidaybe To see
why this is the case note thzip(f) andzipWithf) are related by

zip(f-g) = zipWithf) (zip(g)) -
Settingg = Id yields the desired result.
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5.2 Polybifunctorial functions

The definition of polybifunctorial functions contains little suga. The main difference to polyfunctorial
functions is that we must consider two projection functérst and Snd instead of one. Here is the
definition ofbimap(f}, which describes the action of a bifunctor on arrows.

bimap(f) D (am—ob)—(ax—b)—> (fagax—fbiby)
bimap(Kt) 1 ¢ = id
bimap(Fst) o1 02 = {1
bimap(Snd ¢1 ¢2 = (I)z
bimap(f + g) ¢1 ¢> = bimap(f) ¢1 ¢2 + bimapg) ¢1 d»
bimap(f x g) ¢1 §2 = bimap(f) ¢1 ¢2 x bimapg) ¢1 $2
bimap(f - g) ¢1 ¢2 = mag(f) (bimap(g) ¢1 ¢2)
)

bimap(f - (91,92)) ¢1¢2 = bimap(f) (bimapg:) ¢1 ¢2) (bimapgz) ¢1 ¢2)

Note the interplay omap(f) andbimap(f). For reasons of symmetry the following equation should be
added to the definition ahap(f).

map(f - (91,02)) ¢ = bimap(f) (mapg:) ¢) (Map(gz) ¢)

The example ofmap(f) illustrates a problem inherent with all polytypic definitions. If amagy functor,
say,f is defined in terms of a ternary functor, therapf) is undefined. The reason is simply that the
relevant casé- (g1, d»,93) is missing inmap(f)’s definition. Moreover, sincé- (g1, ...,0x) is an element
of F(" for all k > 1, we cannot definmap(f) exhaustively. Clearly, further research is required here.

The generalization of polytypic reductions to binary functors is left asxanmcise to the reader. Note
that, in general, a reduction is a function of tyfpe ... a — a.

6 Related and future work

The impetus for writing this article came while reading the article “Ne8athtypes” by R. Bird and
L. Meertens [3]. The authors state that “It is possible to define reduatiompletely generically for all
regular types [...], but we do not know at present whether the same camnedat nested datatypes.”
We have shown that the answer to this question is in the affirmativeeder, the solution presented is
surprisingly simple. To define a polytypic function it sufficespescify its action on polynomial functors.
The extension to (mutually) recursive datatypes—which is uniquely elfiris then handled automati-
cally by the system. This does not only simplify matters for the gepeagrammer, it also removes some
of the redundancy present in the classical approach. In the polytypgicggmming language PolyP [10],
for instance, the user must supply definitions for both polynomidlitgpe functors. There is, however,
no guarantee that the corresponding functions behave in related ways.

Very recently, R. Bird and R. Paterson [4] introduced so-calederalised foldsvhich overcome some
of the problems mentioned in the introduction to this article. Gersmaliolds, which can be constructed
systematically for each first-order polymorphic datatype, possess aamégs property analogous to that
of ordinary folds. Their work is largely complementary to ours. Whi¢aeralised folds are more general
than the reductions defined in Sec. 4, it is not clear how to define functlensumgenerically using
generalised folds.
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An obvious disadvantage of our approach is that it is not possibleftnedgeneral recursion schemes
like cata- and anamorphisms (ie folds and unfolds) [16]. The reasomdysthat type recursion is left
implicit rather than made explicit. The situation can be saved, howeyénttoducing an operation on
functors that maps a type functor to its base functor. Inventing atiootwe defind=' = B for F = uB
(the operation(-)’ corresponds to the type construckamnctorOf used in PolyP). Of coursé;’ is only
defined ifF is a regular functor. Given two functioms::t' t — t andout::t — t' t we can now define

cata(t) D (fa—ma)—(t—a)
catalty ¢ = ¢omaplt’) (catat) )oout
ana(t) Do (anta—o(aot)

anat) y = inomapt’) (analt) W)oy .

Ironically, hylomorphisms can be defined without any additions sihe& type does not involve type
functors.

hylo(f) D (fama—>(b—ofb—(b—a)

hylo(f) ¢ W = ¢ omap(f) (hylo(f) ¢ Y)ow

Polytypic functions are values that depend on types. For that reasonahagt be expressed in lan-
guages such as Haskell or Standard ML. The question naturally arises as to vplodthgric definitions
can be easily added to languages that incorpatependent typesuch as Cayenne [2]. Now, since poly-
typic functions perform pattern matching on types, this would erttailaddition of aypecase [1]. A
typecase was, however, left out of Cayenne by design and the consequences of addirggenstruct to
the language are unclear (personal communication with L. Augustsson}rartsformational approach
taken here—to specialize a polytypic function for each given instance—appdagssimpler and also
more efficient since the repeated matching of the type argument (whichiabyaknown at compile
time) is avoided.

Directions for future work suggest themselves. It remains to broa@esybroach to include exponen-
tials and higher-order polymorphism [13]. The former extensiomkhioe fairly straightforward, see [22]
or [17]. The latter extension is far more challenging. To illustrate si®r the following generalization
of rose trees.

dataGRosefa = Node a(f (GRosef §)

This datatype is used, for instance, to extend an implementation of collsdsequences or priority
gueues) with an efficient operation for combining two collections (catenateetit), see [20]. From a
categorical point of view we could interpréRoseas a higher-order functor of tygeun(C) — Fun(C),
whereFun(C) is the category that has as objects functors of {§pe C and as arrows natural trans-
formations between them. Equating natural transformations and poljaadrmctions it follows that
GRosé& map functional has the typ®a.f a— g @) — (Ya.GRose f a» GRose g & Unfortunately, this

is a rank-2 type, which is not legal Haskell. An alternative view is terpretGRoseas a higher-order
functor of typeCat(C) — Cat(C), whereCat(C) is the category that has as the only object the cat-
egory C and as arrows functors of tyg@ — C. This suggests to define a higher-order map of type
(vavb.(a— b) — (f a—f b)) — (VaVb.(a— b) - (GRose f a» GRose f ). Both maps are clearly
useful: The first operates on the base collectiofithe ‘bootstrapped’ collectioGRose fwhile the sec-
ond operates on the elements contained in a collection. However, it is farcfear how to define these
maps generically for all higher-order datatypes.
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