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1 Introduction

Feature constraints have been used for describing records in constraint programming [1,
30, 31, 36] and record-like structures in computational linguistics [14, 12, 23, 26]. Feature
constraints also occur naturally in type inference for programming languages with object
types or record types [22, 5, 24].

Following [2, 4, 3], we consider feature constraints as predicate logic formulas interpreted
in the structure of feature trees. A feature tree is a tree with unordered edges labeled by
features and with possibly labeled nodes. Features are functional in that the features label-
ing the edges departing from the same node must be pairwise different. The structure of
feature trees gives rise to an ordering in a very natural way which is catleé subsump-

tion orderingin [7]. Consider the following example where an unlabeled node is indicated
ase ;

address

° Str?/ Wme
< string ] .
flfy \Iast

string string  string

Here, the left tree is said toweakly subsumiie right treer, sincet; has fewer edges and
node labels tham,. In other words, everpositiveassertion about the presence of labels or
features that holds far; also holds fort,. In general, a tree; weakly subsumestreet,,
writtenty < 1y, if

street

e every word of features in the tree domaimafbelongs to the tree domain of

¢ and the (partial) labeling function af; is contained in the labeling function o.

We consider the systefT< of ordering constraints over feature trees [18, 19, 17]. Its
constraintsp are given by the following abstract syntax

¢ i=x<X | XX | ax) | one

wheref denotes deature symbohnda alabel symbal The constraints df T< are inter-
preted in the structure of feature trees with the weak subsumption ordering. We distinguish
two cases, the structure of finite feature trees and the structure of possibly infinite feature
trees. A constraimt<x’ holds if the denotation of weakly subsumes the denotatiornxdf

x[f]xX is valid if the denotation ok has an edge at the root that is labeled with the feafture
and leads to the denotation ®f, anda(x) means that the root of the denotationxois
labeled witha.

The constraint systefT< is an extension of the well-investigated constraint sydtan{2,

4], which provides for equality constrainks=y rather than more general ordering con-
straintsx<y. The systenFT can be seen as a sub-systemFdi< sincex =y can be
expressed as<y A y<x thanks to anti-symmetry of the weak subsumption order.

The full first-order theory oF T is decidable [4] and has non-elementary complexity [37].

The decidability question for the first-order theoryff < has been raised in [17]. There,

two indications in favour of decidability have been formulated: its analogly Toand

its relationship to second-order monadic logic. However, we show in this paper that the
the first-order theory of FJ is undecidable Our result holds in the structure of possibly
infinite feature trees and, more surprisingly, even in the structure of finite feature trees.
Our proof is based on an encoding of the Post Correspondence Problem using a technique
of [33].

Once the undecidability of the first-order theory T < is settled, it remains to distin-
guish decidable fragments and their complexity. It is well-known that the satisfiability
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FT< FTo
Satisfiability of n° [18] n° [7]
positive constraints n3[18]
Entailment w/o quantifiers| n° [18] n3 [18]
Entailment with quantifiers Co-NP hard [17] PSPACE hard [17]
PSPACE complete [herg] PSPACE complete [here]
Full theory undecidable [here] undecidable [here]

fin

Fig. 1: Fragments of the first-order theoriesff< andFT¢

problem ofF T, its entailment problenp = ¢’, and its entailment problem with existential
quantifierse |=3x1 ...3x, @’ can be solved in quasi-linear time [31]. The investigation of
ordering constraints was initiated by Dorre [7] who gaveQ¢n®)-algorithm for deciding
satisfiability of F T<-constraints. This result was improved @gn?) in [18], where also

the entailment problem df T< concerningquantifier-freejudgmentsyp = ¢’ was shown
decidable in cubic time. The next step towards larger fragments of the thebiyofvas

to consider entailment judgments with existential quantificatipa3x; .. .3x, ¢’ which are
equivalent to unsatisfiability judgmentsA —3x1 ...3x,@’ with quantification below nega-

tion. As shown in [17], this problem is decidable, coNP-hard in case of finite trees, and
PSPACE-hard in case of arbitrary trees. Decidability is proved by reduction to (weak) sec-
ond order monadic logic (W)S2S. In a first reduction step, it is shown how to substitute
the structure of feature trees by the related structure of so-califidiently labeledea-

ture trees. We note that this step cannot be generalized to arbritrary first-order formulas
beyond entailment with existential quantifiers. Since the full first-order theory of ordering
constraints over sufficiently labeled (finite) feature trees can easily be encoded in (weak)
second order monadic logic, decidability of entailmenEdic with existential quantifiers
follows from the classical results on (W)S2S [32, 25].

This paper contributes the exact complexity of the entailment probléiit gfwith existen-

tial quantification. We prove PSPACE-completeness, both in the structure of finite trees and
in the structure of possibly infinite trees. This result is obtained by reducing the entailment
problem ofF T< with existential quantifiers to the inclusion problem of non-deterministic
finite automata (NFA), and vice versa. Our reduction of entailment is based on the fol-
lowing idea: Given an existential formul¢ we construct an automaton that accepts all

its consequences in form of so called path constraints. An inverse reduction in the case of
possibly infinite trees was first presented in [17]. In this paper, we present another inverse
reduction which also applies for finite trees.

Applications and Related Work. The application domains of ordering constraints over
feature trees are quite diverse. They have been used to describe so-called coordination phe-
nomena in natural language [7] but also for the analysis of concurrent constraint program-
ming languages [20]. The less general equality constraints over feature trees are central to
constraint based grammars, and they provide record constraints for logic programming [31]
or concurrent constraint programming [27, 15]. In concurrent constraint programming, en-
tailment with existential quantification is needed for deciding the satisfaction of conditional
guards. As mentioned above, our results are also relevant for constraint-based inference of
record types and object types. In this context, the entailment test has recently received
some attention as a justification for constraint simplification and as a means to check type
interfaces [24, 5, 35, 16, 10, 11].

Originally, weak subsumption has been introduced as a weakening of subsumption. The
subsumption ordering between feature structures [13, 28, 6] is omnipresent in linguistic
theories like HPSG (head-driven phrase structure grammar) [23]. According to the more
general view of [29, 7], the subsumption ordering and the weak subsumption ordering are
definable between elements of an arbitrary feature algebra (which include the structure of
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feature trees and all feature structures). Following [8], ordering constraints interpreted with
respect to the subsumption (resp. weak subsumption) ordering of arbitrary feature algebras
are called subsumption (resp. weak subsumption) constraints. Syntactically, subsumption
constraints, weak subsumption constraints, laiid constraints coincide but semantically
they differ. As proved in [8], the satisfiability problem of subsumption constraints is un-
decidable. The satisfiability problem of weak subsumption constraints is equivalent to the
satisfiability problem of T< constraints [7, 18] and hence decidable in cubic time.

Structure of the Paper. Section 2 reviews the definitions of feature trees and weak sub-
sumption constraints. We demonstrate the expressivity of the constraint language in Sec-
tion 3 and introduce some formulas used in later sections. Undecidability of the first-order
theory of weak subsumption constraints is shown in Section 4. Finally, we show the entail-
ment problem of existentially quantified constraints to be PSPACE-complete in Section 5.
We prove the correctness of our algorithm in Section 6 and its completeness in Section 7.

A short version of this paper has been published as [21].

2 Ordering Constraints

The constraint systefiT< is defined by a set of constraints, the structure of feature trees,
and an interpretation of constraints over feature trees. We assume an infinite cfet
variablesranged over by y,z, a set¥ of at least twdfeaturesranged over byf,g and a
setL of labelsranged over by, b.

2.1 Feature Trees

A patht is a word of features. Thempty pathis denoted by and the free-monoid
concatenation of pathsandrn’ asnr’. We havesrn = ne = . A pathn’ is called aprefix
of if 1 = n'n” for some pattn”. A tree domairis a non-empty prefix closed set of paths.

A feature treet is a pair(D, L) consisting of a tree domai and a partial functior :
D — £ that we calllabeling functionof 1. Given a feature tree, we write D ; for its tree
domain and.; for its labeling function. For instanceg = ({¢, f}, {(f,a)})

is a feature tree with domaid., = {¢, f} andL, = {(f, a)}. A feature tree

is finite if its tree domain is finite, andhfinite otherwise. Anode oft is an
element oD,. A noder of tis labeled with &f (r, a) € L;. A node oft is unlabeled if it is

not labeled with any. Theroot of T is the node. Theroot labelof tisL<(g), andf € F

is aroot featureof 1 if f € D;. A feature treet is fully labeledif L is a total function with
domainD;.

[ ]
o= | f
a

Given a treet with & € D+, we write ast[n] the subtree ot at pathr; formally Dy =
{n" | nn’ € D} andlyg = {(', @) | (nn', @) € L}
2.2 Syntax and Semantics

An FT< constrainte is defined by the abstract syntax

o = x3y|aX | Xfly | 1A @2

whereae L andf € F. In other words, ar T< constraint is a conjunction dfasic con-
straintswhich are eitheprdering constraints Xy, labeling constraints &), or selection
constraints kfy.

We define the structuréT< over feature trees in which we interpfeT< constraints. Its
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universe consists of the set of all feature trees. The constraints are interpreted as follows:

1<ty iff Dy €Dy andly Clg,
ti[flte iff Dy, ={n]| fre€ Dy }andLy, = {(m,a) | (fr,a) € Ly, }
a(t) iff (e,a)el,

The substructure df T< whose universe contains only the finite trees is denoteﬁﬂy.
We will often use the followinglecompositioproperty without further mention:

Proposition 2.1 If 11<t2 andt1[f]t} andty[f]t, thent) <1).

2.3 First-Order Formulas

If not specified otherwise, a formula is said to be valid (satisfiable) if it is valid (satisfiable)
both in FT< and FTl”. Our intention here is to treat both cases simultaneously and to
note a distinction when needed only. l®tand®’ be first-order formulas built frorf T<
constraints with the usual first-order connectives and quantifiers. We sayy tragils®’,
written ® = @', if ® — @' is valid, and thatd is equivalento @' if ® + @' is valid. We
denote with?/(®) the set of variables occurring free dn and with F (®) and L(®) the

set of features and labels occurringdin

3 Expressiveness of the First-Order Theory

In this section we introduce some abbreviations of formulas needed in Section 4. We use
the usual abbreviations for ordering constraints, for instance we xwtgfor -x =y, x<y
for x<yAx# Yy, x>y for y<x andx<y<zfor x<yAy<z

3.1 Minimal and Maximal Values

We can construct, for any formutg, formulasuxe andvx@ expressing that is minimal
(maximal) with the property:

HXQ = @A-3y(ely/X] Ay<X)
vXQ = @Ay (ely/XAy>X)

Here,y is a fresh variable not occurring i andg[y/x] denotes the formula where every
free occurrence of is replaced by. Typically, x occurs free inp but this is not required.
Note that, in contrast tgx and3x, px andvx arenovariable binders that restrict the scope
of the variablex; hencexis free inuxe and invx e if it is free in .

The formulapxe expresses thatdenotes a minimal tree satisfyigg which isnot necas-
sarily a smallest tree with this property. In analog¥p expresses thatdenotes a maximal
but not necessary greatest tree satisfying

fin

Example 1 The sentencéx (pxtrue) is valid in FT< and in FT_ (there even exists a
+ fin

smallest tree, namel{{e},{}). The formula vxtrue is not satisfiable ifFT_" but is
satisfied inFT< by any fully labeled tree with domain *.

The difference between smallest and minimal trees is important for the fortuunkex)
which expresses thatdenotes an atom in the lattice-theoretic sense, i.e. that it is a tree
strictly greater than the smallest trége}, {}) but with minimal distance (one feature or
one label more):

one-dist(X,y) Ly X<y

atom(y) = 3Ix((pxtrue Aone-dist(x,y))
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Example 2 The formula pxx[0]xAX[1]x) is satisfied ifFT< by ({0,1}*,{}), thatis the full
binary and everywhere unlabeled tree, and is not satisfiabléﬁ&” sinceFTln contains
no infinite trees.

3.2 Label Restrictions

The formulax~y reads< and y are consistenthat is whenevefr,a) € L, and(r’,a) € Ly
thena=a'":
X~y 1= Jz(x<zZAY<2)

For any labeh € £ we writex~ato express that the root &fis either unlabeled or labeled
with a:
x~a:=3Jy(x<yAa(y))

The following formula expresses that the root of a tree is unlabeled:
not-root-labeled(X) := X~aA x~b

wherea andb are two arbitrary different label symbols. We obtain a first-class status of
labels by encoding a labalas the feature trele},{(¢,a)}).

label-atom(X) := atom(X) A —not-root-labeled(X)

We can now express thatandy either have the same root label or are both unlabeled at
the root by:

same-root-label(X,y) := Vz(label-atom(z) — (X~z > y~2))

3.3 Arity Restrictions

We can simulate a first-class status of feature symbols by encoding a fédiythe tree

({e,f},0).

feature-atom(x) := atom(X) A not-root-labeled(X)

We can express thgthas at least all the root featuresdfy
Yz (feature-atom(z) A z<X — z<y)
The following formula expresses thahas exactly the root featurds, ..., f,:
x{f1,....,Ta} = Ixq,... ;X (X[ F]X2s A .. X[ Tn]Xn

AVY (Y[ f1]xe A ... AY[fn]Xn A same-root-label(X,y) — X<y))

These so-calledrity constraintshave been introduced in [31]. A decidable feature logic
where feature symbols have first class status has been investigated in [34].

3.4 Inductive Properties

We start this section by a demonstration of the expressivityTof and show that we can
express inFT< “inductive properties” of trees, that is properties that require an inductive
construction (for instance an automaton) to define. We conclude the section by the defini-
tion of the predicatetring-c(x) that we will need in the undecidabability proof of Section 4.

In the case of infinite trees it is in fact quite simple to express “inductive properties” of a
tree. For instance, we can express that the domaxrcohtains the sef0,1} * by

Jy (Y[o]y Ay[1]y Ay<x)
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The following formula says that the tree denotedkihas domai{ 0,1} * and that exactely
one of its nodes is labeled withwhereas all its remaining nodes are unlabeled:

a-singleton(x) = 3y,z(uy(Y[0]yAY[1]y A not-root-labeled(y)) A
Mz(z[0]zAZ1]zA a(2)) A
y<X<zA one-dist(y, X))

If a-singleton(x) is satisfied thely denotes the complete binary, everywhere unlabeled tree
(with domain{0, 1} *), andz denotes the complete binary, everywherkabeled tree. The
formulab-singleton is defined analogously. We can now express trignotes a tree with
domain{0,1}* and that all its nodes are labeled with eithesr b by:

X (Vy, z(a-singleton(y) A b-singleton(z) Ay£z — (y<xV ng)))

The idea behind this formula is the following: ansingleton and &-singleton are in-
consistent iff they have their label at the same position. Hence, the formula says that
{0,1}* C Dx and every node ot which is reachable via 0,1} *-path is either labeled

with a or with b. The minimality ofx yieldsDx C {0,1}*.

In case of finite trees we have to use another trick (which works also in case of infinite
trees). The next formula is crucial for our undecidability proof. A tregatisfies this
formula iff {e,c} C D; C {c}* and all its nodes are unlabeled:

string-c(X) := X{c} A not-root-labeled(x) A Jy (X[c]y A y<X)

The correctness of this definition string-c(x) with respect to the above stated semantics
follows from the following lemma where we write for the word c---¢ consisting ofn
lettersc.

Lemma 3.1 The formulady (x[c]y A y<X) is satisfied by iff c € D and for all k m > 0,
whenever &tk € D, then
™ <™

Proof. Let 1[c]t’ andt'<t. Obviously,c € D;. The inequality follows by induction:
For anym, if ¢c™ € D, thent[c™<t[c™. Furthermore, for ank with c™*+1 ¢ D, and
1[c™ ] <1[c™ we have that

™ = 1c][c™H] = T [c™K] <[ ™K <1]c™]

For the other direction, sinecee D there is a’ such that[c|t'. From the above inequality
we get by settingn= 0 andk = 1 that

v =1l <[ =1e] =1

4 Undecidability Results

Theorem 4.1 The first-order theories dFTi” and of FT< are undecidable.

The result holds for arbitrary (even emptg)and for F of cardinality> 2. For the sake of
clarity we use in the proof distinct label symbelsb, e and pairwise distinct feature sym-
bolss,c,p,1,r. We prove Theorem 4.1 by reduction of the Post Correspondence Problem
(PCP). The choice of PCP is motivated by the fact that our proof works by simulation of
an iterative construction, and that PCP uses a technically very simple iteration. This is
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different in nature to the technique in [8] for the proof of undecidability of the satisfiabil-

ity of strong subsumption constraints. There, Thue-systems could be used by exploiting a
correspondence between word equations and the algebraic properties of feature structures.
See [33] for a discussion of the proof technique employed in this chapter.

Aninstance of PCP is afinite sequetite ((pi,d))i=1,...m of pairs of words from{a, b} *.
Such an instance solvableif there is a nonempty sequeng@a, ... ,in), 1 <ij <m, such
that pj, --- pi, = 0, ---0i,. According to a classical result due to Post, it is undecidable
whether an instance of the PCP is solvable.

In the following, letP = ((pi,di))i=1,...m be a fixed instance of PCP. We say that a pair
(v,w) is P-constructed frona pair of words(V',w) if, for somej, v= p;V andw = q;w'.

We say that a seX of pairs of words iP-constructedf every pair inX is either(e,€) or

is P-constructed from some other pair¥ To encode solvability oP into the theory of
FTQ”, resp.FT<, we employ the following equivalent definition of solvability:

Proposition 4.2 P is solvable iff there is a P-constructed set X of pairs of words containing
a pair (w,w) with w# €.

4.1 Words and Trees

Given a wordw € {a,b}* over labelsa,b € L fixed above we denote its length |
and for a natural number & j < |w| we writew.j for the j'th letter of w. There is an
obvious one-to-one encoding functigfrom wordsw € {a,b} * to feature trees for which
we use the feature symbsland labele that we also fixed aboveqw) = (Dw, Lw) where
Dw={g,s,...,s™}, Lu(si) =w.j for 0< j < |w|— 1, andLy(s™) = e (see Figure 2(a)).

We define a left-inverse functiop, that isy(y(w)) = w, from feature trees to (possibly
infinite) words in{a,b}® as follows: Ift does not have root featueg or if its root is
unlabeled or has label different fromand fromb then y(t) = &. Otherwise let’ be such
thatt[s]t’. We definey(t) = a-y(7') if T has root labek, andy(t) = b - y(7') if T has root
labelb.

To express that denotes the fixed word appended with the denotationxyfwe define for
anyrn € {a,b}* a formulaapp,(x,y), such that

1. if app,[t,T'] thenmy(t) = y(1')
2. appg[y(w),y(nw)] is valid

for all wordsw and feature trees 1/, by induction orm:

appg(X.y) = Xx=Yy
appar(Xy) = (y) A3z(y[s]zA appy(X,2))
apppr(X,yY) = Db(y)AJz(y[s]zAappy(X,2))

Furthermore, we defineps(x), expressing that denotes a treewith y(t) = ¢, by
eps(x) := ~JyqslyV ~(a(x) Vb (X))
Finally, the following formula expresses thatlenotes a finite string:
finite(X) := =3y (Y[s]y A y<X)

In case 017:T1n this formula is, of course, equivalenttime.
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Fig. 2: Representation of strings and of solution sequences.

4.2 P-Constructions

Provided an appropriate encoding of sets of pairs of words and a predicate, s), ex-
pressing that the pafK;,x;) is member of the ses we can express thais aP-constructed
set of pairs of words and th&tis solvable:

constructionp(s) = Wy,y (in(y,Y,s) — ((eps(y) Aeps(Y))
VE'Z,Zl (in(Z,Z’,S) A v (apppj (Zay) A apqu (Zlay)))))
j=1.m
solvablep = 3s(constructionp(s) A X (in(X,X,s) A —eps(X) A finite(X)))

Lemma 4.3 For any predicaten(x, Y, z), if solvablep is valid then the instance P of the Post
Correspondence Problem is solvable.

Proof. Leto be a fixed value fos such thasolvablep holds. In particularconstructionp(c)
holds. We can show for all finite treast’ satisfyingin(t,7’,0) that there exists a set
containing(y(t),y(t')) which is P-constructed fron{e,e). The proof is by induction on

V()| + (). O

Lemma 4.4 There is a predicatén(x,y,z) such that if the instance P of the Post Corre-
spondence Problem is solvable thetvablep is valid.

Proof. The crux of the proof is to define

1. for any sequence of pairs of words= ((vi,wW;))i=1,...n a feature tre@(c)

2. apredicatin(y,, Yr,X)

such thain(t,t,p(c)) holds iff 1y = y(vi) andt, = y(w;) for some 1<i < n. There is,
however, no need to define a formula expressing that a feature tree is the encoding of a
sequence of words.
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Fig. 3: A possible value fox' such thabne-branch(x,x'), wherex s as in Figure 2(b).

Since we know already how to encode words as trees, we now have to define an appropriate
encoding of an arbitrary set of pairs of trees as a feature tree, together with a corresponding
formulain. The representation of a sequerﬁ(:e'i,tri))iﬂ“,,,n is given in Figure 2(b).

We define, for any formule, a formulap! x ¢ expressing thatdenotes themalleselement
satisfyinge. This formula is stronger thauxo in that it requires the existence of a smallest
tree satisfyingp in addition:

WX =@ AVY (ply/X] = x<y)

If x denotes a tree as given in Figure 2(b), then the forranabranch(x,x’) given below
expresses that denotes a tree as given in Figure 3.

one-branch(x,X') = 3xc (VX (string-c(Xc) A Xc<X)
AXe<X <X
AVX (Fz(Wz(x<z<X))))
In this formula,x’ is smaller tharx but is strictly greater than the-spinex. of x. The tree
X' can have only one of the-edges ok since the set of trees betwergandx’ must have

a smallest element. By the maximalityxf the treex' containsx. plus exactly one of the
subtrees ok starting with ap-edge (see Figure 3).

The following formulaselect(t', 1", ), wherec is as in Figure 3, expresses thtis the
treet'; andt’ is the treet’;:
select(yr,yr,X) = I (UX'(X <X A" (X'[]X" AX"<X"))
A3z(xX"[plzAZ1]yi AZx]yr))
From a trees’ as given in Figure 3, we get the tre€ (denoted byx”) containing at all
nodesc! with j < i a pair(t'},1"}) such that';<t'j and";<1"} (by Lemma 3.1). By the
minimality of ¢” we get thatt'; = r"j andt'; = 1"/ for all j <i, hence in particular for
j = 0 (see Figure 4). Combination of the two formulas yields
in(y;,Yr,X) = 3x'(one-branch(x,x") A select(y,Yr,X))

Now, it is easy to verify the conditions announced at the beginning of the proof. O
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Fig. 4: The value ofX in the formulaselect(y;,yr,x) wherex is as in Figure 3.

Note that this proof did not make use of the fact that the feature trees considered here are
partial. The proof of Theorem 4.1 transfers immediately to the structuresropletely
labeledtrees (both in the case of finite and of arbitrary trees), where dirde) is called
completely labeled L is a total function with domaib. In this case, the trees depicted in
Figures 2(b), 3 and 4 have to be completed by giving some label to the modes

5 Entailment with Existential Quantifiers

In [17] it is shown that the entailment problemfeT < with existential quantifier = 3x¢’
is decidable, PSPACE-hard in the case of infinite trees and coNP-hard in the case of finite
trees. We settle the precise complexity of this entailment problem in both cases.

Theorem 5.1 Entailment of FT with existential quantificatiorp = 3%¢’ is PSPACE-
complete for both structures ETand FT‘l”.
In Section 5.3 we modify the PSPACE-hardness proof given in [17] for the case of infi-
nite trees such that it proves PSPACE-hardness for both cases (Theorem 5.2). In particu-
lar, we show that we can encode the Kleene-star operator without need for infinite trees.
Containment in PSPACE is shown (Theorem 5.9) by reducing in polynomial time the en-
tailment problem to an inclusion problem between the languages accepted by nondeter-
ministic finite state automata (NFA). Language equivalence for NFA (and hence inclusion,
sinceA C B + B = AUB) is known to be PSPACE-complete if the alphabet contains at
least two distinct symbols [9].

5.1 Path Constraints

We characterize existentifll < formulas3xe by equivalent sets of path constraints (where
sets are interpreted as conjunctions). Feature path constraints for FT have been introduced
in [29] and have been used in [4] for a quantifier elimination procedure for FT. The abstract
syntax ofpath constraintsy is defined as follows, whemgnt’ € * anda € L:

yi= Xl | axn]) | xofnl~a | xAn<yAn] | xam~y2n]
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Jy3y 337 yy 37
x§3|/ X §)|/
f f
x?[fg~a
y< |Z H x?[fg] = |Z <
g g
a(z) a(z)

Fig. 5: Graphical Presentation of Example 4

The semantics of path constraints is given by extension of the stru€furethrough the
following predicates, which are defined on basis of the subtree selection funptjan-
troduced above.

T[] iff meD;

a(t[n]) iff (m,a) €l

t7n)~a iff e Dyimpliest[r]~a

n)<t?n'] iff me D;andr’ € Dy imply 1] < T[]

v?n’] iff mweD;andn’ € Dy imply t[n]~1'[n]

In the Section 5.2, we use path constraints for presenting typical examples of entailment
judgements. Path constraints are also helpful for proving PSPACE-hardness in Section 5.3.
In Section 5.5 we will construct a finite automaton that accepts all path constyaeris

tailed by3x¢ and thereby reduce the entailment problem with existential quantification to
the inclusion problem of finite automata.

5.2 Examples

A major difficulty in testing entailment with existential quantifiers is that there exist many
equivalentFT< constraints of quite distinct syntactic shape. This makes it very difficult
(if not impossible) to apply a standard technique for deciding entailment, which performs
a comparison of constraints in some syntactic normal form [2, 31, 18]. In this section we
present some examples showing the difficulties of deciding entailment statement. We will
come back to some of these examples in Section 5.5 to illustrate our solution.

We start with a rather simple case:

Example 3 The formulady(x<yAa(y)) is equivalent to Re]~a which is equivalent to
yFz(x<yAz<yAa(z)).

The next example of equivalent constraints with distinct syntactic shape is more complex.

Example 4 (see Figure 5) Both of the following formulas are equivalent3d ¢]~a and
hence equivalent to each other:

Iy 3AZ (x<yAY[fly Ay <zAZg]Z Aa(Z))
Fl 3y3y'3z3Z (x<yAY[fly Az<y AZglZ Aa(Z)

In the next example, a constraint is given that entef[$ g]~a for all a. Note that this
constraint thus also entails the constraints given in the previous example.

Example 5 (see Figure 6) If b c then for all a the judgement

XX AX <X AX"[g]X" Ab(X")A ol fdlma
X<yAY[fly AY<uAu>Z AZ[g)Z' Ac(Z') Fx7fg]~
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x <y

ol

X< X'y~ 7 = xfg~a
9] ]
b(x") c(z')

Fig. 6: Graphical Presentation of Example 5
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Fig. 7: Graphical Representation of Example 6

holds. In other words, if is a solution of the constraint displayed on the left hand side
and if fge Dy then the subtree af(x) at fg is compatible with any label a, and hence
is unlabeled.

Example 6 (see Figure 7) The following situation illustrates a non-trivial example for
entailment of selection constraints without existential quantifiers.

(YSUAUfJUAUSX)AXLSVAV[TVAV L<y) E Xfly

The right-hand side [X]y is equivalent to the conjunctiofy?e]<x?[f] A X[f]}) A
(x?[f]1<y7e]) of path constraints which are entailed by the first and second part of the
left-hand side, respectively.

5.3 Entailment is PSPACE-hard

In this section we show how the PSPACE completeness proof of [17] can be modified such
that it applies to the structure of finite feature trees as well. The formulas used in the earlier
proof require the existencdn]| of all pathsr in some regular languad® every solution

of the formula for an infinite language has to mapx to an infinite tree. Compared to

this earlier proof, the trick is here to use conditional path constraints which may constrain
infinitely many paths without requiring their existence.

Theorem 5.2 The entailment problem for existentially quantifiéd <-constraints is
PSPACE-hard in both the finite and the infinite tree case.

This follows from Proposition 5.6 (see below), which claims a polynomial reduction of the
inclusion problem between regular languages over the alpiabean entailment problem
between two existentid T< formulas. Notice that we have assumgdo contain at least
two features.

Our PSPACE-hardness proof is based on the fact that a satisfiable ordering cogstraint
may entail an infinite conjunction of path constraints, even in case of finite trees:

Example 7

1. forall n: x[flyAy<xAa(x) = x?f"]~a.
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2. forall n,m: x[flyAy<x | x?Z[f™M<x?f"].

3. forallme {f,g}" : x<X' AX[f]X AX[g]X' |= x?m]<x7[e].
For this reason the entailment problem RTf'” does not necessarily reduce to an inclusion
problem between finite regular languages (wh|ch is decidable in coNP [9]). We fix a finite
subsef C ¥ of features and consider regular expressions of the following form:

R = ¢|f|R|RUR|RR (wheref € F)

For encoding a regular expressiéthe main idea is to define an existential formula
O(x,R,y) for fresh variablex,y such tha®®(x,R,y) is equivalent to/\ ¢ - (r) X7[]<y?e].

Once this is done, it will follow immediately thai(R') C L(R) iff ©(x,R)y) E ©(x,R’,y).

It is not obvious, however, how to define such a formula. The reader might notice, that a
naive definition 0f®(x,R,y) yields some unintended compatibility relations to be entailed
too. Hence, we have to refine our main idea.

We define the formulaomeg-(X) expressing that all subtreesxfeachable via af-path
are compatible with each other, i.e. they have a common upper bound:

comg+ (X) 1= Jy(X<y A /\ By (YflY AY<y))

feF

Lemma 5.3 (Comon upper bound) comg+(X) | yvr € F* x?n|<y?[e].

For encoding a regular expressi®) a refined idea is to define an existential formula
O(x,R)y) such thatd(x,Ry) is equivalent tocomg=(X) A Are o (r) XAn|<y?[e]. We de-
fine for all regular expressiorR over F and variablesc andy, the existential formulas
O(x,Ry) and®’(x,R,y) recursively as follows.

O(x,RY) = comg+(X) AO'(X,R)Y)
O'(x¢,Y) = x<y
o'(x f,y) = Elz(x<z/\z[f]y)

(

(Xa RlUR27y) = (X Rl, )/\Gl(xv R27y)

O'(x,RiRz,y) = 3z(0'(x,R1,2 AB(ZRy,Y))
( Jz(x<zAO'(z R 2) AZ<y)

Apparently,©(x,R,y) has size linear in the size &

Lemma 5.4 For all regular expressions R

come<(X) | O'(XRY)+ A xAn|<yZe]

neL(R)
Proof. We proceed by induction oR.

£ 0/(x,e,Y) = X<y X <Y2le] = Ane (o) XAmI<y7e].
f: 0/(x,1,y) = J2(xszA 4 Hly) & XAT<Y7le] = Aner(r) XM <y7el.

RiURz: By induction hypothesiscomg«(x) entails the equivalence®’(x,Ry,y) <«

Ane c(ry) XATI<y?[e] AN’ (X Ro.Y) > Ane(r,) XM <yZle]. Hence come- (x) en-
tails ©'(x, RLURR,Y) > Ane (r,ury) XTI <Yy?g] also.

RiR2: By definition ©'(x,RiRy,y) = 3z(0'(x,R1,2) Acomg«(2) A ©'(z,Rp,y)). By in-
duction hypothesis,comg«(x) entails ©'(X,R1,2) ¢ Ag,cr(ry) XAm]<z7e] and
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come=« (2) entails®’(z, Ry, Y) < Ar,cr(r,) ZAm2] <y?e]. Hencecome-(x) entails that
0'(x,R1Ry,y) is equivalent to (1):

Elz( N\ xAm]<z?e] Acome-() A A z’?[nﬂgy?[e]) (1)

m1€L(Ry) mEL(Rp)

It remains to show thatomg+«(x) entails the equivalence between (1) and (2):

A Am]<y?e] @)

TEEL(Rle)

Since (1) obviously entails (2), it is sufficient to prove the validitycon g« (X) |=

(2) - (1). Leto be anFT<-valuation which satisfies bottomg=(x) and (2). We
define a tree such thaty, z+— 1 satisfies the matrix of (1). For this definition we use
a least upper bound operator on feature trees denoted by

T = L] o(X)[m1]

7'51€L(R1)HD(X(X)

Sincea. solvescomg= (x) there exists an upper boundaf(x)[n] | © € F *} as stated
by Lemma 5.3 and thus the least upper boarekists. We next demonstrate that
o,z — 1 satisfies the matrix of (1). The definition ofyields a(x)[r1]<t for all
1 € L(R1) N Dy, i.€. the variable assignmeatz — 1 satisfies the first conjunc-
tion in (1). Fromcomg=«(a(x)) it follows thatcomg«(t) holds, i.e. o,z — 1 satis-
fiescomg+(2). Furthermore, alft; € D, satisfy: t[mz] = e L(Ry) Dy o(X)[r1m].
Sincea is a solution of (2)o(X)[r1m2]<o(y) is satisfied by alit, € L(R). Thus
tnz] <o) is valid for allmp € L(Rp), i.e. o,z T satisfies\r e £ (r,) Z7m2] <Y?el,
the remaining conjunct in (1).

R*: By definition ©'(x,R*,y) = Jz(comg+(2) AXx<zA©'(z,R 2) Az<y). The induction
assumption yields thatome- (2) entails®'(z,R,2) +» A (r Z7n|<Z7e]. Hence,
comg=« (X) entails tha®®’(x,R*,y) is equivalent to (3):

Jz| comp: () Ax<zA N\ Zn|<Ze]  Az<y 3)
neL(R)
It remains to show thatomg+(z) entails the equivalence between (3) and (4):
A XAm]<y?le] )
neL(R¥)

In order to show the non-trivial implication, we assumeFar -valuationo. which
satisfies botltome«(x) and (4). We define a treesuch thato, z — 1 satisfies the
matrix of (3) as follows:

T o= Ll a®in]

neL(R)NDyx)

Note thatt is well-defined for the same reason as in the preceeding case. Our assump-
tions on the choice aof yields: comg+ (1), o(X)<t (sincee € L(R")) andt<o(y).

In order to show thatx,z— 7 is a solution of (3) it remains to provgn'| <t for all

' € L(R*)ND;:

] = || oMEER] <[] e®r] = <

m€ L(R*)NDgx) "€ L(R*)NDgx)
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O

Lemma 5.5 For all regular expressions Rand R

L(R) CL(Ry) iff compe(x) = A xAm]<y?e] » A x?An]<y?e]
I[GL(Rz) feL(Rl)

(%) (%)

/

Proof. The implication from the left to the right is trivial sindex) is a sub-conjunction
of (x) if L(R1) C L(Rz). For the other direction, we assuni¢R;) ¢ £(Ry) and show
how to contradict the entailment judgment to the right. We fix a woed= * from L(Ry) —
L(Ro) and a new feature € F —F (which exists sincé is finite whereagf is not). We
construct values for x andt’ for y such that(x) is satisfied bu{xx) is not. Both trees
are completely unlabeled; heneamg-« (1) holds. We define the domaly, to be the prefix
closure of the worath and the domai v to be the suffix closure dd. with the exception
of the wordh. For illustration, we display the treesandt’ for the wordr = fg below:

.\.f T.:/g.\.f
/9 Ih ./9
| h | h

It is easy to check thdk — 1,y — 1] satisfies(x) but not(xx) sincen € L(Ry) — L(Ry)
andh € Dy buth ¢ Dy O

Proposition 5.6 For all variables xy and for every pair of regular expressiong Bnd R:
O(x,R1,Y) = O(x,Ry,y) is equivalent toL(Rz) C L(Ry).

Proof. This follows from Lemmas 5.4 and 5.5. O

5.4 Satisfiability Test

In this section we recall the satisfiability test féf< introduced in [18], which we will
also need as a preprocessing step in our entailment test in Section 5.5. Clearly, satisfiability

(and hence entailment) depends on the choice of finite or infinite trees. For instdixe,
is unsatisfiable inFTfén but satisfiable ifF T<.

Let anextended constrairtte a conjunction of constraints and (atomic) compatibility
constraintx~y. From now on, we will only deal with extended constraints and freely call
them constraints for simplicity.

In the case of infinite trees, we say that an (extended) consgrésift-closedif it satisfies
the following properties for abk,y,z, x',y', f,a,b.

F1.1 x<xeo if xe V(o)

F1.2 x<zeg if x<yeopandy<ze o

F2 X<y eo if XflxXe€q x<yeo, yflyeo
F3.1 x~yeo if x<y€o

F3.2 x~zeq@ if x<yeopandy~ze @

F3.3 x~yeo if y~x€o

Fa X~y eco if XfiX e x~yeq yflyeco
F5 a=b if a(x)eo,x~yeq@, by e€o
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The rules ofF1 andF2 require thato is closed with respect to reflexivity, transitivity,
and decomposition of. The rules inF3 andF4 require thatp contains all compatibility
constraints that it entails (this is proved in [18]), éflrequiresp to be clash-free.

In the case of finite trees, we say that a constraiistF-closedif it satisfiesF1-F5 and the
additionaloccurs check propertly6 foralln> 1,X1,...,Xn+1,Y1,---Yn, f1,---, fn:

F6 xi<xnr1 g0 if  x[filyiAxa<yi€e foralll<i<n

The following resultis proved in [18] (Theorem 1 and Proposition 4). It holds in both cases,
for finite trees and for possibly infinite trees, but with the respective noti6rabbsedness.

Proposition 5.7 There exists a cubic time algorithm that, given a constraintomputes
anF-closed constraint containing or proves its unsatisfiability. Eveftclosed constraint
is satisfiable.

5.5 An Automaton for Path Constraints

In this section we show that for evefyclosed constrainp there is a non-deterministic au-
tomatonA,, of size polynominal in the size gfwhich accepts the set of all path constraints
which are entailed by and which mentions only symbols from a fixed set of variables, la-
bels, and features. Note thBiclosedness is a necessary assumption for our automaton
construction. Note also that the automaton does not differ in the case of finite and infinite
trees, only the assumed versionFe€losedness differs.

The algorithm of Dorre [7] can be seen in this perspective. There, the non-satisfiability of a
(in some sense normalised) weak subsumption constpair@s equivalent to the fact that
two labeling path constraine(x[z]) andb(x[x]) for different label symbols andb are
entailed byp, which could be checked by inspection of the automaton that describes all the
labeling path constraints entailed by

5.5.1 Path Constraints as Words

The automaton accepts worflg) associated with a path constrainbver some finite sub-
alphabet off U LUV U{<,~,|,2[,],(,)}. Infirst approximation, lefy) be theconcrete
syntaxof y. There is lowever aserious problem with recognizing the concrete syntax of
entailed path constraints:

Example 8 1. The set of words representing a path constraint entailed<yig not regu-
lar (when restricted to the variables ircx):

{() | x<x k= w} = D]~ | e 7} U pam <] | n e 77}

2. The set of words representing a path ordering constraint entailety by f ]y A x<y) is
not regular:

(A< | 0< m< n)
{X{f"l{ [n>0}
{xX?fM~x?f"] | m,n> 0}

{(w) [ YK Fly A x<y) = v}

ccl

We therefore have to alter the definition(@f) slightly but fundamentally. The trick is to
“factor out” the maximal common suffix of the two paths in a path constraint of the form
x?[mq]~y?[m2]. More exactly, we add the symbol # to the alphabet and alter the definition
of (y) such that:
(xAma] ~y?[m2])
(A ] <y?[mo])

xAn]~y?n'J#n”
x| <yZn'J4n"
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wherern” is the longest common suffix af; andn, such thatt; = nn” andn, = n'n”.

Hence, either one af ornt’ is the empty path, ar andn’ end with distinct feature symbols.
This solves the regularity problem of Examplé.8,, the following sets are regular:

{{v) | x<xE= v}

{(w) [ Y (K Ty Ax<y) = v}

{xe]~xPel#n | € F*}
{xAe]<xel#in | m € F*)
{x?e] <x?[f"#f™ | n,m > 0}
X[} [n>0}

{x? f"~x?el#f™ | n,m> 0}
{x?e]~x?f"#fM | n,m> 0}

cccicil

The definition of(y) also adjusts some simple but tedious regularity problems raised by
the validity of the following entailment judgement:

XA~y '] b= x|~y A

Example 9 The se{(y) | x?[gf]~y?[f f] |= v} restricted to words with features § and
variables xy is regular:

{XAg~yAf#fn | e {f,g}"}
U {Ze]~Zel#n |z {xy},me {f,0}"}
U {ZAe]<Zel#n|ze {xy},me {f,0}"}

*

5.5.2 The Alphabet of the Automaton

For each constraing we will define a non-deterministic finite automatdiy, whose alpha-
bet is the set:

-(}-((P) UL((P) U IV((P) U{Sa"’v?a [7]7(7)7#}'

Given a sequence of variablgswe will also define another automatmﬁ for the existen-
tial formuladxe, which is obtained fron#, by removing the local variables ifrom the
alphabet, i.e. by removing all transitions labeled with a symbol froiote that the local
variables irk matter for the definition of the states (but not the alphabetz)@ff they occur

in V(o).

To solve an entailment problem of the fopi=3%¢’ we construct the automatg, andﬂlf;,
and test for language inclusion. In order to avoid tﬁét accepts tautological constraints
not accepted byd, we will require in Proposition 5.10 th& (¢’) C 7 (¢) and ¥ (3x¢’) C

v (@), which can be imposed w.l.0.g. Furthermore, we assume throughout the paper that
bound variables are renamed apaet,when considering an entailment problgni= 3x¢ '’
we assumégx} N V(¢) = 0.

Every automatom, (and therebyAfo) falls into five parts (sharing only the initial stagg

and the accepting statg), corresponding to the five kinds of path constraints.

The construction of the automatch, is given in Figures 8, 9, 10 and 11. It is completely
spelled out except for one additional symmetry (rule 6) which can be expressed through a
dozen of further transitions. In the rest of this section we explain this construction.

5.5.3 Constraints as Graphs

Our construction of the automaton is motivated by considering constraints as graphs. For
instance, the constraint

x<xX AX[flyAna(y) Az<yAZ[gly
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11 g 5
12 /X 5 N xyee
13 /X N Y Aflyeo

14 /x — Qs
21 qgs a(—XL /x.a
22 /xa—/ya  X>yeQ
23 /xa R ya Xflyeo
24 sxxa— gi aXeo

Fig. 8: The sections of the automatc®, for path constraintg(r]| anda(x[x]).

can be depicted as the following graph, where variables are represented as nodes.

X

x <

—
<—
~

z <

Q
A

Intuitively, when the automator, accepts a wordy) it traverses the constraint graph
associated withp wherey is associated a certain traversal pattern. We will depict such
traversal patterns graphically; for instance, the above constraint ex®gitggd~a and

its associated graph allows for the following traversal:

7
o7 9999

In these pictures, the horizontal dimension corresponds to the ordei(iedt to right) and
the vertical one corresponds to feature selection (top to bottom).

Path Existence and Labeling Constraints (Fig 8). The subautomaton comprising rules
1.1-1.4 recognizes all the path existence constrajni$ entailed byp. Analogously, the
rules 2.1-2.4 serve to recognize the path labeling constra(rfs]) entailed byp. The
associated patterns look as follows.

X X
- -
y a(y)
—— N———
Xl = am)

Rules 2.1-2.4 differ from rules 1.1-1.4 in that its states of the fgyra memorize the
label a read at the beginning of some input waj@(x[x])) (rule 2.1) in order to check it
against a labeling constraint in(rule 2.4).
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31 0s ﬁ) \X'€

32 \xh = \y:h X<y€EQ
33 \xh N \y:f X[ flyeo
34 \xh ]S—W>[ /Y\X h, e

35  \yhg—= Xayhg X>X €@
36 /x\vh,g LN /XAy, h, f X[fIX'ep
3.7 /x\yhg E) WX  h£gVh=g=¢
38 Wy Wy x<xXy>Yeo,
39 Wy Wy KX ylflyeo
3.10 \x/x @* dr

Fig. 9: The section of the automatafi, for path constraint?[r;] <y?[mo]#n3 which is concrete
syntax forx?[myn3] <y?[momg].

Example 10 The constraint

x[flyny>y AY(glzAna(2)
entails &x[fg]). This constraint is accepted by the following transitions:
4s 2% xa—ts ya—S yia s za s g
Ordering Path Constraints (Fig. 9) The next group of rules 3.1-3.10 serves to recog-

nize constraints of the form?[n|<y?[n’]. Note thato|=x?[r|<y?[n'] iff = = m13M4 and
7' = momany for someny, wp, w3, andny, and there existg’, Yy, z such that

9o [ xm]<xX7e] (5)
o FE X?ng|<Ze] (6)
o F Ze<y?m3 (7)
o E Y7el<y?n] 8)
%)
where we may assume that
11 andn, have no common suffix except (10)

The associated graph pattern is as follows, where a dashed line indicates a paths of the
constraint graph and a dotted an arbitrary path.

\ 2 ,
1 v y’/
\ /
3 \Z/ 3
Ty

~ v

F xAmynang]<yAnonamng]
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41 g b vax

42 WX WY X<y, X' <y' €
43 WX Wy AflyxX[fly€o
4.4 X =5y X~ YEQ
45 ) SNy x>y, X <y€Q
46 X Oy Al x[flyee
47 HyxX —S)xy X ~Yyeo
48 X —SHny X>Y, X >y €¢
49 X Ly KflyxX[flyeo
4.10 ))Qx’ﬁl) gt a(x)ee
411 }X}X’E) gr  a(x),b(xX)ep,a#b

Fig. 10: The section of the automatof, for path constraintg?[n|~a.

Note thatnsn, is the maximal common suffix af1msns andnonsns. Consequently, the
concrete syntax of the constrak®{n 1mans) <y?[momans] as checked by the automaton is

X2 <y?[mo)#namns

Rule 3.1 starts readingx?[n]<y?[n']} which is continued by rules 3.2 and 3.3 verifing
condition (5). Rule 3.4 switches to the verification of condition (8) by rules 3.5 and 3.6.
Rule 3.7 switches to the verification of conditions (6) and (7) which is done jointly by
rules 3.8 and 3.9. The respective last symbols pandn, are memorized in the state (the
symbolsh andg in the staterx:\y, h,g), allowing rule 3.7 to verify condition 10. In order to
allow for 1 andn; to beg, the automaton also memorizes whether or not a feature symbol
has been consumed (rules 3.1 and 3.4). Slightly abusing notation, we allbvafolg in
these rules to denote either a feature symbal or

Example 11 The constraint from Example 6 entail$ffy. This selection constraint
is equivalent to the conjunction of the three path constrairt3|x x?[f]<y?e], and
y?[e]<x?[f]. The words corresponding to these constraints are accepted by the following
transitions of the automaton (for the constraint in Example 6):
X e fo
Qs — /X— /U— /U — (t
XA . e o f e € PRSI # e
gs — \Xe —\vie — \V:f —\y:f == sy\y, f.e —\y/y — s
YA (. € a1 € N f oyl IR
gs — \y:e —\U:e = /xi\U,e,e — yu\U .6 — /U\U e, f —\U/U — s
Label Compatibility (Fig. 10). Rules 4.1-4.11 check constraints of the ki¥®it]~a.
Note thate =x?n]~a iff there arey,y’,z,Z,v,V,b,c andn1,n}, 72, m, with 1 = mymo =
Ty, such that:

o £ xAm]<ydel Ay~z (12)
o E XAMI<YAIAY~Z (12)
0 E Viel<zina), (13)
o F VAI<Zmy (14)
¢ E b(W)Ac(V) and (b#cora=b=c) (15)
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51 \xh ]N—Y';[ \Y:\X h, e

52 \x\zhg— \y\zhg X<YEQ
53 \x\zh,g 4 \y:\z h, f X[ flyeo
54 wozhgs  \2w#  hzgvh=g=e
55 \w\zhg-= )y\zh,g X~ YEP
56 yx\zhg— )y\zhg X>YEQ
57 yx\zhg R Yyzh, X[ flyeo

5.8 }x:\z,h,g—#> \2X h#£gVvh=g=¢

5.9 WX# -  \WWiH X<y, X<yeo
5.10 \X\X# —f> WY # X fly,X[fly€eo
511 \wWX:# - WY X ~yeo
512 WX = - WY xSy xX>yeo
513 WX  — Wy  Xflyx[flyeo
514 wox 9 ai

6 XA~y < L(Ag)
YA XA e L (B

Fig. 11: The section of the automatof, for path constraint?[m]~y?[no]#m3 which is concrete
syntax forxy ?[mymg] ~xp ?2[moms].

The associated pattern looks as follows.

N TN ,
\
\ \ T
z ~ Y \
/ \
/ \
d 4
/ ~ yl
S T2y

|: X?[Ttthz]Na
if (b# cora=b=c)andnin, =mn,

We check the conditions (11) and (12) as well as (13) and (14) in parallel where we as-
sume, by symmetry, that; is a prefix ofr}. With the names used above, the automaton
consumesr; by rules 4.2—4.3, switchesto z with rule 4.4, then consumes, minus its
suffix 5, (which is identical tory minus its prefixti) by rules 4.5-4.6, switches frogi

to Z in rule 4.7 and consumes, in rules 4.8-4.9. Finally rules 4.10-4.11 check the label
constraints (15).

Example 12 In the case of Example 5 we obtain

6~ vax =5 vy =5 vy Xy X7 2y xm 7 S g

Path Compatibility (Fig. 11). Rules 5.1-5.14, in conjunction with rules 3.1-3.3, check
for constraintsq ?[m1]~Xx2?[m2]. One possible justification fap = x1?[m1]~x2?[my] is that
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there are variablegy,y», Y5,z u and pathsty, ), pa, k2, M3 such thatrty = mjpipops, T =
T kg, and

o FE x?ni]<y17e] (16)
¢ FE 1?7 mp]<u?e] 17)
¢ F x?ny<y:7e (18)
¢ F <y e Ayo~z (19)
¢ [ ue<zAu)] (20)
where we may assume that
my andn’, have no common suffix except (21)

Note that there is no assumption p#, i.e. g is arbritrary. This situation corresponds to
the following pattern, where the arbitrary pathis indicated by a dotted line.

X1 X2 /
\ \ T2
/ \
Ty \
yi yz\ My
\ \
25137 \\ /Z ~ )/2
7
\ s 2
U M

= xa?my pabiobs] ~X2 Aol Lo

The rules 3.1-3.3, 5.1-5.4 and 5.9-5.14 deal with this situation: Rules 3.2-3.3 consume
my and rules 5.2-5.3 consung; rules 5.9-5.10 and 5.12-5.13 consumeand i, re-
spectively,i.e., the part of the common suffix; |l that is explicit in the constraint graph,

and rule 5.14 consumes the rest of the common suffiwhich is arbitrary and does not
explicitly occur in the constraint graph. Condition 21 is checked in rule 5.4 in the same
way as it has been done for rule 3.7.

The second justification is similar but contains the switch through the compatibility con-
straint~ before the common suffix af; andr, instead of within itj.e., there are variables
y1,Y2,2,Z,uand pathst},m,, 5, py, e such thatry = e, T2 = n'nhpgp2, and

¢ E  x?ni<y17] (22)
¢ FE w?m<u?el (23)
0 [ xAno]<y2e] Aya~z (24)
¢ F Z7e]<nj] (25)
o F u?e]<Zw] (26)
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The associated pattern is:

o7 ™
1 N\

\l_J/ M1

H2

~

~

E X ?m) i p] ~Xe2mh i o]

For the traversal of this pattern we need the additional rules 5.5-5.8 (instead of rules 5.9—
5.11).

For both situations there also is the symmetric one (rule 6) which contains the switch
through the compatibility constraint in the branch fox;. We do not detail the automa-

ton checking for these possibilities since its definition is completely symmetric to the rules
3.1-3.3and 5.1-5.14.

Proposition 5.8 (Correctness of the Automaton)if (y) € £(43) then3xo |= .

Proof. By induction over the paths mentionedyn i

5.6 Deciding Entailment in PSPACE

Theorem 5.9 The entailment problem for existentially quantified <-constraints is in
PSPACE (and thus PSPACE-complete) in both the finite and the infinite tree case.

In order to decidep |= 3R¢’, we test satisfiability of ando A 3x¢’. By Proposition 5.7,
this can be done in tim®(n®) wheren is the size of the entailment problem. If one of
the tests fails, entailment is trivial. Otherwise, we computeFinosures ofp and ofp’
and construct the associated automdtaand 4%, in time O(n*). By Proposition 5.10,
¢ = Ix¢' if and only ifL(ﬁlfp,) C L(Ay). This inclusion is decidable in PSPACE [9].

Proposition 5.10 (Correctness and Completeness of the Entailment Tesbet ¢ and o’
be closedFT< constraints anck a sequence of variables such that all free variables and
features irdx¢' occur ing. Further assume thag A 3R’ is satisfiable. Then

¢ |=3x¢ ifandonlyif  £(43) C L(4)-
Proof. The proof is subject of Sections 6 and 7. The plan is as follows:

1. Correctness - the direction from right to left - will follow from a characterization
of formulas with (or without) existential quantifiers in terms of regular languages of
path constraints. For all sequences of variapkesd constrainte o the formulady o
is equivalent to the conjunction of path constraints recognized by the automi%gon
(see Proposition 6.6):

Iyeo =l AL | (W) € L(A%)}

2. Completeness is the the direction from left to right. We assqrize3xe’. Propo-
sition 7.3 asserts that for alt with 7(y) C ¥(¢) and F (v) C ¥ (o) it holds that
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(v) € L(Ap) implies¢ [~ (y). So, assume thaI(lef;,) Z L(A,), that is that there
isa(y) € L(lef;,) — L(4y). By construction of the automatoft)(y) C ¥/(3xe’) C

V(). By Proposition 5.83%¢’ = (y), and by Proposition 7.3p = (y), which
contradicts the assumptign= 3x¢’.

6 Correctness of the Entailment Test

The correctness part in the proof of Proposition 5.10 bases on a characterization of exis-
tential formulas in terms of regular languages of path constraints that are recognized by the
constructed automata (Proposition 6.6).

6.1 Properties of 4,

Clearly, the states of the automatdg carry a lot of cumbersome control information (for
testing two properties simultaneously, or for recognizing greatest common suffixes). We
first formulate three Lemmas 6.2, 6.3, and 6.4 that allow us to safely ignore the control
information. Based on these, we show the key Lemma 6.5 for correctness, which states a
closure property for the automatdh,.

In the following we note the fact that the automaty allows a sequence of transitions
from stateq to stateqg, by reading the word by

A F w0

Definition 6.1 (Shortcuts)
1. We writedy F\x —= \y if 4, - \x:g — \y:h for some gh € LU {e}.
2. We writed, F\x — )y if 4, F\x\z,h,g — )y:\z h, f for some zf, g, h.

Lemma 6.2 For all x,y,n, there exists a transition of the fors, I \x 5 yyif and only
if there are zZ and a decomposition aof, sayr = n'n” for somer’, 7", such that:

ﬂ(pl-\,ximz, ~Z e, Ayt /7 7T—”>/y

Proof. Follows from the construction of the automaton by some straightforward inductions
that we omit as they don't contribute further insights. |

Lemma 6.3 (Using Shortcuts)For all ¢,x,y, 1, v, a the following equivalences hold:

1. (x?U<y?v]) € L(A4,) if and only if there exist a (not necessary longest) common
suffixmt € 7 (¢)* of p andv and two transitions of the following forms for some
W,V z with u= W'mw andv = v’z

%I‘\XL\Z and ,‘Zlq)l—/yi)/z

2. (x2~y?v]) € L(4,) if and only if there exists u and a common suffig F (¢)*
of u andv, i.e. there are ftandv’ with u= p/'m andv = v'w, such that one of the
following symmetric properties holds:
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€Y ,‘Zl(pl-\ximu and le@l-\yiwu
(b) or ;Zl(pl—\xinu and ﬂ(pl—\yl)\u

3. (x?[n]~a) € L(A,) if and only if there exist variables;xx, and labels a =a, =a
or a1 # ap such that4, -5 yx and a(x)eofori=1andi=2.

Proof. In all three cases it follows immediately from the definition of the automaton that

if the respective path constraint is if{A4,), then there exist paths such that the claimed
transitions can be performed. The problem is to show the inverse direction for case 1 and 2
sincel’ andv’ may have a common non-trivial suffix.

For everyh € F U {e}, we define the functiotast, : ¥* — (¥ U{e}) as follows:

h ifr=c¢
I%Nm_{f if T =n'f for somen’

For the first claim, let/ = W'n’ andv’ = v"n’ such thagl” andv” have no non-trivial
common suffix. We show tha®[u"]<y?[v"]#r'n = (X[ <y?[v]) € L(A,).

ds X—°[> \X:€ rule 3.1
L”> wa:last (W) rule 3.2, 3.3
]S—W>[ JYA\x1,last (1), e rule 3.4
v, Y1\, last (W), last (V) - rule 3.5, 3.6
ﬂ \X1/Y1 rule 3.7
L’> \Z/Z rule 3.8, 3.9
BLEQT rule 3.10 andt € ¥ (¢)*

The second claim is proven analogously. The proof of the third claim is simpler since no
common suffix has to be factored out. O

Lemma 6.4 (Compatibility) Lete beF-closed and assume variablezx,z, and a pathr.
If there exist transitionsdy - /x — /z and 4, F /x — /2, then 2~z € ¢.
Proof. We slightly strengthen the statement of the lemma to the following claim:

C1 For allxy,%,m,21,2 if Xi~X2 € @, Ag - /X1 — /z1 and 4y + /X2 —— /2> then

u~2 € Q.

The lemma follows from claim C1 when choosirg X1 = Xo. In this casex € ¥(¢) and
F1.1-closeness ap yieldsx<x € ¢ such thaf3.1-closeness ap guarantees~x € ¢. We
next prove C1 by induction om:

1. Caser = &: There exist two sequences of variabl@s= us,...,u, = z1 andxy =
Vi, ...,Vm = 22 With the following transitions for Ki <nand 1< j <m;

ApF /i~ pipr and AgF Nj — Njig
The application condition of rule 1.2 implies forli < nand 1< j < m:
U>Uip1 €0 and  Vj>Vj1 €@

Sinceg is closed with respect to transitivity due d.2 we obtainz;<x; € ¢ and
<Xz € ¢, and byF3.2-closeness we gei~x2 € ¢. Hencexo~z; € ¢ since~
is symmetric due td-3.3. ThusF3.2-closeness again yields~z € ¢. Finally,
symmetry again implieg;~z, € ¢.
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2. Caser = fr’ for somef,nt': There exisu, Vi, Uz, V2 such that the following transi-
tions exist:

f !
g b /X1~ U — N1 /7
Ap = /%2 i>/U2—f>/V2 =5 /2
As proved in the case= ¢, this impliesu;~u, € ¢. The application condition of rule

1.3 yieldsus[f]v1 € @ anduy[f]v2 € @. Thus, the closeness under the decomposition
axiomF4 impliesvi~Vv; € ¢. Finally, z; ~z follows from the induction hypothesis.

O

Lemma 6.5 (Key Lemma) For all paths i, b2, 71,72, variables xyi,y2, andF-closedo:

L. 1 {y1 2] <x?ma]) € L(Ay) and(a(X[min2])) € L(A) then(yr punz]~a) € L(A)

2.1t (nAm]<xAm]) € L(A) and (y2Ae]<xAmmnz]) € L(A) then
(Y1 ama]~y2 7)) € L(Ay).

Proof.

1. Let (y1?m]<x?mi]) € L(A,) and (a(x[mimz])) € L(A,).  According to
Lemma 6.3(1), the first assumptidp 2] <x?m1]) € L(A4,) is equivalent to the
existence of1, Yy, ™y with 1 = Wjv1 andmy = wjv, and of transitions of the follow-
ing forms for some variable; :

Ap F\1 i) \Z1 and Ay = /X ﬂ) /71

The assumptioga(x[r1mz])) € L(Ay) yields the existence af,, v, with the follow-
ing transitions of4,, based on rules 2.1-2.4:

a( o™ RVE )
qS—>2.1/X-a—>2.2,2.3/U2-a—§2.2,2.3/V2-a—>2.AQf

Thus, there are two transitiori, - /x ﬂ) Juz andA, F /x ﬂ> /Z1 such that Lemma
6.4 and thd--closeness of yield z;~uy € ¢. We now construct a transition proving
(y17amo]~a) € L(Ay):

y17)

Os 41 \Y1\W1

—4243 \\A Ap F\Y1 LN \&

i>4.4,4.7 ) U2 Up Zi~U €@

A% A%

1—7?4.8,4.9 YV2p V2 Ap /U2 2 Mo
a

]L>4.10 as av) €o

2. We now assumey1 | <x?n1]) € L(Ap) and (y2?o]<x?mim2]) € L(Ay). Ac-
cording to Lemma 6.3(1) the first assumption 71| <x?[r1]) € L(Ay) is equiva-
lent to the existence ofy, Wy, my with py = pjvy andmy = vy and of transitions of
the following forms for some variablg :

Ap F\W1 i>\,zl and ﬂ(Pl—/xﬂwzl

The second assumptigm o] <x?[mim2]) € L(A,) yields the existence of, |, ),
such thai, = P,v2 andnimo = mhv2 and of the following transition for some vari-
ablez:

Ap E\Y2 ﬁ) \Z2 and Ay = /X 3) /2o
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X = X
7
7
s e
/ Ve /
Yi< M1 ’ /7 T
~ - 7 /7
~ /7 /7
SN/ 7/ =uv
RS Ty = TyV1
. /
: /; Mo = pV2
Yo Pl Ty = MHV2
~ 7/ .
S 0 i n,=mn  (case 2.(a))
< :
Mo 2 :
V2

Fig. 12: The paths in the proof of claim 2.(a) of the Key Lemma.

We distinguish two cases depending on whettigis a prefix ofr’, or vice versa.
This case distinction is complete sinckvin, = mhv2 such that the paths, andn),
can not diverge (see Figure 12).

(a) = is a prefix ofn},: There existt with njt = m, andu, such that:
le(pl—/Xﬁ)/Uzi)/Zz

Hence,nv, = vimp, and there are two transition®, - /x n, /U2 and 4, +

!
/X n, /71 such that Lemma 6.4 and tliecloseness of yield z1~u; € ¢. By
combining our intermediate results

Ao b\ 2\z1, zi~a €, Agk p L5 /2

Ay F\Y2 2, \2
with Lemma 6.3(2), we obtaify1 i nva]~y22[U5v2]) € L(Ay). The claim
follows sincep,va = [, andpmvs = V1T = Wimo.

(b) =}, is a prefix ofrn’: There existt with n’,n = ©j andu; such that:
ﬂ@l—/xg/ulﬂ/zl

Hence,nv i, = vo, and there are two transition®, F /x T2, Jup and 4, +

/X T2, /Z> such that Lemma 6.4 and tlirecloseness of yield zo~u; € ¢. By
combining our intermediate results
H’
Ao F\y1 —2\21
Ao\ 2, BoULEQ, Fpk Tz

with Lemma 6.3(2), we obtaitfy; A vino]~yo2omvimo]) € L(A,). The
claim follows sincgljvimo = pymo, and sincql,nvimy = Povo = Wo.
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6.2 Characterization of Existential Formulas

In the following we will slightly abuse notation and allow in writing path constraints their
concrete syntax. This allows us to wrifgL£(A4,) instead of A{y | (y) € L(A4y)} and
similarly for /\L(%X}). With this notation in mind, the characterization proposition can
be written as:

Proposition 6.6 (Characterization of existential formulas by path constraints)If ¢ is
an F-closedFT< constraint andk a sequence of variables then

e H  AL(Ap)

Proof. The implication from left to right follows form the correctness of the automata con-
struction (Proposition 5.8). For the inverse direction, we assume a sotutdr\ L(ﬂfp).

We define an extensiow’ of o by setting, for allx € 7(3xp): o (X) = a(x), and for all

x € {x}:

Duy = {n| (Krl}) € L(Ag)} U

{nn” | ze V(3R0), (Zn]<x?n]) € L(Ay),m'n" € Dy }
L = {(ma)] (|a X[n])) }

€ L(
{(nn", @) | z€ V(3xg), (ZAN]<XAn]) € L(Ay), (W'n", @) € Loy}
To complete the proof we have to show

1. thato!/(x) is a feature tree. This statement is not completely obvious ¢ofX}:
(@) Dy (x is non-empty since belongs to the input alphabet of the automathp
WhICh therefore accepts(e]|).
(b) Dy (x is prefix closed, as shown in Lemma 6.7.

(¢) Ly (x is a partial function as shown in Lemma 6.8 which mainly relies on the
Key Lemma 6.5.

(d) Inthe case of finite trees, we have to show Dgty is finite. This is done in
Lemma 6.9.

2. thato! is indeed a solution af. This in done in Lemma 6.10.

Lemma 6.7 Dy (x) is prefix closed.

Proof. The only interesting case is€ {X}. The proof relies essentially on the following
claim which relies directely on the definition of the automagiy

C2 Forallx,, (X[t]}) € L(4,) iff there existsy such4, - /x — /y.

We show the prefix closeness bf,(x) as follows. Supposef € Dy(y. There are two
cases according to the definitionf;

1. Casgxrnf]l) € L(A4,): Claim C2 yields the existence p&uch thatq, - /x -, /Y.
Hence there also exisswith 4, - /x — /z such that Claim C2 yield&(r]}) €
L(A4y), .t e Do (x)-

2. Case existg, [, [',z€ V(3Ixe) with nf = pp’, (W] <x?W]) € L(Ay) andp'y’ €
Doz We d|st|ngU|sh two sub-cases:
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(@) If W’ = ¢ then (Z2[W]<x?rnf]) € L(A4y). Hence, by Lemma 6.3 there are
M1, ko, B With ' = pypg andn f = popiz and a variablg such thatd, F\z A, \Y
andA, - /x e, /Y. We distinguish again two cases:

i. w3 =¢, henceyp, = nf. Inthis case, there is a variabjésuch that4, -
/x— sy, hence(X[n] ) € L(A,) andn € Dy x).

ii. w3=u5f. Inthis case, we obtain from Lemma 6.3 tiiz®[p1] <x?p]) €
L(Ay). Sincepupf € Dy, ks € Dy, by prefix-closeness of the do-
main ofo,(z), hencalaply = € Dyx)-

(b) Casgt’ = [I"f for somell”: SinceD, is prefix closed, we Know'fl” € Dy .
Hencen = pii” € Dy (y)-

Lemma 6.8 Ly (x is a partial function on By y).

Proof. It is again sufficient to assumes {x}.

1. We first show that the definition domainlof, 4 is a subset 0D (), i.e. we prove
forall m,athatif (, @) € Ly (x) thenr € D (). There are two cases to be considered
according to the definition df /).

(a) Casga(x[rn])) € L(Ay): From the definition of the automaton it is easy to see
that(x[r]|) € L(Ay), hencert € Dy ().

(b) Caser = py’ for somep 1", z € V, (ZW]<x7L) € £(A,), and (W', a) €
Lo(z: Hence W' € Dy, which impliesnt = u’ € Doy ).

2. We show that the relatiany () is functional,i.e. for all T,a,bif (r, &) € Ly and
(m,b) € Ly (x) thena=b.

(@) Suppose thdtr, a) and(r, b) are both contributed th () by the first clause
of its definition. Then, by Proposition 5.8,

¢ = A\ L(A)  a(X{n]) Ab(X[])

such that the satisfiability af (which follows fromF-closeness ap and Propo-
sition 5.7) impliesa = b.
(b) Suppose that both pairs have been contributed,tg, by the second clause of

its definition. There exist paths |/, ", v,Vv',v" and variabley,z € V such that
= pe’ = v and

L (YAW]SXAM]) € L(Ap), (WY, ) € Dyyy)

ii. (Z2V']<x?V]) € L(A,), (V'V",b) € Dy(y
Sincepp’ = vv" eitherpis a prefix ofv or vice versa. Without loss of gener-
ality, we can assume thatis a prefix ofy, i.e. p= vr; for somen;. The Key
Lemma 6.5 impliegy?[W]~z?[v'n1]) € L(4,). The assumptiop,z € V(3%o)
and the Correctness Proposition 5.8 yield:

0 F ALA) E yA~zVI] B yAdW )~z

It remains to show that; " = v"" which then impliesa = b since (W', a) €
Da(y) and(v'v", b) € D). This can be seen as follows. Singe= vy we
know pp’ = vrap”. In combination withup” = vv” this impliesvv” = vy’
and hence” = w1l as required.
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(c) Suppose thar, a) is contributed by the first clause of the definitionof; )
and(w, b) by its second clause. There exist pathg’, X’ and a variabley €
7 (3x¢) such thatt = uy’ and

(YA <) € L(Ag), (W', b) € Dyyy)

ii. (@(x[uH])) € L(A)
Part 1 of the Key Lemma 6.5 impliég?['’|~a) € L(A4y). Sincey € V(3Ro)
the Correctness Proposition 5.8 yields:

o E ALA) E yl'~a

Sincea is a solution ofA L(43) and(W/W’, b) € Ly(y) we concluded = a.

Lemma 6.9 If we consider the model of finite treEg";” thena!(x) is finite for all x.

Proof. LetV = ¥(3x¢), and letD, be finite for allz€ V. We have to show thdd )
is finite for allx € {x}.

In the case of finite feature trees, the following axiom is requirel-bioseness of:

F6 xi<xny1 ¢ if x[filyiAxqi<yiee  forall1<i<n

Letn be the number of variables gfandd be the maximal depth of any tregz) forze V.
Note thatd is finite sinceV is finite and all treesi(z) for z€ V have finite depth.

We show that for alk € {X} the length of the paths iD(y is bounded byn+d. Let
M=T1-Tp € D(xr(x).

1. Casex[n]l) € L(A,). Then we have

Ag b /x5 /x5 Y1 =55 /X0 T2 Mo o~ fYp =55 [Xpid

and hence, with an argument as in the proof of Lemma 6.4 xthaKy; € ¢ for all
1<i < p. By F6-closeness, all variables have to be different, hengge< n< n-+d.

2. Caser = mn”, (Z2n'|<x?m1]) € L(Ap) andn'n” € Dy . In this casgn”| < d by
assumption antt1| < nas in the first case, henpe= |nt1| + || < d +n.

O

Lemma 6.10 The variable assignment’ is a solution ofp (if o is a solution ofA L(ﬂl;f)
which we assume).

Proof. LetV = 7/(3xo) be the set of global variables. We have to show that all basic
constraints inp are validated by:'. There are three kinds of basic constrairtsc), X[ f]y
andx<y, and we have to consider all combinationsxandy being inV or not. Hence
there are 10 different cases.

1. Caseqfly € @, x,y € V both global. In this case we have

{14, (2 F]<y2le]), (yAe] <x?If])} € £(A)

These three path constraints are hence satisfied, land so isx[f]y which is also
satisfied by’ sincex,y € V and thusu(x) = o/ (x) ando(y) = alphd(y).
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2. Case(fly€ @, xeV global,y ¢V local. For allr,a, we have to prove the following
two equivalencest € Dy iff fr € Dy(y) and(m, @) € Loy iff (fr, @) € Loy

(@) We assume € D (y) and showfr € Dy x):

i. Caser is contributed toD,, by the first clause of its definition,
i.e. (y[n]l) € L(Ap). The assumptiox[fly € ¢ and Claim C2 imply
({fr]l) € L(Ay) and thus, since e V, (X[ fn]{) € L(A4y). Sincea.is a
solution £(A43) we concludef € Dy x-

ii. Caser is contributed tdD,(,) by the second clause of its definition, i.e.
there exisy, /', )’ and a variable € V such thatt = " and:

(ZM]<y?W)) € L(Ay), WK € Dy(y)

The first condition(zZ?[W']<y?[H]) € L(A4,) and assumptior[fy € ¢ yield
(Z2W]<x?[fH]) € L(Ap) dueto Lemma 6.3 part 1. Sinzg € V we obtain
(ZW]<x?[fH)) € L(A}), and sincen is a solution of £(43) and since
Hy' e Doc(z) thatfrn = fuy' € Doc(x)-
(b) We assumén € D, and showr € D (y). Applied to our assumptiox{ f]y €
¢, Lemma 6.3 implies:

(XAF]<y?e]) € L(A)

In combination withfr € Dy andx € V the second clause of the definition
of Doc’(y) yieldsm € Doc’(y)-

(c) We assumén, a) € Ly (y) and show(fr, @) € Ly x)-

i. Case(r, a) is contributed td.(y) by the first clause of its definition. Thus
(a(y[r])) € L(A4,) such tha[f]y implies (a(x[fn])) € L(A4,) and thus,

sincex e V, (a(X[fn])) € L(Ag). Sincenis a solutionL(Ag) we conclude
(fTC, a) € La(x).

ii. Case(m, a) is contributed td_,(,) by the second clause of its definition.
There exisy, I/, " and a global variable € V such thatt = p” and:

(W] <y?H)) € L(Ay), (MM, @) € Loy
Due to Lemma 6.3 this implie&?[u'] <x? fW]) € L(A,) and hence, since

zx eV, that(ZZW]<x? fW]) € L(4}). Sincea is a solution ofA L(4g)
and(W'Y’, @) € Ly we obtain that fuy’, a) = (fr, a) € Loy
(d) We assuméfr, a) € Ly and show(r, @) € Ly (y). The assumptior[f]y € ¢
and Lemma 6.3 imply
A f]<y?e]) € L(A)
In combination with(fr, a) € Ly the second clause of the definitionlaf )
yields(n, a) S Lal(y).

3. Case(flye€ ¢,x¢V local,y € V global.

From now on we only prove the assertions concerning the domains of the trees, the
proofs for the labeling functions being analogous as we have seen in the case above.
So, we have to prove the following equivalence formalkt € D ) iff fr € Dy

(@) We assume € D) and showfr € D (y).
Sincex[f]y € ¢ we have thaty?[e] <x?[f]) € L(A4y), hencefr € Dy () by the
second clause of the definition af.

(b) We assumém € D(x) and showrt € Dy .
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i. Suppose thafrn € Dy () follows from the first clause of the definition
of Dar(x).
There existy’,u such thatZ, - /x LN /Y — u. The closeness @f under
the decomposition rulE2 yieldsy'<y € ¢. Hence 4, |- /y =y Sy,
i.e.(y[r]{) € L(Ay), and hence € a.(y).

ii. Suppose thafr € Dy (y follows from the second clause of the definition
of Dy/(x) Hence there exigt, W'y’ andz € V such thatfn = py” and:

(ZM]<x?W)) € L(Ag), WK € Dyy)

According to Lemma 6.3 there exist a suffbof i andy, sayp = vv and
W = V'V and variables, v such that:

ﬂlq,l—\zimv and ﬂ@k/xiuviuu

Sincefrn = vv" there are three cases, depending on whether the leading
f in fr belongs tov, V orto .
A. Casev = fv" for somev”.

Sincefr = vV’ there is &/ such that

jzlq,l—/x—f>/3/v—”>/v

Due to theF2-closeness o andx[f]y € ¢ we obtain thay'<y € ¢.
Hence, lemma 6.3 yields

(2] <y?v'V]) € L(4,)

hence(z2[W]<y?[v'V]) € L(Ay) due toy,z€ V. Sincea is a solution
of L(A3) andp'l” € Dy, we concluder = vVl € D).

B. Casev =¢ andV = fv for someji:
Similar to the case above but with the decomposition F2l@pplied
tov.

C. Casev =V =¢andy’ = f|r'.
In this casqu = ¢, hence(Z?[W']<x?[e]) € L(A4,) and consequently by
rule 3.10 of the automatoriz?[p’ f]<x?[f]) € L(A4y). Henceo is a
solution of (zW' f]<y?[e]), from which we conclude that € Dy y).

4. Case(fly € 9, x,y ¢V both local. We omit this case which is similar to the previous
one.

5. Casex<ye€ ¢ andx,y € V. This case is trivial sinc&?[e] <y?e]) € L(Ag) and since

o is a solution of£(45),

6. Casex<ye @ andxeV,y¢ V. Letn € Dy(y). By construction of the automaton,
(x?e]<y?e]) € L(Ay), hencen € Dy (y) by the second clause of the definitionodt

7. Casex<y € pandx¢V,yeV. Letn € Dy (x We have to show that € D).
(@) If (x[r]l) € L(A,) then, by construction of the automatdgir]l) € L(Ay).

Hencer € Dyy) sinceoa is a solution ofL(A4g).

(b) If there is a(Z2W]<x?Au]) € L(Ay) With z€ V, W' € Dy andn = p’,
then we also havéz?['|<y?[H]) € L(4,) by construction of the automaton,
and hencgzZZW|<y?[W)) € L(A}) sincey,z€ V. Sincep € Dy (y and since
o is a solution oi?e]<y?e], we conclude that € D (y) = Dyy), and hence
T e D(x(y)-
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8. Casex<ye€ ¢,x¢V,y¢V. Similar to the previous case.

9. Casea(x) € ¢, andx € V. This is trivial since in this casa(x) € L(A4,), ando. is a
solution of L(4,) that coincides with’ onx sincex € V.

10. Casa(x) € ¢, andx ¢ V. Omitted.

7 Completeness of the Entailment Test

We first recall some known results on simpler forms of entailment and then prove Proposi-
tion 7.3 from which the completeness of the entailment test follows.

7.1 Simpler Forms of Entailment

The following results on simpler forms of entailment from [18, 17] can be derived from
the existence of least solutions for satisfiable constraints. These results will be used for
proving the completeness of our entailment test as stated in Proposition 5.10.

Proposition 7.1 (Quantifier Free Entailment [18]) If ¢ is F-closed thenp = x<y if and
only if x=y or x<y € ¢, ando |= x~y if and only if x=y or X~y € ¢.

Proof. Both properties are subsumed by Proposition 6 in [18]. |

Proposition 7.2 (Entailment of Simple Path Constraints [17])Let ¢ be satisfiable and
F-closed. For every variable ® 1/(¢) and all a « the following two equivalences hold:

1. @ = X[} iff (rll) € L(4y)
2. = a(n)) iff (a(x(x])) € £(A)

Proof. Modulo notation, this proposition is identical to Corollary 5.4 in [17]. Our notation
(X[n]l) € L(Ay) used here is equivalent to the existence @fith ¢ - z?[e]<x[rn] in the
notation of [17]. Similarly{a(x[r])) € L(A,) is written@ F a(x[r]) in the notation of [17].

|

7.2 The Completeness Proof

In this section we prove that our automaton construction and, as a consequence the entail-
ment test, is complete.

Proposition 7.3 (Completenessyor all constraints ¢ and path constraintsy with
V(y) C V(e) and F (y) C ¥ (9):

if ¢ |=y then(y) € L(A)

The proof will proceed by induction on the length of the paths used in the path constraint

In the induction step we will need to apply the induction hypothesis on path constraints with
smaller paths. The idea is to remove a featueg some positiow of the path constrainy
entailed by the constraing, thus yielding an extension’} of ¢ to be defined exactly in
Definition 7.4. Then the induction roughly works as follows:

e From the hypothesis, conclude that the path constygimtbtained by removing at
x from y is entailed by the extended constrajt, thanks to Lemma 7.6.
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¢ Apply the induction hypothesis to conclude that the path contraint with smaller paths
V' is recognized by the automatehyx of the extended constraint.

¢ With a simple argument we will get that the original path constreiig also recog-
nized by the automatafiyx of the extended constraint.

¢ Finally, we conclude that the original path constrajris recognized by the automa-
ton 4, of the original constraint, thanks to Lemma 7.7.

Definition 7.4 (Constraint Extension) For all constraints¢ and features f fix a fresh
variable % and define thextensionp’ of ¢ atx andf as follows:

Of =0 AX[f]xe A ADXLy| XY X< X AX[flY AY <Y€ ¢}
MNy<xs [3X,Y 1y <Y AXTE]Y AX < X € ¢}
Ny~xi,xi~y| 3K,y X <X AX[F]Y AY ~y € ¢}
Ay~xs,xi~y | 3K,y x~X AX[E]Y AY<Y' € @}
Xt < Xf AXf~Xg

> > > >

Lemma 7.5 If ¢ is satisfiable andF-closed, therp’ also is satisfiable anf-closed.

Proof. Slightly tedious but straightforward. See Lemma 7 of [18] for the proof. a

Lemma 7.6 (Semantic Properties of Extensions}or all x,y, 7,7’ ,a, f:
1. If = x?[fr]~athenet |= x; ?n]~a
2. It |= x? fr]<y?n’] thengy | x Am]<y?(]
3. It |= xn<y?{f'] theng) = x2m]<y; %]
4. If ¢ |= XA frj~y?[n'] theng = x; n]~y2{]
5. If ¢ |= xAm]~y?{ '] theng} = x2m]~y; '
Proof. For illustration, we check only case 1.

¢ Ex?fn]~a implies ¢ |=Vx:(X[f]xs = X; ?[n]~a)
implies @ AX[f]xf =Xt ?[n]~a
implies ¢} |=x¢?n]~a
The other cases are proven analogously. O

Lemma 7.7 For all ¢ and path constraintay of one of the forms 1P[ni]<ux?[my],
ur 1] ~u2?mz], or u?m]~a, and with?(y) C ¥(¢) and F (y) C F(o) :

It (W) € L(Ag) then(y) € L(Ay)

This statement is repeated as Lemma 7.9 in Section 7.3 and proved there.

Proof of Proposition 7.3The proof is by case distinction over.

1. y=Xn]l: If ¢ |=x[xr]{ then(x[n]]) € L(A,) by Proposition 7.2.(1).

2. y=a(xn]): If ¢ |=a(x[rn]) then(a(xX[r])) € L(A,) by Proposition 7.2.(2).
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3. y = x?[n]~a: We assuméx?[r|~a) ¢ L(A,) and showp = x?[r]~a by induction

onrm.

n=¢: We distinguish three cases, depending on the numlzérdistinct labelsc
such thatx?[e]~c) € L(Ay).
n=0: Letbbe an arbitrary label distinct from Then clearlyp Ab(x) is F-closed
and satisfiable and entaitsc?e]~a. Hencep [~ x?e]~a.
n=1: Letb be the unique label such tha@t?e]~b) € L(A4,). The assumption
(x?[n]~a) ¢ L(A4,) impliesa# b. Clearly,¢ Ab(x) is satisfiable and en-
tails -x?[e]~a. Hencep [~ x?e]~a.
n>2: This case is impossible under our assumption tha]~a) ¢ L(A,),
since the automaton has the property that wheng®s]~b), (x?[e]~c) €
L(A,) for b # cthen(x?[e]~a) € L(A4,) for all labelsa.
n=fr": By Lemma 7.7,(x?n|~a) ¢ L(Ay:), and hencgx;An'|~a) ¢ L(Ay).
By induction assumption this implias; [~ x¢?[n'|~a and hence, by clause 1
of Lemma 7.69 [~ x?[ fn']~a, that is,p [~ x?n]~a.

.y =x?r]<y?[n']: Assume thatx?[r]<y?[n']) & L(A,). We showp & x?[r] <y?[n]

by simultaneous induction ovarandn’.

n=n'=¢ Theny = x?[e]<y?[¢] is equivalent to the basic constraity. Since
X,y € V() andg is F-closed, Proposition 7.1 implies that~ x<y if and only
if x<y & ¢. However,(x?e]<y?[e]) ¢ L(A,) impliesx<y & ¢, again due to
F-closedness, and henge£ x<y.

n=fr": By Lemma 7.7{x?[frn"]<y?n']) & L(Ay) and hencex; An"]<y?n']) ¢
L(Agy). By induction assumption this implieg; = x; An"]<y?[n'] and hence
o = x? fr”]<y?n'] by Lemma 7.6, clause 2.

' = fr: Symmetric, using clause 3 of Lemma 7.6.

.y = xX?n]~y?n']: Assume thatx?(n]|~y?n']) & L(A,). We showp & x?[]~y?[n']

by simultaneous induction ovarandn’.

n=n'=¢ Theny = x?[e]~y?[¢] is equivalent to the basic constrainty. Since
X,y € V() andg is F-closed, Proposition 7.1 implies that~ x~y if and only
if x~y & . However,(x?e]~y?e]) ¢ L(Ay) impliesx~y & ¢, hencep j~= x~y.

n=fr": By Lemma 7.7,(xfr"]~yn']) ¢ L(Ay), hence(x;n"]~yAn']) ¢
L(Ag). By induction assumption this yields} |~ x; n"]~y?r'] and, by
Lemma 7.6, clause 4 [~ x?[ fn"|~y?n'].

7' = fr”: Symmetric, using clause 5 of Lemma 7.6.

7.3 Details of the Completeness Proof

Lemma 7.8 Let ¢ be anF-closed constraint, gtu, € V(9), x€ V a variable, fe ¥ a
feature, andty,mp, 3 € F ()" paths with features fronp.

1. Ifthere exists a variablejuc V(@}) such that the extensiapy satisfies

Ay F \Uo I, \Ui, and Ay F /un 2, /Ui,

then(uo?[r1]<un?m2]) € L(Ay) holds for the nonextended constraint
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Uo Un o
RJ\ / io ~ Ui3
TT
Ui, 3

Fig. 13: The transitions used in the proof of Lemma 7.8.
2. Ifthere exists a variablejue 9/(9}) such that the extensiagi satisfies
Ag F\Uo —\Ui,  and Ay F\Un 23 Ui
then(up?[r1]~un?[moma]) € L(A4,) holds for the nonextended constragnt

Proof. The proof of both parts are so similar that we can savely restrict ourselves to show
the slightly more envolved part 2.

We can decompose the transitions into (see Figure 13)

Ag: F\Uo l>\ui1, Aps = \Un E>\ui3,
Ags = /i, B iy, Uip~Uig € 9.

Letgbe the sequence of states of the transitigg k- \Uo TN \Ui, , followed by the states of
the transitiondyx - /u;, 2, /Ui, in reverse order, and without the last statg , followed

by the sequence of states of the transitﬂ}ﬂ F \Un T2, \Ui, in reverse order. Hence the

first state ofg’is \Up, the last state igu,, and the length of} is the length of the three
transition sequences plus 2 (since we ignored one occurreneg)of

Let (uo,...,un) be the sequence of variables occuring as first variable-symbol in the states
of g. Thus, the length of this sequeneet 1, is equal to the length af, andu andup,

are those of the lemma. Furthermore, ileti, andis the indices corresponding to the
above decomposition of the transitions (see also Figure 13). This sequence of variables is
exactly the sequence of variables that we encounter in the graph of Figure 13 when, starting
from up, we go downry, then uprs to uj,, over tou;, and then up ta,.

We prove(up?[m1|~un?[moma]) € L(Ap) by well-founded induction on the lexicographic
order on the triple of natural numbens,, my, my) defined below.

my is the length ofuj,, ..., un), i.e.n—iz+ 1.
my, is the number of occurrencesf in (ug,...,un).

my, is the length ofuo,...,un), i.e.n+ 1.

The idea of the proof is to remove eitheg or else the left-most occurrence xf from
the sequenc@u, ..., Un). The induction step requires a number of case distinctions on the
shape of the given transitions.

1. Casd, =0.

(a) Caseéz =n. Thusug~un € ¢%. Sinceup, un € V() it follows thatug~un € ¢.
The F-closedness of yields (up?[m1|~un?[m2na]) € L(Ay) sinceny = np =
n3 = € in this case.
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(b) Caseiz < n. Sincen; = mz = &, we can apply the induction hypothesis to the
situation whereig andu, are swapped whereby the measnmgis strictly de-
creased. Hencéun?{mo]~uo?e]) € L(Ay) and by symmetry of the automaton
construction(up?[e]~un?[n2]) € L(Ay).

2. Casdy #0.

(a) Casau; € V(¢). We can apply the induction hypothesis(ta, . . .,un) since
the measuren, is decreased properly whereag andm, remain unchanged.
For all constraints that might connagj to uz, the expected conclusion can be
composed from the induction hypothesis and Lemma 6.3.

(b) Caseu; = xs. We can assume the transition sequeAige k- \Uo , \Uj, to

be non-empty since it is not possible to havgf]ug (by construction ofp}).
Hence, should this transition be empty the relation betweemdu; is up<uz

we can take this as partﬁ& F\Uo , \Ui, . We distinguish two subcases: the

transitionﬂl(p? F \Uo N \Ui, relatesup to uy either via an ordering or a feature
selection constraint.

i. Caseup<xs € ¢%. We further distinguish on which constraint connects

to Uz, either inAgx -\ 2L \Ui, orin Ags - /i, RN

A. Casext[g]uz € @} for some featurg € F. This is impossible since
¢} does not contain any selection constraints headed by

B. Casex;<u, € ¢f. Transitivity (F1.2-closure ofe) yieldsug<u € @.
Thus, we can cancel ouf from the sequence: the induction hypothe-
sis applied tquo, Uy, . .., Un) proves(up?[mi]~un?mams]) € L(Ay) as
required.

C. Casan[g|xs € ¢ for someg € F. Note that this situation may happen
foriy =1andiz > 1. By construction 0§ we knowu, = xandg = f.
Sinceup € V() andup<xs € ¢%, the construction op} ensures the
existence of variables;,x; € F such thati <X A X[ f]x2 A Up<x2 €
¢. We can now cancel out the occurrencexefat u;: the induction
hypothesis applies to the sequer(c@,x2,X1,X,Us,...,Uy) Sincemy
remains unchanged whereas is decreased by 1. Thereby the lexi-
cographic order ofim,, my, M) is decreased properly even though
might be increased.

D. Casext~uy € ¢f. This may happen but only if =i, =1 andiz = 2.
Since} is F3.2-closed by Lemma 7.%j0<xt A Xf~U € @} implies
Uo~Uz € @%. Again, we can cancel out the occurrencepfat us.

ii. Caseup[g]xs € ¢%. Thus,up =xandg = f by construction ofp}. We dis-

tinguish further depending on which constraint conng&gtso u, in either

/‘Zl(p>f< F\Uo N \Uj, or /‘Zl(p>f< F /Uiy N /Ui,

A. The cas&s[g|up € @ for some featurg € 7 is impossible ag} does
not contain any selection constraints headed hy

B. Casext<up € ¢f. If ux = x¢ then we trivially cancel out the occur-
rence ofxs atup. Otherwisep, € V(). The construction ap’ yields
that there exist variableg, x2 satisfyingx<xz A x1[f]x2 A x1<uz € .
Hence, we can apply the induction hypothesi§&da, 1, Uz, ... ,Un).

C. Casanp[g|xs € ¢f forsomege F. Thus,iy=1,i>>1,ux=x f=g,
andr, = f and there exists a patt} with t3 =5 f. The induction hy-
pothesis applied tQuo, Uy, ... ,un) yields (x?[e]~un?[mons]) € L(Ay).
Due to the assumptiom € 7 (¢)* of the Lemma, it follows thaf €
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¥ (9) such thatf belongs to the signature of the automatég Thus,
(x?[f]Nun?[nznng S L(ﬂ(p), i.e. <u1?[n1]~un?[n2n3]> € L(ﬂ(p)

D. Casexf~uz € @f. Now, we havei; =i =1,i3=2,m = f, and
13 = €. There are again two sub-cases which we consider below:

Subcases of 2.(b).ii.D:

1. Casaly = x¢. Fromup € V(¢) it follows thatn > 3. We distinguish further, accord-
ing to the constraint which conneats to X in Agx = \Un T2, \Uiz (= \U2).

(a) Casauz<xt € @%. TheF3.2-closedness af’ entailsuz<xf € ¢} (Lemma 7.5).
We cancel out the occurrencexf at up by applying the induction hypothesis
to the sequencg@lp, Uz, Us, ..., Up).

(b) Caseuz[g|xs € @} for someg € F. Henceus = x, g= f, and there exists’,
such thatt, = m, f. Now, we can cancel out both occurrencex pfat u, and
atus: the induction hypothesis appli€, us, ..., un) yields (x?[e]~un?m5]) €
L(A4y). Sincer, € F (@) is assumed by the Lemma, we know tliat 7 (¢).
Thus (x?[f]~un 2, f]) € L(4,) from Lemma 6.3, i.e.(X?[m1]~un?[mom3]) €

L(Ay)

2. Caseup # x¢. Thus,uz € V(@) andxs~up € ¢%. We distinguish two possibilities
for this to happen, according to the constructiomp¢f

(a) Casex<xi A xq[f]x2 A xo~Uz € ¢ for some variableg;,x,. The induction hy-
pothesis applied to the sequern(&ex1, Xz, Us, . .., Un) Yields (x?[ f]~un?n2]) €
L(A4,) as required.

(b) Casex~x1 A x1[f]x2 A uz<x2 € ¢ for some variablexi,x2. The induction
hypothesis can be applied to the situation wheyandu, are swapped (note
thatnz = €) wherebym, does not increase (it has been strictly positive before,
and now is 1) anan, decreases properly (since the occurrenceoét u; is
eliminated). The induction hypothesis yielfis,?[n2]~x?[f]) € L(A4,) such
that symmetry impliegx?[ f]~un?[n2]) € L(4,) as required.

O

Lemma7.9Let y be a path constraint of one of the forms;?mi]<ux?my],
Uz ?ma]~u2?mz], or u?xm]~a. For all ¢ with V(y) C V(¢) and ¥ (v) C F(9):

It {w) € L(Ag) then(y) € L(Ay)

Proof. From Lemmas 7.8 and 6.3. O
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