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The systemFT� of ordering constraints over feature trees has been introduced as an extension of
the systemFT of equality constraints over feature trees. We investigate the first-order theory of
FT� and its fragments in detail, both over finite trees and over possibly infinite trees. We prove that
the first-order theory ofFT� is undecidable, in contrast to the first-order theory ofFT which is well-
known to be decidable. We show that the entailment problem ofFT� with existential quantification is
PSPACE-complete. So far, this problem has been shown decidable, coNP-hard in case of finite trees,
PSPACE-hard in case of arbitrary trees, and cubic time when restricted to quantifier-free entailment
judgments. To show PSPACE-completeness, we show that the entailment problem ofFT� with
existential quantification is equivalent to the inclusion problem of non-deterministic finite automata.
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1 Introduction

Feature constraints have been used for describing records in constraint programming [1,
30, 31, 36] and record-like structures in computational linguistics [14, 12, 23, 26]. Feature
constraints also occur naturally in type inference for programming languages with object
types or record types [22, 5, 24].

Following [2, 4, 3], we consider feature constraints as predicate logic formulas interpreted
in the structure of feature trees. A feature tree is a tree with unordered edges labeled by
features and with possibly labeled nodes. Features are functional in that the features label-
ing the edges departing from the same node must be pairwise different. The structure of
feature trees gives rise to an ordering in a very natural way which is calledweak subsump-
tion orderingin [7]. Consider the following example where an unlabeled node is indicated
as� :
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Here, the left treeτ1 is said toweakly subsumethe right treeτ2 sinceτ1 has fewer edges and
node labels thanτ2. In other words, everypositiveassertion about the presence of labels or
features that holds forτ1 also holds forτ2. In general, a treeτ1 weakly subsumesa treeτ2,
writtenτ1 � τ2, if

� every word of features in the tree domain ofτ1 belongs to the tree domain ofτ2

� and the (partial) labeling function ofτ1 is contained in the labeling function ofτ2.

We consider the systemFT� of ordering constraints over feature trees [18, 19, 17]. Its
constraintsϕ are given by the following abstract syntax

ϕ ::� x�x� � x� f ℄x� � a�x� � ϕ�ϕ�

where f denotes afeature symbolanda a label symbol. The constraints ofFT� are inter-
preted in the structure of feature trees with the weak subsumption ordering. We distinguish
two cases, the structure of finite feature trees and the structure of possibly infinite feature
trees. A constraintx�x� holds if the denotation ofx weakly subsumes the denotation ofx �,
x� f ℄x� is valid if the denotation ofx has an edge at the root that is labeled with the featuref
and leads to the denotation ofx�, anda�x� means that the root of the denotation ofx is
labeled witha.

The constraint systemFT� is an extension of the well-investigated constraint systemFT [2,
4], which provides for equality constraintsx�y rather than more general ordering con-
straintsx�y. The systemFT can be seen as a sub-system ofFT� sincex � y can be
expressed asx�y�y�x thanks to anti-symmetry of the weak subsumption order.

The full first-order theory ofFT is decidable [4] and has non-elementary complexity [37].
The decidability question for the first-order theory ofFT� has been raised in [17]. There,
two indications in favour of decidability have been formulated: its analogy toFT and
its relationship to second-order monadic logic. However, we show in this paper that the
the first-order theory of FT� is undecidable. Our result holds in the structure of possibly
infinite feature trees and, more surprisingly, even in the structure of finite feature trees.
Our proof is based on an encoding of the Post Correspondence Problem using a technique
of [33].

Once the undecidability of the first-order theory ofFT� is settled, it remains to distin-
guish decidable fragments and their complexity. It is well-known that the satisfiability
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FT� FTfin
�

Satisfiability of n3 [18] n5 [7]
positive constraints n3 [18]
Entailment w/o quantifiers n3 [18] n3 [18]
Entailment with quantifiers Co-NP hard [17] PSPACE hard [17]

PSPACE complete [here] PSPACE complete [here]
Full theory undecidable [here] undecidable [here]

Fig. 1: Fragments of the first-order theories ofFT� andFTfin
�

problem ofFT, its entailment problemϕ �� ϕ �, and its entailment problem with existential
quantifiersϕ ���x1 � � ��xnϕ� can be solved in quasi-linear time [31]. The investigation of
ordering constraints was initiated by Dörre [7] who gave anO�n5�-algorithm for deciding
satisfiability ofFT�-constraints. This result was improved toO�n3� in [18], where also
the entailment problem ofFT� concerningquantifier-freejudgmentsϕ �� ϕ � was shown
decidable in cubic time. The next step towards larger fragments of the theory ofFT� was
to consider entailment judgments with existential quantificationϕ ���x1 � � ��xnϕ� which are
equivalent to unsatisfiability judgmentsϕ � ��x1 � � ��xnϕ� with quantification below nega-
tion. As shown in [17], this problem is decidable, coNP-hard in case of finite trees, and
PSPACE-hard in case of arbitrary trees. Decidability is proved by reduction to (weak) sec-
ond order monadic logic (W)S2S. In a first reduction step, it is shown how to substitute
the structure of feature trees by the related structure of so-calledsufficiently labeledfea-
ture trees. We note that this step cannot be generalized to arbritrary first-order formulas
beyond entailment with existential quantifiers. Since the full first-order theory of ordering
constraints over sufficiently labeled (finite) feature trees can easily be encoded in (weak)
second order monadic logic, decidability of entailment ofFT� with existential quantifiers
follows from the classical results on (W)S2S [32, 25].

This paper contributes the exact complexity of the entailment problem ofFT� with existen-
tial quantification. We prove PSPACE-completeness, both in the structure of finite trees and
in the structure of possibly infinite trees. This result is obtained by reducing the entailment
problem ofFT� with existential quantifiers to the inclusion problem of non-deterministic
finite automata (NFA), and vice versa. Our reduction of entailment is based on the fol-
lowing idea: Given an existential formula�xϕ we construct an automaton that accepts all
its consequences in form of so called path constraints. An inverse reduction in the case of
possibly infinite trees was first presented in [17]. In this paper, we present another inverse
reduction which also applies for finite trees.

Applications and Related Work. The application domains of ordering constraints over
feature trees are quite diverse. They have been used to describe so-called coordination phe-
nomena in natural language [7] but also for the analysis of concurrent constraint program-
ming languages [20]. The less general equality constraints over feature trees are central to
constraint based grammars, and they provide record constraints for logic programming [31]
or concurrent constraint programming [27, 15]. In concurrent constraint programming, en-
tailment with existential quantification is needed for deciding the satisfaction of conditional
guards. As mentioned above, our results are also relevant for constraint-based inference of
record types and object types. In this context, the entailment test has recently received
some attention as a justification for constraint simplification and as a means to check type
interfaces [24, 5, 35, 16, 10, 11].

Originally, weak subsumption has been introduced as a weakening of subsumption. The
subsumption ordering between feature structures [13, 28, 6] is omnipresent in linguistic
theories like HPSG (head-driven phrase structure grammar) [23]. According to the more
general view of [29, 7], the subsumption ordering and the weak subsumption ordering are
definable between elements of an arbitrary feature algebra (which include the structure of
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feature trees and all feature structures). Following [8], ordering constraints interpreted with
respect to the subsumption (resp. weak subsumption) ordering of arbitrary feature algebras
are called subsumption (resp. weak subsumption) constraints. Syntactically, subsumption
constraints, weak subsumption constraints, andFT� constraints coincide but semantically
they differ. As proved in [8], the satisfiability problem of subsumption constraints is un-
decidable. The satisfiability problem of weak subsumption constraints is equivalent to the
satisfiability problem ofFT� constraints [7, 18] and hence decidable in cubic time.

Structure of the Paper. Section 2 reviews the definitions of feature trees and weak sub-
sumption constraints. We demonstrate the expressivity of the constraint language in Sec-
tion 3 and introduce some formulas used in later sections. Undecidability of the first-order
theory of weak subsumption constraints is shown in Section 4. Finally, we show the entail-
ment problem of existentially quantified constraints to be PSPACE-complete in Section 5.
We prove the correctness of our algorithm in Section 6 and its completeness in Section 7.

A short version of this paper has been published as [21].

2 Ordering Constraints

The constraint systemFT� is defined by a set of constraints, the structure of feature trees,
and an interpretation of constraints over feature trees. We assume an infinite setV of
variablesranged over byx�y�z, a setF of at least twofeaturesranged over byf �g and a
setL of labelsranged over bya�b.

2.1 Feature Trees

A path π is a word of features. Theempty pathis denoted byε and the free-monoid
concatenation of pathsπ andπ � asππ�. We haveεπ � πε � π. A pathπ� is called aprefix
of π if π � π�π�� for some pathπ��. A tree domainis a non-empty prefix closed set of paths.

A feature treeτ is a pair�D� L� consisting of a tree domainD and a partial functionL :
D � L that we calllabeling functionof τ. Given a feature treeτ, we writeD τ for its tree
domain andLτ for its labeling function. For instance,τ0 � ��ε� f�� �� f �a���

is a feature tree with domainDτ0 � �ε� f� andLτ0 � �� f � a��. A feature tree
τ0�

�

a
f

is finite if its tree domain is finite, andinfinite otherwise. Anode ofτ is an
element ofDτ. A nodeπ of τ is labeled with aif �π� a�	 Lτ. A node ofτ is unlabeled if it is

not labeled with anya. Theroot of τ is the nodeε. Theroot labelof τ is L τ�ε�, and f 	 F

is aroot featureof τ if f 	 Dτ. A feature treeτ is fully labeledif Lτ is a total function with
domainDτ.

Given a treeτ with π 	 Dτ, we write asτ�π℄ the subtree ofτ at pathπ; formally Dτ�π℄ �

�π� � ππ� 	 Dτ� andLτ�π℄ � ��π�� a� � �ππ�� a� 	 Lτ�.

2.2 Syntax and Semantics

An FT� constraintϕ is defined by the abstract syntax

ϕ ::� x�y � a�x� � x� f ℄y � ϕ1�ϕ2

wherea	 L and f 	 F . In other words, anFT� constraint is a conjunction ofbasic con-
straintswhich are eitherordering constraints x�y, labeling constraints a�x�, or selection
constraints x� f ℄y.

We define the structureFT� over feature trees in which we interpretFT� constraints. Its
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universe consists of the set of all feature trees. The constraints are interpreted as follows:

τ1�τ2 iff Dτ1 
 Dτ2 andLτ1 
 Lτ2

τ1� f ℄τ2 iff Dτ2 � �π � f π 	 Dτ1� andLτ2 � ��π� a� � � f π� a� 	 Lτ1�

a�τ� iff �ε� a� 	 Lτ

The substructure ofFT� whose universe contains only the finite trees is denoted byFT fin
� .

We will often use the followingdecompositionproperty without further mention:

Proposition 2.1 If τ1�τ2 andτ1� f ℄τ�1 andτ2� f ℄τ�2 thenτ�1�τ�2.

2.3 First-Order Formulas

If not specified otherwise, a formula is said to be valid (satisfiable) if it is valid (satisfiable)
both in FT� andFTfin

� . Our intention here is to treat both cases simultaneously and to
note a distinction when needed only. LetΦ andΦ � be first-order formulas built fromFT�

constraints with the usual first-order connectives and quantifiers. We say thatΦ entailsΦ �,
written Φ �� Φ�, if Φ �Φ� is valid, and thatΦ is equivalentto Φ� if Φ� Φ� is valid. We
denote withV �Φ� the set of variables occurring free inΦ, and withF �Φ� andL�Φ� the
set of features and labels occurring inΦ.

3 Expressiveness of the First-Order Theory

In this section we introduce some abbreviations of formulas needed in Section 4. We use
the usual abbreviations for ordering constraints, for instance we writex 
� y for�x� y, x�y
for x�y�x 
� y, x�y for y�x andx�y�z for x�y�y�z.

3.1 Minimal and Maximal Values

We can construct, for any formulaϕ, formulasµxϕ andνxϕ expressing thatx is minimal
(maximal) with the propertyϕ:

µxϕ :� ϕ���y�ϕ�y�x℄�y�x�

νxϕ :� ϕ���y�ϕ�y�x℄�y�x�

Here,y is a fresh variable not occurring inϕ, andϕ�y�x℄ denotes the formula where every
free occurrence ofx is replaced byy. Typically, x occurs free inϕ but this is not required.
Note that, in contrast to�x and�x, µx andνx arenovariable binders that restrict the scope
of the variablex; hencex is free inµxϕ and inνxϕ if it is free in ϕ.

The formulaµxϕ expresses thatx denotes a minimal tree satisfyingϕ, which isnot necas-
sarily a smallest tree with this property. In analogy,νxϕ expresses thatx denotes a maximal
but not necessary greatest tree satisfyingϕ.

Example 1 The sentence�x �µx true� is valid in FT� and in FTfin
� (there even exists a

smallest tree, namely��ε�����. The formula νx true is not satisfiable inFT fin
� but is

satisfied inFT� by any fully labeled tree with domainF �.

The difference between smallest and minimal trees is important for the formulaatom�x�
which expresses thatx denotes an atom in the lattice-theoretic sense, i.e. that it is a tree
strictly greater than the smallest tree��ε����� but with minimal distance (one feature or
one label more):

one-dist�x�y� :� µy x�y

atom�y� :� �x��µx true��one-dist�x�y��
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Example 2 The formula µx�x�0℄x�x�1℄x� is satisfied inFT� by��0�1������, that is the full
binary and everywhere unlabeled tree, and is not satisfiable inFT fin

� sinceFTfin
� contains

no infinite trees.

3.2 Label Restrictions

The formulax�y readsx and y are consistent, that is whenever�π�a� 	 L τ and�π��a��	 Lτ�

thena� a�:
x�y :� �z�x�z�y�z�

For any labela	 L we writex�a to express that the root ofx is either unlabeled or labeled
with a:

x�a :� �y�x�y�a�y��

The following formula expresses that the root of a tree is unlabeled:

not-root-labeled�x� :� x�a�x�b

wherea andb are two arbitrary different label symbols. We obtain a first-class status of
labels by encoding a labela as the feature tree��ε����ε�a���.

label-atom�x� :� atom�x���not-root-labeled�x�

We can now express thatx andy either have the same root label or are both unlabeled at
the root by:

same-root-label�x�y� :� �z�label-atom�z�� �x�z� y�z��

3.3 Arity Restrictions

We can simulate a first-class status of feature symbols by encoding a featuref by the tree
��ε� f�� /0�.

feature-atom�x� :� atom�x��not-root-labeled�x�

We can express thaty has at least all the root features ofx by

�z�feature-atom�z��z�x� z�y�

The following formula expresses thatx has exactly the root featuresf 1� � � � � fn:

x� f1� � � � � fn� :� �x1� � � � �xn �x� f1℄x1� � � �x� fn℄xn

��y�y� f1℄x1� � � ��y� fn℄xn� same-root-label�x�y�� x�y��

These so-calledarity constraintshave been introduced in [31]. A decidable feature logic
where feature symbols have first class status has been investigated in [34].

3.4 Inductive Properties

We start this section by a demonstration of the expressivity ofFT� and show that we can
express inFT� “inductive properties” of trees, that is properties that require an inductive
construction (for instance an automaton) to define. We conclude the section by the defini-
tion of the predicatestring-c�x� that we will need in the undecidabability proof of Section 4.

In the case of infinite trees it is in fact quite simple to express “inductive properties” of a
tree. For instance, we can express that the domain ofx contains the set�0�1�� by

�y�y�0℄y�y�1℄y�y�x�
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The following formula says that the tree denoted byx has domain�0�1� � and that exactely
one of its nodes is labeled witha whereas all its remaining nodes are unlabeled:

a-singleton�x� :� �y�z�µy�y�0℄y�y�1℄y�not-root-labeled�y���

µz�z�0℄z�z�1℄z�a�z���

y�x�z�one-dist�y�x��

If a-singleton�x� is satisfied theny denotes the complete binary, everywhere unlabeled tree
(with domain�0�1��), andz denotes the complete binary, everywherea-labeled tree. The
formulab-singleton is defined analogously. We can now express thatx denotes a tree with
domain�0�1�� and that all its nodes are labeled with eithera or b by:

µx
�
�y�z�a-singleton�y��b-singleton�z��y
�z� �y�x�z�x��

�

The idea behind this formula is the following: ana-singleton and ab-singleton are in-
consistent iff they have their label at the same position. Hence, the formula says that
�0�1�� 
 Dx and every node ofx which is reachable via a�0�1� �-path is either labeled
with a or with b. The minimality ofx yieldsDx 
 �0�1��.

In case of finite trees we have to use another trick (which works also in case of infinite
trees). The next formula is crucial for our undecidability proof. A treeτ satisfies this
formula iff �ε�c� 
 Dτ 
 �c�� and all its nodes are unlabeled:

string-c�x� :� x�c��not-root-labeled�x���y�x�c℄y�y�x�

The correctness of this definition ofstring-c�x� with respect to the above stated semantics
follows from the following lemma where we writecn for the word c� � �c consisting ofn
lettersc.

Lemma 3.1 The formula�y�x�c℄y� y�x� is satisfied byτ iff c 	 Dτ and for all k�m� 0,
whenever cm�k 	 Dτ then

τ�cm�k℄�τ�cm℄

Proof. Let τ�c℄τ� and τ��τ. Obviously, c 	 Dτ. The inequality follows by induction:
For anym, if cm 	 Dτ thenτ�cm℄�τ�cm℄. Furthermore, for anyk with cm�k�1 	 Dτ and
τ�cm�k℄�τ�cm℄ we have that

τ�cm�k�1℄ � τ�c℄�cm�k℄ � τ��cm�k℄�τ�cm�k℄�τ�cm℄

For the other direction, sincec	Dτ there is aτ� such thatτ�c℄τ�. From the above inequality
we get by settingm� 0 andk � 1 that

τ� � τ�c1℄�τ�c0℄ � τ�ε℄ � τ

�

4 Undecidability Results

Theorem 4.1 The first-order theories ofFTfin
� and ofFT� are undecidable.

The result holds for arbitrary (even empty)L and forF of cardinality� 2. For the sake of
clarity we use in the proof distinct label symbolsa�b�e and pairwise distinct feature sym-
bolss�c�p�l�r. We prove Theorem 4.1 by reduction of the Post Correspondence Problem
(PCP). The choice of PCP is motivated by the fact that our proof works by simulation of
an iterative construction, and that PCP uses a technically very simple iteration. This is
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different in nature to the technique in [8] for the proof of undecidability of the satisfiabil-
ity of strong subsumption constraints. There, Thue-systems could be used by exploiting a
correspondence between word equations and the algebraic properties of feature structures.
See [33] for a discussion of the proof technique employed in this chapter.

An instance of PCP is a finite sequenceP� ��pi �qi��i�1�����m of pairs of words from�a�b��.
Such an instance issolvableif there is a nonempty sequence�i 1� � � � � in�, 1� i j � m, such
that pi1 � � � pin � qi1 � � �qin. According to a classical result due to Post, it is undecidable
whether an instance of the PCP is solvable.

In the following, letP � ��pi �qi��i�1�����m be a fixed instance of PCP. We say that a pair
�v�w� is P-constructed froma pair of words�v��w�� if, for some j, v � p jv� andw � q jw�.
We say that a setX of pairs of words isP-constructedif every pair inX is either�ε�ε� or
is P-constructed from some other pair inX. To encode solvability ofP into the theory of
FTfin

� , resp.FT�, we employ the following equivalent definition of solvability:

Proposition 4.2 P is solvable iff there is a P-constructed set X of pairs of words containing
a pair �w�w� with w 
� ε.

4.1 Words and Trees

Given a wordw 	 �a�b�� over labelsa�b 	 L fixed above we denote its length by�w�
and for a natural number 1� j � �w� we write w� j for the j ’th letter of w. There is an
obvious one-to-one encoding functionγ from wordsw	 �a�b� � to feature trees for which
we use the feature symbols and labele that we also fixed above:γ�w� � �Dw�Lw� where
Dw � �ε�s� � � � �s�w��, Lw�s

j� � w� j for 0� j � �w��1, andLw�s
�w�� � e (see Figure 2(a)).

We define a left-inverse function̄γ, that is γ̄�γ�w�� � w, from feature trees to (possibly
infinite) words in�a�b�ω as follows: If τ does not have root features, or if its root is
unlabeled or has label different froma and fromb then γ̄�τ� � ε. Otherwise letτ� be such
thatτ�s℄τ�. We definēγ�τ� � a � γ̄�τ�� if τ has root labela, andγ̄�τ� � b � γ̄�τ�� if τ has root
labelb.

To express thaty denotes the fixed wordπ appended with the denotation ofx, we define for
anyπ 	 �a�b�� a formulaappπ�x�y�, such that

1. if appπ�τ�τ�℄ thenπγ̄�τ� � γ̄�τ��

2. appπ�γ�w��γ�πw�℄ is valid

for all wordsw and feature treesτ�τ�, by induction onπ:

appε�x�y� :� x� y

appaπ�x�y� :� a�y���z�y�s℄z�appπ�x�z��

appbπ�x�y� :� b�y���z�y�s℄z�appπ�x�z��

Furthermore, we defineeps�x�, expressing thatx denotes a treeτ with γ̄�τ� � ε, by

eps�x� :� ��y x�s℄y���a�x��b�x��

Finally, the following formula expresses thatx denotes a finite string:

finite�x� :� ��y�y�s℄y�y�x�

In case ofFTfin
� this formula is, of course, equivalent totrue.
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(a) The stringabaa.
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(b) The solution sequence�vi �wi �i .

Fig. 2: Representation of strings and of solution sequences.

4.2 P-Constructions

Provided an appropriate encoding of sets of pairs of words and a predicatein�x l �xr �s�, ex-
pressing that the pair�xl �xr� is member of the sets, we can express thats is aP-constructed
set of pairs of words and thatP is solvable:

constructionP�s� :� �y�y� �in�y�y��s�� ��eps�y��eps�y���

��z�z� �in�z�z��s��
�

j�1���m

�appp j
�z�y��appq j

�z��y������

solvableP :� �s�constructionP�s���x�in�x�x�s���eps�x�� finite�x���

Lemma 4.3 For any predicatein�x�y�z�, if solvableP is valid then the instance P of the Post
Correspondence Problem is solvable.

Proof. Let σ be a fixed value forssuch thatsolvableP holds. In particular,constructionP�σ�
holds. We can show for all finite treesτ�τ � satisfying in�τ�τ��σ� that there exists a set
containing�γ̄�τ�� γ̄�τ��� which is P-constructed from�ε�ε�. The proof is by induction on
�γ̄�τ��� �γ̄�τ���. �

Lemma 4.4 There is a predicatein�x�y�z� such that if the instance P of the Post Corre-
spondence Problem is solvable thensolvableP is valid.

Proof. The crux of the proof is to define

1. for any sequence of pairs of wordsσ � ��vi �wi��i�1�����n a feature treeρ�σ�

2. a predicatein�yl �yr �x�

such thatin�τl �τr �ρ�σ�� holds iff τl � γ�vi� andτr � γ�wi� for some 1� i � n. There is,
however, no need to define a formula expressing that a feature tree is the encoding of a
sequence of words.
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Fig. 3: A possible value forx� such thatone-branch�x�x��, wherex is as in Figure 2(b).

Since we know already how to encode words as trees, we now have to define an appropriate
encoding of an arbitrary set of pairs of trees as a feature tree, together with a corresponding
formula in. The representation of a sequence��τ l

i �τ
r
i��i�1�����n is given in Figure 2(b).

We define, for any formulaϕ, a formulaµ!xϕ expressing thatxdenotes thesmallestelement
satisfyingϕ. This formula is stronger thanµxϕ in that it requires the existence of a smallest
tree satisfyingϕ in addition:

µ!xϕ :� ϕ��y�ϕ�y�x℄� x�y�

If x denotes a tree as given in Figure 2(b), then the formulaone-branch�x�x �� given below
expresses thatx� denotes a tree as given in Figure 3.

one-branch�x�x�� :� �xc �νxc �string-c�xc��xc�x�

�xc�x��x

�νx� ��z�µ!z�xc�z�x�����

In this formula,x� is smaller thanx but is strictly greater than thec-spinexc of x. The tree
x� can have only one of thep-edges ofx since the set of trees betweenxc andx� must have
a smallest element. By the maximality ofx�, the treex� containsxc plus exactly one of the
subtrees ofx starting with ap-edge (see Figure 3).

The following formulaselect�τ l �τr �σ�, whereσ is as in Figure 3, expresses thatτl is the
treeτl

i andτr is the treeτr
i :

select�yl �yr �x
�� :� �x�� �µx���x��x����x��� �x���c℄x����x����x����

��z�x���p℄z�z�l℄yl �z�r℄yr��

From a treeσ� as given in Figure 3, we get the treeσ �� (denoted byx��) containing at all
nodesc j with j � i a pair�τl �

j �τ
r �

j� such thatτl
i�τl �

j andτr
i�τr �

j (by Lemma 3.1). By the

minimality of σ�� we get thatτl
i � τl �

j andτr
i � τr �

j for all j � i, hence in particular for
j � 0 (see Figure 4). Combination of the two formulas yields

in�yl �yr �x� :� �x ��one-branch�x�x��� select�yl �yr �x
���

Now, it is easy to verify the conditions announced at the beginning of the proof. �
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Fig. 4: The value ofx� in the formulaselect�yl �yr �x� wherex is as in Figure 3.

Note that this proof did not make use of the fact that the feature trees considered here are
partial. The proof of Theorem 4.1 transfers immediately to the structures ofcompletely
labeledtrees (both in the case of finite and of arbitrary trees), where a tree�D�L� is called
completely labeledif L is a total function with domainD. In this case, the trees depicted in
Figures 2(b), 3 and 4 have to be completed by giving some label to the nodes�.

5 Entailment with Existential Quantifiers

In [17] it is shown that the entailment problem ofFT� with existential quantifiersϕ �� �xϕ�

is decidable, PSPACE-hard in the case of infinite trees and coNP-hard in the case of finite
trees. We settle the precise complexity of this entailment problem in both cases.

Theorem 5.1 Entailment of FT� with existential quantificationϕ �� �xϕ� is PSPACE-
complete for both structures FT� andFTfin

� .

In Section 5.3 we modify the PSPACE-hardness proof given in [17] for the case of infi-
nite trees such that it proves PSPACE-hardness for both cases (Theorem 5.2). In particu-
lar, we show that we can encode the Kleene-star operator without need for infinite trees.
Containment in PSPACE is shown (Theorem 5.9) by reducing in polynomial time the en-
tailment problem to an inclusion problem between the languages accepted by nondeter-
ministic finite state automata (NFA). Language equivalence for NFA (and hence inclusion,
sinceA
 B� B � A�B) is known to be PSPACE-complete if the alphabet contains at
least two distinct symbols [9].

5.1 Path Constraints

We characterize existentialFT� formulas�xϕ by equivalent sets of path constraints (where
sets are interpreted as conjunctions). Feature path constraints for FT have been introduced
in [29] and have been used in [4] for a quantifier elimination procedure for FT. The abstract
syntax ofpath constraintsψ is defined as follows, whereπ�π � 	 F � anda	 L :

ψ ::� x�π℄� � a�x�π℄� � x?�π℄�a � x?�π℄�y?�π�℄ � x?�π℄�y?�π�℄
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Fig. 5: Graphical Presentation of Example 4

The semantics of path constraints is given by extension of the structureFT� through the
following predicates, which are defined on basis of the subtree selection functionτ�π℄ in-
troduced above.

τ�π℄� iff π 	 Dτ

a�τ�π℄� iff �π� a� 	 Lτ

τ?�π℄�a iff π 	 Dτ impliesτ�π℄�a
τ?�π℄�τ�?�π�℄ iff π 	 Dτ andπ� 	 Dτ� imply τ�π℄� τ��π�℄
τ?�π℄�τ�?�π�℄ iff π 	 Dτ andπ� 	 Dτ� imply τ�π℄�τ��π�℄

In the Section 5.2, we use path constraints for presenting typical examples of entailment
judgements. Path constraints are also helpful for proving PSPACE-hardness in Section 5.3.
In Section 5.5 we will construct a finite automaton that accepts all path constraintsψ en-
tailed by�xϕ and thereby reduce the entailment problem with existential quantification to
the inclusion problem of finite automata.

5.2 Examples

A major difficulty in testing entailment with existential quantifiers is that there exist many
equivalentFT� constraints of quite distinct syntactic shape. This makes it very difficult
(if not impossible) to apply a standard technique for deciding entailment, which performs
a comparison of constraints in some syntactic normal form [2, 31, 18]. In this section we
present some examples showing the difficulties of deciding entailment statement. We will
come back to some of these examples in Section 5.5 to illustrate our solution.

We start with a rather simple case:

Example 3 The formula�y�x�y�a�y�� is equivalent to x?�ε℄�a which is equivalent to
�y�z�x�y�z�y�a�z��.

The next example of equivalent constraints with distinct syntactic shape is more complex.

Example 4 (see Figure 5) Both of the following formulas are equivalent to x?� f g℄�a and
hence equivalent to each other:

�y�y��z�z� �x�y�y� f ℄y��y��z�z�g℄z��a�z���
��� �y�y��z�z� �x�y�y� f ℄y��z�y��z�g℄z��a�z���

In the next example, a constraint is given that entailsx?� f g℄�a for all a. Note that this
constraint thus also entails the constraints given in the previous example.

Example 5 (see Figure 6) If b
� c then for all a the judgement

x� f ℄x��x��x���x���g℄x����b�x�����
x�y�y� f ℄y��y��u�u�z��z��g℄z���c�z���

�
�� x?� f g℄�a
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Fig. 6: Graphical Presentation of Example 5

u � x � v
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��
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f f f

Fig. 7: Graphical Representation of Example 6

holds. In other words, ifα is a solution of the constraint displayed on the left hand side
and if f g	 Dα�x� then the subtree ofα�x� at f g is compatible with any label a, and hence
is unlabeled.

Example 6 (see Figure 7) The following situation illustrates a non-trivial example for
entailment of selection constraints without existential quantifiers.

�y� u��u� f ℄u��u� x�� �x� v�v� f ℄v��v� � y� �� x� f ℄y

The right-hand side x� f ℄y is equivalent to the conjunction�y?�ε℄�x?� f ℄ � x� f ℄�� �
�x?� f ℄�y?�ε℄� of path constraints which are entailed by the first and second part of the
left-hand side, respectively.

5.3 Entailment is PSPACE-hard

In this section we show how the PSPACE completeness proof of [17] can be modified such
that it applies to the structure of finite feature trees as well. The formulas used in the earlier
proof require the existencex�π℄� of all pathsπ in some regular languageR; every solution
of the formula for an infinite languageR has to mapx to an infinite tree. Compared to
this earlier proof, the trick is here to use conditional path constraints which may constrain
infinitely many paths without requiring their existence.

Theorem 5.2 The entailment problem for existentially quantifiedFT�-constraints is
PSPACE-hard in both the finite and the infinite tree case.

This follows from Proposition 5.6 (see below), which claims a polynomial reduction of the
inclusion problem between regular languages over the alphabetF to an entailment problem
between two existentialFT� formulas. Notice that we have assumedF to contain at least
two features.

Our PSPACE-hardness proof is based on the fact that a satisfiable ordering constraintϕ

may entail an infinite conjunction of path constraints, even in case of finite trees:

Example 7

1. for all n : x� f ℄y�y�x�a�x� �� x?� f n℄�a.
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2. for all n�m : x� f ℄y�y�x �� x?� f m�n℄�x?� f n℄.

3. for all π 	 � f �g�� : x�x��x� f ℄x��x�g℄x� �� x?�π℄�x?�ε℄.

For this reason the entailment problem forFT fin
� does not necessarily reduce to an inclusion

problem between finite regular languages (which is decidable in coNP [9]). We fix a finite
subsetF 
 F of features and consider regular expressions of the following form:

R ::� ε � f � R� � R1�R2 � R1R2 �where f 	 F�

For encoding a regular expressionR the main idea is to define an existential formula
Θ�x�R�y� for fresh variablesx�y such thatΘ�x�R�y� is equivalent to

�
π�L�R� x?�π℄�y?�ε℄.

Once this is done, it will follow immediately thatL�R��
 L�R� iff Θ�x�R�y� �� Θ�x�R��y�.
It is not obvious, however, how to define such a formula. The reader might notice, that a
naive definition ofΘ�x�R�y� yields some unintended compatibility relations to be entailed
too. Hence, we have to refine our main idea.

We define the formulacomF��x� expressing that all subtrees ofx reachable via anF-path
are compatible with each other, i.e. they have a common upper bound:

comF��x� :� �y�x�y�
�

f�F

�y� �y� f ℄y��y��y��

Lemma 5.3 (Comon upper bound)comF��x� ��� �y�π 	 F� x?�π℄�y?�ε℄.

For encoding a regular expressionR, a refined idea is to define an existential formula
Θ�x�R�y� such thatΘ�x�R�y� is equivalent tocomF��x� �

�
π�L�R� x?�π℄�y?�ε℄. We de-

fine for all regular expressionsR over F and variablesx andy, the existential formulas
Θ�x�R�y� andΘ��x�R�y� recursively as follows.

Θ�x�R�y� � comF��x��Θ��x�R�y�
Θ��x�ε�y� � x�y
Θ��x� f �y� � �z�x�z�z� f ℄y�
Θ��x�R1�R2�y� � Θ��x�R1�y��Θ��x�R2�y�
Θ��x�R1R2�y� � �z�Θ��x�R1�z��Θ�z�R2�y��
Θ��x�R��y� � �z�x�z�Θ��z�R�z��z�y�

Apparently,Θ�x�R�y� has size linear in the size ofR.

Lemma 5.4 For all regular expressions R

comF��x� �� Θ��x�R�y��
�

π�L�R�

x?�π℄�y?�ε℄

Proof. We proceed by induction onR.

ε: Θ��x�ε�y� � x�y� x?�ε℄�y?�ε℄ �
�

π�L�ε� x?�π℄�y?�ε℄.

f : Θ��x� f �y� � �z�x�z�z� f ℄y�� x?� f ℄�y?�ε℄ �
�

π�L� f � x?�π℄�y?�ε℄.

R1�R2: By induction hypothesiscomF��x� entails the equivalencesΘ��x�R1�y� ��
π�L�R1�

x?�π℄�y?�ε℄ andΘ��x�R2�y��
�

π�L�R2�
x?�π℄�y?�ε℄. Hence,comF��x� en-

tails Θ��x�R1�R2�y��
�

π�L�R1�R2�
x?�π℄�y?�ε℄ also.

R1R2: By definition Θ��x�R1R2�y� � �z�Θ��x�R1�z�� comF��z� � Θ��z�R2�y��. By in-
duction hypothesis,comF��x� entails Θ��x�R1�z� �

�
π1�L�R1�

x?�π1℄�z?�ε℄ and
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comF��z� entailsΘ��z�R2�y��
�

π2�L�R2�
z?�π2℄�y?�ε℄. Hence,comF��x� entails that

Θ��x�R1R2�y� is equivalent to (1):

�z

�
� �

π1�L�R1�

x?�π1℄�z?�ε℄ � comF��z� �
�

π2�L�R2�

z?�π2℄�y?�ε℄

�
� (1)

It remains to show thatcomF��x� entails the equivalence between (1) and (2):
�

π�L�R1R2�

x?�π℄�y?�ε℄ (2)

Since (1) obviously entails (2), it is sufficient to prove the validity ofcom F��x� ��
�2�� �1�. Let α be anFT�-valuation which satisfies bothcomF��x� and (2). We
define a treeτ such thatα�z �� τ satisfies the matrix of (1). For this definition we use
a least upper bound operator on feature trees denoted by�:

τ �
�

π1�L�R1��Dα�x�

α�x��π1℄

Sinceα solvescomF��x� there exists an upper bound of�α�x��π℄ � π 	 F �� as stated
by Lemma 5.3 and thus the least upper boundτ exists. We next demonstrate that
α�z �� τ satisfies the matrix of (1). The definition ofτ yields α�x��π1℄�τ for all
π1 	 L�R1��Dα�x�, i.e. the variable assignmentα�z �� τ satisfies the first conjunc-
tion in (1). FromcomF��α�x�� it follows that comF��τ� holds, i.e. α�z �� τ satis-
fiescomF��z�. Furthermore, allπ2 	 Dτ satisfy:τ�π2℄ �

�
π1�L�R1��Dα�x�

α�x��π1π2℄.

Sinceα is a solution of (2),α�x��π1π2℄�α�y� is satisfied by allπ2 	 L�R2�. Thus
τ�π2℄�α�y� is valid for all π2 	 L�R2�, i.e. α�z �� τ satisfies

�
π2�L�R2�

z?�π2℄�y?�ε℄,
the remaining conjunct in (1).

R�: By definition Θ��x�R��y� � �z�comF��z��x�z�Θ��z�R�z��z�y�. The induction
assumption yields thatcomF��z� entailsΘ��z�R�z� �

�
π�L�R� z?�π℄�z?�ε℄. Hence,

comF��x� entails thatΘ��x�R��y� is equivalent to (3):

�z

�
�comF��z��x�z�

�

π�L�R�

z?�π℄�z?�ε℄ �z�y

�
� (3)

It remains to show thatcomF��z� entails the equivalence between (3) and (4):
�

π�L�R��

x?�π℄�y?�ε℄ (4)

In order to show the non-trivial implication, we assume anFT�-valuationα which
satisfies bothcomF��x� and (4). We define a treeτ such thatα�z �� τ satisfies the
matrix of (3) as follows:

τ �
�

π�L�R���Dα�x�

α�x��π℄

Note thatτ is well-defined for the same reason as in the preceeding case. Our assump-
tions on the choice ofα yields: comF��τ�, α�x��τ (sinceε 	 L�R��) andτ�α�y�.
In order to show thatα�z �� τ is a solution of (3) it remains to proveτ�π �℄�τ for all
π� 	 L�R���Dτ:

τ�π�℄ �
�

π�L�R���Dα�x�

α�x��π℄�π�℄ �
�

π���L�R���Dα�x�

α�x��π��℄ � τ
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�

Lemma 5.5 For all regular expressions R1 and R2

L�R1�
 L�R2� iff comF��x� ��
�

π�L�R2�

x?�π℄�y?�ε℄

� 	
 �
���

�
�

π�L�R1�

x?�π℄�y?�ε℄

� 	
 �
����

Proof. The implication from the left to the right is trivial since���� is a sub-conjunction
of ��� if L�R1� 
 L�R2�. For the other direction, we assumeL�R1� 

 L�R2� and show
how to contradict the entailment judgment to the right. We fix a wordπ	 F � from L�R1��
L�R2� and a new featureh	 F �F (which exists sinceF is finite whereasF is not). We
construct valuesτ for x andτ� for y such that��� is satisfied but���� is not. Both trees
are completely unlabeled; hencecomF��τ� holds. We define the domainDτ to be the prefix
closure of the wordπh and the domainD τ� to be the suffix closure ofDτ with the exception
of the wordh. For illustration, we display the treesτ andτ � for the wordπ � f g below:

τ � � τ� � �

� � �

� � �

� �

f

g

h

g

h

f

g

h

It is easy to check that�x �� τ�y �� τ�℄ satisfies��� but not���� sinceπ 	 L�R1��L�R2�
andh	 Dτ�π℄ buth �	 Dτ� . �

Proposition 5.6 For all variables x�y and for every pair of regular expressions R1 and R2:
Θ�x�R1�y� �� Θ�x�R2�y� is equivalent toL�R2�
 L�R1�.

Proof. This follows from Lemmas 5.4 and 5.5. �

5.4 Satisfiability Test

In this section we recall the satisfiability test forFT� introduced in [18], which we will
also need as a preprocessing step in our entailment test in Section 5.5. Clearly, satisfiability
(and hence entailment) depends on the choice of finite or infinite trees. For instance,x� f ℄x
is unsatisfiable inFTfin

� but satisfiable inFT�.

Let anextended constraintbe a conjunction of constraintsϕ and (atomic) compatibility
constraintsx�y. From now on, we will only deal with extended constraints and freely call
them constraints for simplicity.

In the case of infinite trees, we say that an (extended) constraintϕ is 
-closedif it satisfies
the following properties for allx�y�z�x��y�� f �a�b.


��1 x�x	 ϕ if x	 V �ϕ�


��2 x�z	 ϕ if x�y	 ϕ andy�z	 ϕ


� x��y� 	 ϕ if x� f ℄x� 	 ϕ� x�y	 ϕ� y� f ℄y� 	 ϕ


��1 x�y	 ϕ if x�y	 ϕ


��2 x�z	 ϕ if x�y	 ϕ andy�z	 ϕ


��3 x�y	 ϕ if y�x	 ϕ


� x��y� 	 ϕ if x� f ℄x� 	 ϕ� x�y	 ϕ� y� f ℄y� 	 ϕ


� a� b if a�x� 	 ϕ� x�y	 ϕ� b�y� 	 ϕ
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The rules of
� and
� require thatϕ is closed with respect to reflexivity, transitivity,
and decomposition of�. The rules in
� and
� require thatϕ contains all compatibility
constraints that it entails (this is proved in [18]), and
� requiresϕ to be clash-free.

In the case of finite trees, we say that a constraintϕ is 
-closedif it satisfies
�-
� and the
additionaloccurs check property
� for all n� 1, x1� � � � �xn�1�y1� � � �yn� f1� � � � � fn:


� x1�xn�1 
	 ϕ if xi � fi ℄yi �xi�1�yi 	 ϕ for all 1� i � n

The following result is proved in [18] (Theorem 1 and Proposition 4). It holds in both cases,
for finite trees and for possibly infinite trees, but with the respective notion of
-closedness.

Proposition 5.7 There exists a cubic time algorithm that, given a constraintϕ, computes
an
-closed constraint containingϕ or proves its unsatisfiability. Every
-closed constraint
is satisfiable.

5.5 An Automaton for Path Constraints

In this section we show that for every
-closed constraintϕ there is a non-deterministic au-
tomatonAϕ of size polynominal in the size ofϕ which accepts the set of all path constraints
which are entailed byϕ and which mentions only symbols from a fixed set of variables, la-
bels, and features. Note that
-closedness is a necessary assumption for our automaton
construction. Note also that the automaton does not differ in the case of finite and infinite
trees, only the assumed version of
-closedness differs.

The algorithm of Dörre [7] can be seen in this perspective. There, the non-satisfiability of a
(in some sense normalised) weak subsumption constraintϕ was equivalent to the fact that
two labeling path constraintsa�x�π℄� andb�x�π℄� for different label symbolsa andb are
entailed byϕ, which could be checked by inspection of the automaton that describes all the
labeling path constraints entailed byϕ.

5.5.1 Path Constraints as Words

The automaton accepts words�ψ� associated with a path constraintψ over some finite sub-
alphabet ofF �L �V ��������?� �� ℄�����. In first approximation, let�ψ� be theconcrete
syntaxof ψ. There is however aserious problem with recognizing the concrete syntax of
entailed path constraints:

Example 8 1. The set of words representing a path constraint entailed by x�x is not regu-
lar (when restricted to the variables in x�x):

��ψ� � x�x �� ψ�� �x?�π℄�x?�π℄ � π 	 F ����x?�π℄�x?�π℄ � π 	 F ��

2. The set of words representing a path ordering constraint entailed by�y�x� f ℄y�x�y� is
not regular:

��ψ� � �y�x� f ℄y� x�y� �� ψ� � �x?� f m℄�x?� f n℄ � 0� m� n�
� �x� f n℄� � n� 0�
� �x?� f m℄�x?� f n℄ � m�n� 0�

We therefore have to alter the definition of�ϕ� slightly but fundamentally. The trick is to
“factor out” the maximal common suffix of the two paths in a path constraint of the form
x?�π1℄�y?�π2℄. More exactly, we add the symbol # to the alphabet and alter the definition
of �ψ� such that:

�x?�π1℄�y?�π2℄� � x?�π℄�y?�π�℄#π��

�x?�π1℄�y?�π2℄� � x?�π℄�y?�π�℄#π��
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whereπ�� is the longest common suffix ofπ1 andπ2 such thatπ1 � ππ�� andπ2 � π�π��.
Hence, either one ofπ or π � is the empty path, orπ andπ � end with distinct feature symbols.
This solves the regularity problem of Example 8,i.e., the following sets are regular:

��ψ� � x�x �� ψ� � �x?�ε℄�x?�ε℄#π � π 	 F ��
� �x?�ε℄�x?�ε℄#π � π 	 F ��

��ψ� � �y�x� f ℄y� x�y� �� ψ� � �x?�ε℄�x?� f n℄# f m � n�m� 0�
� �x� f n℄� � n� 0�
� �x?� f n℄�x?�ε℄# f m � n�m� 0�
� �x?�ε℄�x?� f n℄# f m � n�m� 0�

The definition of�ψ� also adjusts some simple but tedious regularity problems raised by
the validity of the following entailment judgement:

x?�π℄�y?�π�℄ �� x?�ππ��℄�y?�π�π��℄

Example 9 The set��ψ� � x?�g f ℄�y?� f f ℄ �� ψ� restricted to words with features f�g and
variables x�y is regular:

�x?�g℄�y?� f ℄# f π � π 	 � f �g���
� �z?�ε℄�z?�ε℄#π � z	 �x�y��π 	 � f �g���
� �z?�ε℄�z?�ε℄#π � z	 �x�y��π 	 � f �g���

5.5.2 The Alphabet of the Automaton

For each constraintϕ we will define a non-deterministic finite automatonA ϕ whose alpha-
bet is the set:

F �ϕ��L�ϕ��V �ϕ�������?� �� ℄�����#��

Given a sequence of variablesx, we will also define another automatonA x
ϕ for the existen-

tial formula�xϕ, which is obtained fromAϕ by removing the local variables inx from the
alphabet, i.e. by removing all transitions labeled with a symbol fromx. Note that the local
variables inx matter for the definition of the states (but not the alphabet) ofA x

ϕ if they occur
in V �ϕ�.

To solve an entailment problem of the formϕ ���xϕ � we construct the automataAϕ andAx
ϕ�

and test for language inclusion. In order to avoid thatA x
ϕ� accepts tautological constraints

not accepted byAϕ we will require in Proposition 5.10 thatF �ϕ ��
F �ϕ� andV ��xϕ��

V �ϕ�, which can be imposed w.l.o.g. Furthermore, we assume throughout the paper that
bound variables are renamed apart,i.e.when considering an entailment problemϕ �� �xϕ �

we assume�x��V �ϕ� � /0.

Every automatonAϕ (and therebyAx
ϕ) falls into five parts (sharing only the initial stateqs

and the accepting stateq f ), corresponding to the five kinds of path constraints.

The construction of the automatonAϕ is given in Figures 8, 9, 10 and 11. It is completely
spelled out except for one additional symmetry (rule 6) which can be expressed through a
dozen of further transitions. In the rest of this section we explain this construction.

5.5.3 Constraints as Graphs

Our construction of the automaton is motivated by considering constraints as graphs. For
instance, the constraint

x�x��x�� f ℄y�a�y��z�y�z�g℄y
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1�1 qs
x�
�� x

1�2 x
ε
�� y x�y	ϕ

1�3 x
f

�� y x� f ℄y	ϕ

1�4 x
℄�
�� qf

2�1 qs
a�x�
�� x:a

2�2 x:a
ε
�� y:a x�y	ϕ

2�3 x:a
f

�� y:a x� f ℄y	ϕ

2�4 x:a
℄�
�� qf a�x�	ϕ

Fig. 8: The sections of the automatonAϕ for path constraintsx�π℄� anda�x�π℄�.

can be depicted as the following graph, where variables are represented as nodes.

x � x�

z � a�y�

f

g

Intuitively, when the automatonAϕ accepts a word�ψ� it traverses the constraint graph
associated withϕ whereψ is associated a certain traversal pattern. We will depict such
traversal patterns graphically; for instance, the above constraint entailsx?� f gggg℄�a and
its associated graph allows for the following traversal:

x

y

a

f

gggg

In these pictures, the horizontal dimension corresponds to the ordering� (left to right) and
the vertical one corresponds to feature selection (top to bottom).

Path Existence and Labeling Constraints (Fig 8). The subautomaton comprising rules
1.1–1.4 recognizes all the path existence constraintsx�π℄� entailed byϕ. Analogously, the
rules 2.1–2.4 serve to recognize the path labeling constraintsa�x�π℄� entailed byϕ. The
associated patterns look as follows.

x

y

π

� 	
 �
�� x�π℄�

x

a�y�

π

� 	
 �
�� a�x�π℄�

Rules 2.1–2.4 differ from rules 1.1–1.4 in that its states of the formy:a memorize the
label a read at the beginning of some input word�a�x�π℄�� (rule 2.1) in order to check it
against a labeling constraint inϕ (rule 2.4).
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3�1 qs
x?�
�� x:ε

3�2 x:h
ε
�� y:h x�y	ϕ

3�3 x:h
f

�� y: f x� f ℄y	ϕ

3�4 x:h
℄�y?�
�� y: x�h�ε

3�5 x: y�h�g
ε
�� x�: y�h�g x�x�	ϕ

3�6 x: y�h�g
f

�� x�: y�h� f x� f ℄x�	ϕ

3�7 x: y�h�g
℄#
�� y x h
�g�h�g�ε

3�8 x y
ε
�� x� y� x�x��y�y�	ϕ�

3�9 x y
f

�� x� y� x� f ℄x��y� f ℄y�	ϕ

3�10 x x
F �ϕ��

�� qf

Fig. 9: The section of the automatonAϕ for path constraintsx?�π1℄�y?�π2℄#π3 which is concrete
syntax forx?�π1π3℄�y?�π2π3℄.

Example 10 The constraint

x� f ℄y�y�y��y��g℄z�a�z�

entails a�x� f g℄�. This constraint is accepted by the following transitions:

qs
a�x�
�� x:a

f
�� y:a

ε
�� y�:a

g
�� z:a

℄�
�� qf

Ordering Path Constraints (Fig. 9) The next group of rules 3.1–3.10 serves to recog-
nize constraints of the formx?�π℄�y?�π �℄. Note thatϕ ��x?�π℄�y?�π�℄ iff π � π1π3π4 and
π� � π2π3π4 for someπ1, π2, π3, andπ4, and there existsx��y��z such that

ϕ �� x?�π1℄�x�?�ε℄ (5)

ϕ �� x�?�π3℄�z?�ε℄ (6)

ϕ �� z?�ε℄�y�?�π3℄ (7)

ϕ �� y�?�ε℄�y?�π2℄ (8)

(9)

where we may assume that

π1 andπ2 have no common suffix exceptε (10)

The associated graph pattern is as follows, where a dashed line indicates a paths of the
constraint graph and a dotted an arbitrary path.

x y

x� y�

z

π1

π3 π3

π2

π4

� 	
 �
�� x?�π1π3π4℄�y?�π2π3π4℄
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4�1 qs
x?�
�� x x

4�2 x x�
ε

�� y y� x�y�x��y�	ϕ

4�3 x x�
f

�� y y� x� f ℄y�x�� f ℄y�	ϕ

4�4 x x�
ε

�� y x� x� y	ϕ

4�5 x x�
ε

�� y y� x�y�x��y�	ϕ

4�6 x x�
f

�� y y� x� f ℄y�x�� f ℄y�	ϕ

4�7 x x�
ε

�� x y� x� � y�	ϕ

4�8 x x�
ε

�� y y� x�y�x��y�	ϕ

4�9 x x�
f

�� y y� x� f ℄y�x�� f ℄y�	ϕ

4�10 x x�
℄	a
�� qf a�x�	ϕ

4�11 x x�
℄	c
�� qf a�x��b�x��	ϕ�a
�b

Fig. 10: The section of the automatonAϕ for path constraintsx?�π℄�a.

Note thatπ3π4 is the maximal common suffix ofπ1π3π4 andπ2π3π4. Consequently, the
concrete syntax of the constraintx?�π1π3π4℄�y?�π2π3π4℄ as checked by the automaton is

x?�π1℄�y?�π2℄#π3π4

Rule 3.1 starts reading�x?�π℄�y?�π�℄� which is continued by rules 3.2 and 3.3 verifing
condition (5). Rule 3.4 switches to the verification of condition (8) by rules 3.5 and 3.6.
Rule 3.7 switches to the verification of conditions (6) and (7) which is done jointly by
rules 3.8 and 3.9. The respective last symbols ofπ1 andπ2 are memorized in the state (the
symbolsh andg in the state x: y�h�g), allowing rule 3.7 to verify condition 10. In order to
allow for π1 andπ2 to beε, the automaton also memorizes whether or not a feature symbol
has been consumed (rules 3.1 and 3.4). Slightly abusing notation, we allow forh andg in
these rules to denote either a feature symbol orε.

Example 11 The constraint from Example 6 entails x� f ℄y. This selection constraint
is equivalent to the conjunction of the three path constraints x� f ℄�, x?� f ℄�y?�ε℄, and
y?�ε℄�x?� f ℄. The words corresponding to these constraints are accepted by the following
transitions of the automaton (for the constraint in Example 6):

qs
x�
�� x

ε
�� u

f
�� u�

℄�
�� qf

qs
x?�
�� x:ε

ε
�� v:ε

f
�� v�: f

ε
�� y: f

℄�y?�
�� y: y� f �ε

℄#
�� y y

ε
�� qf

qs
y?�
�� y:ε

ε
�� u�:ε

℄�x?�
�� x: u��ε�ε

ε
�� u: u��ε�ε

f
�� u�: u��ε� f

℄#
�� u� u�

ε
�� qf

Label Compatibility (Fig. 10). Rules 4.1–4.11 check constraints of the kindx?�π℄�a.
Note thatϕ ��x?�π℄�a iff there arey�y��z�z��v�v��b�c andπ1�π�1�π2�π�2 with π � π1π2 �
π�1π�2 such that:

ϕ �� x?�π1℄�y?�ε℄�y�z (11)

ϕ �� x?�π�1℄�y�?�ε℄�y��z� (12)

ϕ �� v?�ε℄�z?�π2℄� (13)

ϕ �� v�?�ε℄�z�?�π�2℄ (14)

ϕ �� b�v��c�v�� and �b 
� c or a� b� c� (15)
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5�1 x:h
℄	y?�
�� y: x�h�ε

5�2 x: z�h�g
ε
�� y: z�h�g x�y	ϕ

5�3 x: z�h�g
f
�� y: z�h� f x� f ℄y	ϕ

5�4 x: z�h�g
℄#
�� z x:# h
�g�h�g�ε

5�5 x: z�h�g
ε
�� y: z�h�g x� y	ϕ

5�6 x: z�h�g
ε
�� y: z�h�g x�y	ϕ

5�7 x: z�h�g
f
�� y: z�h� f x� f ℄y	ϕ

5�8 x: z�h�g
℄#
�� z x h
�g�h�g�ε

5�9 x x�:#
ε
�� y y�:# x�y�x��y�	ϕ

5�10 x x�:#
f
�� y y�:# x� f ℄y�x�� f ℄y�	ϕ

5�11 x x�:#
ε
�� x y� x� � y�	ϕ

5�12 x x�
ε
�� y y� x�y�x��y�	ϕ

5�13 x x�
f
�� y y� x� f ℄y�x�� f ℄y�	ϕ

5�14 x x
F �ϕ��

�� qf

6 x?�π℄�y?�π�℄#π��	L�Aϕ�

y?�π�℄�x?�π℄#π��	L�Aϕ�

Fig. 11: The section of the automatonAϕ for path constraintsx?�π1℄�y?�π2℄#π3 which is concrete
syntax forx1?�π1π3℄�x2?�π2π3℄.

The associated pattern looks as follows.

x x

z � y

z� � y�

b�v� c�v��� 	
 �
�� x?�π1π2℄�a

if �b 
� c or a� b� c� andπ1π2 � π�
1π�

2

π1
π�

1

π2

π�
2

We check the conditions (11) and (12) as well as (13) and (14) in parallel where we as-
sume, by symmetry, thatπ1 is a prefix ofπ�

1. With the names used above, the automaton
consumesπ1 by rules 4.2–4.3, switchesy to z with rule 4.4, then consumesπ 2 minus its
suffix π�

2 (which is identical toπ�
1 minus its prefixπ1) by rules 4.5–4.6, switches fromy�

to z� in rule 4.7 and consumesπ �
2 in rules 4.8–4.9. Finally rules 4.10–4.11 check the label

constraints (15).

Example 12 In the case of Example 5 we obtain

qs
x?�
�� x x

ε
�� x y

f
�� x� y�

ε
�� x�� y�

ε
�� x�� z�

g
�� x��� z��

℄	a
�� qf

Path Compatibility (Fig. 11). Rules 5.1–5.14, in conjunction with rules 3.1–3.3, check
for constraintsx1?�π1℄�x2?�π2℄. One possible justification forϕ ��x1?�π1℄�x2?�π2℄ is that
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there are variablesy1�y2�y�
2�z�u and pathsπ�

1�π�
2�µ1�µ2�µ3 such thatπ1 � π�

1µ1µ2µ3, π2 �
π�

2µ1µ2µ3, and

ϕ �� x1?�π�
1℄�y1?�ε℄ (16)

ϕ �� y1?�µ1µ2℄�u?�ε℄ (17)

ϕ �� x2?�π�
2℄�y2?�ε℄ (18)

ϕ �� y2?�µ1℄�y�
2?�ε℄�y�

2�z (19)

ϕ �� u?�ε℄�z?�µ2℄ (20)

where we may assume that

π�
1 andπ�

2 have no common suffix exceptε (21)

Note that there is no assumption onµ3, i.e. µ3 is arbritrary. This situation corresponds to
the following pattern, where the arbitrary pathµ3 is indicated by a dotted line.

x1 x2

y1 y2

z � y�
2

u

� 	
 �
�� x1?�π�

1µ1µ2µ3℄�x2?�π�
2µ1µ2µ3℄

π�
1

π�
2

µ1µ2

µ1

µ2

µ3

The rules 3.1–3.3, 5.1–5.4 and 5.9–5.14 deal with this situation: Rules 3.2–3.3 consume
π�

1 and rules 5.2–5.3 consumeπ �
2; rules 5.9–5.10 and 5.12–5.13 consumeµ1 andµ2, re-

spectively,i.e., the part of the common suffixµ1µ2 that is explicit in the constraint graph,
and rule 5.14 consumes the rest of the common suffixµ3 which is arbitrary and does not
explicitly occur in the constraint graph. Condition 21 is checked in rule 5.4 in the same
way as it has been done for rule 3.7.

The second justification is similar but contains the switch through the compatibility con-
straint� before the common suffix ofπ1 andπ2 instead of within it;i.e., there are variables
y1�y2�z�z��u and pathsπ�

1�π�
2�π��

2�µ1�µ2 such thatπ1 � π�
1µ1µ2, π2 � π�π��

2µ1µ2, and

ϕ �� x1?�π�
1℄�y1?�ε℄ (22)

ϕ �� y1?�µ1℄�u?�ε℄ (23)

ϕ �� x2?�π�
2℄�y2?�ε℄�y2�z (24)

ϕ �� z�?�ε℄�z?�π��
2℄ (25)

ϕ �� u?�ε℄�z�?�µ1℄ (26)
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The associated pattern is:

x1 x2

z � y2

y1 z�

u

� 	
 �
�� x1?�π�

1µ1µ2℄�x2?�π�
2π��

2µ1µ2℄

π�
1

π�
2

π��
2

µ1 µ1

µ2

For the traversal of this pattern we need the additional rules 5.5–5.8 (instead of rules 5.9–
5.11).

For both situations there also is the symmetric one (rule 6) which contains the switch
through the compatibility constraint� in the branch forx1. We do not detail the automa-
ton checking for these possibilities since its definition is completely symmetric to the rules
3.1–3.3 and 5.1–5.14.

Proposition 5.8 (Correctness of the Automaton)If �ψ� 	 L�A x
ϕ� then�xϕ �� ψ.

Proof. By induction over the paths mentioned inψ. �

5.6 Deciding Entailment in PSPACE

Theorem 5.9 The entailment problem for existentially quantifiedFT�-constraints is in
PSPACE (and thus PSPACE-complete) in both the finite and the infinite tree case.

In order to decideϕ �� �xϕ�, we test satisfiability ofϕ andϕ��xϕ�. By Proposition 5.7,
this can be done in timeO�n3� wheren is the size of the entailment problem. If one of
the tests fails, entailment is trivial. Otherwise, we compute the
-closures ofϕ and ofϕ �

and construct the associated automataAϕ andAx
ϕ� in time O�n4�. By Proposition 5.10,

ϕ �� �xϕ� if and only if L�A x
ϕ��
 L�Aϕ�. This inclusion is decidable in PSPACE [9].

Proposition 5.10 (Correctness and Completeness of the Entailment Test)Let ϕ andϕ �

be closedFT� constraints andx a sequence of variables such that all free variables and
features in�xϕ� occur inϕ. Further assume thatϕ��xϕ� is satisfiable. Then

ϕ �� �xϕ� if and only if L�Ax
ϕ��
 L�Aϕ� �

Proof. The proof is subject of Sections 6 and 7. The plan is as follows:

1. Correctness - the direction from right to left - will follow from a characterization
of formulas with (or without) existential quantifiers in terms of regular languages of
path constraints. For all sequences of variablesy and constraintsϕ0 the formula�yϕ0

is equivalent to the conjunction of path constraints recognized by the automatonA
y
ϕ0

(see Proposition 6.6):

�yϕ0 ���
�
�ψ � �ψ� 	 L�Ay

ϕ0��

2. Completeness is the the direction from left to right. We assumeϕ �� �xϕ �. Propo-
sition 7.3 asserts that for allψ with V �ψ� 
 V �ϕ� andF �ψ� 
 F �ϕ� it holds that
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�ψ� 
	 L�Aϕ� impliesϕ 
�� �ψ�. So, assume thatL�A x
ϕ�� 

 L�Aϕ�, that is that there

is a�ψ� 	 L�Ax
ϕ���L�Aϕ�. By construction of the automaton,V �ψ� 
 V ��xϕ ��


V �ϕ�. By Proposition 5.8,�xϕ� �� �ψ�, and by Proposition 7.3,ϕ 
�� �ψ�, which
contradicts the assumptionϕ �� �xϕ�.

�

6 Correctness of the Entailment Test

The correctness part in the proof of Proposition 5.10 bases on a characterization of exis-
tential formulas in terms of regular languages of path constraints that are recognized by the
constructed automata (Proposition 6.6).

6.1 Properties of Aϕ

Clearly, the states of the automatonAϕ carry a lot of cumbersome control information (for
testing two properties simultaneously, or for recognizing greatest common suffixes). We
first formulate three Lemmas 6.2, 6.3, and 6.4 that allow us to safely ignore the control
information. Based on these, we show the key Lemma 6.5 for correctness, which states a
closure property for the automatonAϕ.

In the following we note the fact that the automatonAϕ allows a sequence of transitions
from stateq1 to stateq2 by reading the wordπ by

Aϕ � q1
π
�� q2

Definition 6.1 (Shortcuts)

1. We writeAϕ �� x
π
�� y if Aϕ � x:g

π
�� y:h for some g�h	 L ��ε�.

2. We writeAϕ �� x
π
�� y if Aϕ � x: z�h�g

π
�� y: z�h� f for some z� f �g�h.

Lemma 6.2 For all x�y�π, there exists a transition of the formAϕ �� x
π
�� y if and only

if there are z�z� and a decomposition ofπ, sayπ � π �π�� for someπ��π��, such that:

Aϕ �� x
π�

�� z� z�z� 	 ϕ� Aϕ � z�
π��

�� y

Proof. Follows from the construction of the automaton by some straightforward inductions
that we omit as they don’t contribute further insights. �

Lemma 6.3 (Using Shortcuts)For all ϕ�x�y�µ�ν�a the following equivalences hold:

1. �x?�µ℄�y?�ν℄� 	 L�Aϕ� if and only if there exist a (not necessary longest) common
suffix π 	 F �ϕ�� of µ andν and two transitions of the following forms for some
µ��ν��z with µ� µ�π andν � ν�π:

Aϕ �� x
µ�

�� z and Aϕ � y
ν�

�� z

2. �x?�µ℄�y?�ν℄� 	 L�Aϕ� if and only if there exists u and a common suffixπ 	 F �ϕ��

of µ andν, i.e. there are µ� and ν� with µ� µ�π and ν � ν�π, such that one of the
following symmetric properties holds:
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(a) Aϕ �� x
µ�

�� u and Aϕ �� y
ν�

�� u

(b) or Aϕ �� x
µ�

�� u and Aϕ �� y
ν�

�� u

3. �x?�π℄�a� 	 L�Aϕ� if and only if there exist variables x1�x2 and labels a1 � a2 � a

or a1 
� a2 such thatAϕ � x
µ
�� xi and ai�xi� 	 ϕ for i � 1 and i� 2.

Proof. In all three cases it follows immediately from the definition of the automaton that
if the respective path constraint is inL�Aϕ�, then there exist paths such that the claimed
transitions can be performed. The problem is to show the inverse direction for case 1 and 2
sinceµ� andν� may have a common non-trivial suffix.

For everyh	 F ��ε�, we define the functionlasth : F � � �F ��ε�� as follows:

lasth�π� �

�
h if π � ε

f if π � π� f for someπ�

For the first claim, letµ� � µ��π� andν� � ν��π� such thatµ�� andν�� have no non-trivial
common suffix. We show thatx?�µ��℄�y?�ν��℄#π�π � �x?�µ℄�y?�ν℄� 	 L�Aϕ�.

qs
x?�
�� x:ε rule 3.1

µ��

�� x1:lastε�µ��� rule 3.2, 3.3
℄�y?�
�� y: x1� lastε�µ����ε rule 3.4

ν��

�� y1: x1� lastε�µ���� lastε�ν��� rule 3.5, 3.6
℄#
�� x1 y1 rule 3.7

π�

�� z z rule 3.8, 3.9
π
�� qf rule 3.10 andπ 	 F �ϕ��

The second claim is proven analogously. The proof of the third claim is simpler since no
common suffix has to be factored out. �

Lemma 6.4 (Compatibility) Letϕ be
-closed and assume variables x�z1�z2 and a pathπ.
If there exist transitionsAϕ � x

π
�� z1 andAϕ � x

π
�� z2 then z1�z2 	 ϕ.

Proof. We slightly strengthen the statement of the lemma to the following claim:

C1 For all x1�x2�π�z1�z2 if x1�x2 	 ϕ, Aϕ � x1
π
�� z1 and Aϕ � x2

π
�� z2 then

z1�z2 	 ϕ.

The lemma follows from claim C1 when choosingx� x1 � x2. In this case,x	 V �ϕ� and

��1-closeness ofϕ yieldsx�x	 ϕ such that
�.1-closeness ofϕ guaranteesx�x	 ϕ. We
next prove C1 by induction onπ:

1. Caseπ � ε: There exist two sequences of variablesx1 � u1� � � � �un � z1 andx2 �
v1� � � � �vm � z2 with the following transitions for 1� i � n and 1� j � m:

Aϕ � ui
ε
�� ui�1 and Aϕ � v j

ε
�� v j�1

The application condition of rule 1.2 implies for 1� i � n and 1� j � m:

ui�ui�1 	 ϕ and v j�v j�1 	 ϕ

Sinceϕ is closed with respect to transitivity due to
��2 we obtainz1�x1 	 ϕ and
z2�x2 	 ϕ, and by
�.2-closeness we getz1�x2 	 ϕ. Hencex2�z1 	 ϕ since�
is symmetric due to
��3. Thus
��2-closeness again yieldsz2�z1 	 ϕ. Finally,
symmetry again impliesz1�z2 	 ϕ.
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2. Caseπ � f π� for somef �π�: There existu1�v1�u2�v2 such that the following transi-
tions exist:

Aϕ � x1
ε
�� u1

f
�� v1

π�

�� z1

Aϕ � x2
ε
�� u2

f
�� v2

π�

�� z2

As proved in the caseπ � ε, this impliesu1�u2	ϕ. The application condition of rule
1.3 yieldsu1� f ℄v1 	 ϕ andu2� f ℄v2 	 ϕ. Thus, the closeness under the decomposition
axiom
� impliesv1�v2 	 ϕ. Finally,z1�z2 follows from the induction hypothesis.

�

Lemma 6.5 (Key Lemma) For all paths µ1�µ2�π1�π2, variables x�y1�y2, and
-closedϕ:

1. If �y1?�µ1℄�x?�π1℄� 	L�Aϕ� and�a�x�π1π2℄�� 	L�Aϕ� then�y1?�µ1π2℄�a� 	L�Aϕ�

2. If �y1?�µ1℄�x?�π1℄� 	 L�Aϕ� and �y2?�µ2℄�x?�π1π2℄� 	 L�Aϕ� then
�y1?�µ1π2℄�y2?�µ2℄� 	 L�Aϕ�.

Proof.

1. Let �y1?�µ1℄�x?�π1℄� 	 L�Aϕ� and �a�x�π1π2℄�� 	 L�Aϕ�. According to
Lemma 6.3(1), the first assumption�y1?�µ1℄�x?�π1℄� 	 L�Aϕ� is equivalent to the
existence ofν1�µ�1�π�

1 with µ1 � µ�1ν1 andπ1 � π�
1ν1 and of transitions of the follow-

ing forms for some variablez1:

Aϕ �� y1
µ�

1�� z1 and Aϕ � x
π�

1�� z1

The assumption�a�x�π1π2℄�� 	 L�Aϕ� yields the existence ofu2�v2 with the follow-
ing transitions ofAϕ based on rules 2.1–2.4:

qs
a��
��2�1 x:a

π�

1��2�2�2�3 u2:a
ν1π2��2�2�2�3 v2:a

℄�
��2�4qf

Thus, there are two transitionsAϕ � x
π�

1�� u2 andAϕ � x
π�

1�� z1 such that Lemma
6.4 and the
-closeness ofϕ yield z1�u2 	 ϕ. We now construct a transition proving
�y1?�µ1π2℄�a� 	 L�Aϕ�:

qs
y1?�
��4�1 y1 y1
µ�

1��4�2�4�3 z1 z1 Aϕ �� y1
µ�

1�� z1
ε
��4�4�4�7 u2 u2 z1�u2 	 ϕ
ν1π2��4�8�4�9 v2 v2 Aϕ � u2

ν1π2�� v2
℄	a
��4�10 qf a�v2� 	 ϕ

2. We now assume�y1?�µ1℄�x?�π1℄� 	 L�Aϕ� and�y2?�µ2℄�x?�π1π2℄� 	 L�Aϕ�. Ac-
cording to Lemma 6.3(1) the first assumption�y1?�µ1℄�x?�π1℄� 	 L�Aϕ� is equiva-
lent to the existence ofν1�µ�1�π�

1 with µ1 � µ�1ν1 andπ1 � π�
1ν1 and of transitions of

the following forms for some variablez1:

Aϕ �� y1
µ�

1�� z1 and Aϕ � x
π�

1�� z1

The second assumption�y2?�µ2℄�x?�π1π2℄� 	L�Aϕ� yields the existence ofν2�µ�2�π�
2

such thatµ2 � µ�2ν2 andπ1π2 � π�
2ν2 and of the following transition for some vari-

ablez2:

Aϕ �� y2
µ�

2�� z2 and Aϕ � x
π�

2�� z2
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x � x

y1

z1 � u2

y2

z2

� �

µ�
2

µ�
1

ν1π2

ν2

π�
1

π�
1

π

µ1 � µ�
1ν1

π1 � π�
1ν1

µ2 � µ�
2ν2

π1π2 � π�
2ν2

π�
2 � π�

1π (case 2.(a))

Fig. 12: The paths in the proof of claim 2.(a) of the Key Lemma.

We distinguish two cases depending on whetherπ �
1 is a prefix ofπ�

2 or vice versa.
This case distinction is complete sinceπ�

1ν1π2 � π�
2ν2 such that the pathsπ�

1 andπ�
2

can not diverge (see Figure 12).

(a) π�
1 is a prefix ofπ�

2: There existπ with π�
1π � π�

2 andu2 such that:

Aϕ � x
π�

1�� u2
π
�� z2

Hence,πν2 � ν1π2, and there are two transitionsAϕ � x
π�

1�� u2 andAϕ �

x
π�

1�� z1 such that Lemma 6.4 and the
-closeness ofϕ yield z1�u2 	 ϕ. By
combining our intermediate results

Aϕ �� y1
µ�

1�� z1� z1�u2 	 ϕ� Aϕ � u2
π
�� z2

Aϕ �� y2
µ�

2�� z2

with Lemma 6.3(2), we obtain�y1?�µ�
1πν2℄�y2?�µ�

2ν2℄� 	 L�Aϕ�. The claim
follows sinceµ�

2ν2 � µ2, andµ�
1πν2 � µ�

1ν1π2 � µ1π2.

(b) π�
2 is a prefix ofπ�

1: There existπ with π�
2π � π�

1 andu1 such that:

Aϕ � x
π�

2�� u1
π
�� z1

Hence,πν1π2 � ν2, and there are two transitionsAϕ � x
π�

2�� u1 andAϕ �

x
π�

2�� z2 such that Lemma 6.4 and the
-closeness ofϕ yield z2�u1 	 ϕ. By
combining our intermediate results

Aϕ �� y1
µ�

1�� z1

Aϕ �� y2
µ�

2�� z2� z2�u1 	 ϕ� Aϕ � u1
π
�� z1

with Lemma 6.3(2), we obtain�y1?�µ�
1ν1π2℄�y2?�µ�

2πν1π2℄� 	 L�Aϕ�. The
claim follows sinceµ�

1ν1π2 � µ1π2, and sinceµ�
2πν1π2 � µ�

2ν2 � µ2.

�
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6.2 Characterization of Existential Formulas

In the following we will slightly abuse notation and allow in writing path constraints their
concrete syntax. This allows us to write

�
L�Aϕ� instead of

�
�ψ � �ψ� 	 L�Aϕ�� and

similarly for
�

L�A

x�
ϕ �. With this notation in mind, the characterization proposition can

be written as:

Proposition 6.6 (Characterization of existential formulas by path constraints)If ϕ is
an
-closedFT� constraint andx a sequence of variables then

�xϕ ���
�

L�Ax
ϕ�

Proof. The implication from left to right follows form the correctness of the automata con-
struction (Proposition 5.8). For the inverse direction, we assume a solutionα of

�
L�Ax

ϕ�.
We define an extensionα� of α by setting, for allx 	 V ��xϕ�: α��x� � α�x�, and for all
x	 �x�:

Dα��x� � �π � �x�π℄�� 	 L�Aϕ�� �
�ππ�� � z	 V ��xϕ�� �z?�π�℄�x?�π℄� 	 L�Aϕ��π�π�� 	 Dα�z��

Lα��x� � ��π� a� � �a�x�π℄�� 	 L�Aϕ�� �
��ππ��� a� � z	 V ��xϕ�� �z?�π�℄�x?�π℄� 	 L�Aϕ���π

�π��� a� 	 Lα�z��

To complete the proof we have to show

1. thatα��x� is a feature tree. This statement is not completely obvious forx	 �x�:

(a) Dα��x� is non-empty sincex belongs to the input alphabet of the automatonA ϕ

which therefore accepts�x�ε℄��.

(b) Dα��x� is prefix closed, as shown in Lemma 6.7.

(c) Lα��x� is a partial function as shown in Lemma 6.8 which mainly relies on the
Key Lemma 6.5.

(d) In the case of finite trees, we have to show thatDα��x� is finite. This is done in
Lemma 6.9.

2. thatα� is indeed a solution ofϕ. This in done in Lemma 6.10.

�

Lemma 6.7 Dα��x� is prefix closed.

Proof. The only interesting case isx	 �x�. The proof relies essentially on the following
claim which relies directely on the definition of the automatonA ϕ:

C2 For allx�π, �x�π℄�� 	 L�Aϕ� iff there existsy suchAϕ � x
π

�� y.

We show the prefix closeness ofDα��x� as follows. Supposeπ f 	 Dα��x�. There are two
cases according to the definition ofDα��x�:

1. Case�x�π f ℄�� 	 L�Aϕ�: Claim C2 yields the existence ofy such thatAϕ � x
π f
�� y.

Hence there also existsz with Aϕ � x
π

�� z such that Claim C2 yields�x�π℄�� 	
L�Aϕ�, i.e. π 	 Dα��x�.

2. Case existsµ�µ��µ���z	 V ��xϕ� with π f � µµ��, �z?�µ�℄�x?�µ℄� 	 L�Aϕ� andµ�µ�� 	
Dα�z�: We distinguish two sub-cases:
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(a) If µ�� � ε then �z?�µ�℄�x?�π f ℄� 	 L�Aϕ�. Hence, by Lemma 6.3 there are

µ1�µ2�µ3 with µ� �µ1µ3 andπ f �µ2µ3 and a variabley such thatAϕ �� z
µ1�� y

andAϕ � x
µ2�� y. We distinguish again two cases:

i. µ3 � ε, henceµ2 � π f . In this case, there is a variabley� such thatAϕ �

x
π

�� y�, hence�x�π℄�� 	 L�Aϕ� andπ 	 Dα��x�.

ii. µ3 � µ�
3 f . In this case, we obtain from Lemma 6.3 that�z?�µ1℄�x?�µ2℄� 	

L�Aϕ�. Sinceµ1µ�
3 f 	 Dα�z�, µ1µ�

3 	 Dα�z� by prefix-closeness of the do-
main ofα�z�, henceµ2µ�

3 � π 	 Dα�x�.

(b) Caseµ�� � µ̃�� f for someµ̃��: SinceDα�z� is prefix closed, we knowµ�µ̃�� 	Dα�z�.
Hence,π � µµ̃�� 	 Dα��x�.

�

Lemma 6.8 Lα��x� is a partial function on Dα��x�.

Proof. It is again sufficient to assumex	 �x�.

1. We first show that the definition domain ofLα��x� is a subset ofDα��x�, i.e. we prove
for all π�a that if �π� a�	 Lα��x� thenπ	Dα��x�. There are two cases to be considered
according to the definition ofLα��x�.

(a) Case�a�x�π℄�� 	 L�Aϕ�: From the definition of the automaton it is easy to see
that�x�π℄�� 	 L�Aϕ�, henceπ 	 Dα��x�.

(b) Caseπ � µµ�� for someµ�µ��, z	 V, �z?�µ�℄�x?�µ℄� 	 L�Aϕ�, and�µ�µ��� a� 	
Lα�z�: Hence,µ�µ�� 	 Dα�z� which impliesπ � µµ�� 	 Dα��x�.

2. We show that the relationLα��x� is functional,i.e. for all π�a�b if �π� a� 	 Lα��x� and
�π� b� 	 Lα��x� thena� b.

(a) Suppose that�π� a� and�π� b� are both contributed toL α��x� by the first clause
of its definition. Then, by Proposition 5.8,

ϕ ��
�

L�Aϕ� �� a�x�π℄� � b�x�π℄�

such that the satisfiability ofϕ (which follows from
-closeness ofϕ and Propo-
sition 5.7) impliesa� b.

(b) Suppose that both pairs have been contributed toL α��x� by the second clause of
its definition. There exist pathsµ�µ��µ���ν�ν��ν�� and variablesy�z	V such that
π � µµ�� � νν�� and

i. �y?�µ�℄�x?�µ℄� 	 L�Aϕ�� �µ�µ��� a� 	 Dα�y�

ii. �z?�ν�℄�x?�ν℄� 	 L�Aϕ�� �ν�ν��� b� 	 Dα�z�

Sinceµµ�� � νν�� eitherµ is a prefix ofν or vice versa. Without loss of gener-
ality, we can assume thatν is a prefix ofµ, i.e. µ� νπ1 for someπ1. The Key
Lemma 6.5 implies�y?�µ�℄�z?�ν�π1℄� 	 L�Aϕ�. The assumptiony�z	 V ��xϕ�
and the Correctness Proposition 5.8 yield:

ϕ ��
�

L�Ax
ϕ� �� y?�µ�℄�z?�ν�π1℄ �� y?�µ�µ��℄�z?�ν�π1µ��℄

It remains to show thatπ1µ�� � ν�� which then impliesa � b since�µ�µ��� a� 	
Dα�y� and�ν�ν��� b� 	 Dα�z�. This can be seen as follows. Sinceµ � νπ1 we
know µµ�� � νπ1µ��. In combination withµµ�� � νν�� this impliesνν�� � νπ1µ��

and henceν�� � π1µ�� as required.
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(c) Suppose that�π� a� is contributed by the first clause of the definition ofL α��x�
and�π� b� by its second clause. There exist pathsµ�µ��µ�� and a variablesy	
V ��xϕ� such thatπ � µµ�� and

i. �y?�µ�℄�x?�µ℄� 	 L�Aϕ�� �µ�µ��� b� 	 Dα�y�

ii. �a�x�µµ��℄�� 	 L�Aϕ�

Part 1 of the Key Lemma 6.5 implies�y?�µ�µ��℄�a� 	L�Aϕ�. Sincey	V ��xϕ�
the Correctness Proposition 5.8 yields:

ϕ ��
�

L�Ax
ϕ� �� y?�µ�µ��℄�a

Sinceα is a solution of
�

L�Ax
ϕ� and�µ�µ��� b� 	 Lα�y� we concludeb� a.

�

Lemma 6.9 If we consider the model of finite treesFT fin
� thenα��x� is finite for all x.

Proof. Let V � V ��xϕ�, and letDα�z� be finite for allz	V. We have to show thatDα��x�
is finite for all x	 �x�.

In the case of finite feature trees, the following axiom is required by
-closeness ofϕ:


� x1�xn�1 
	 ϕ if xi � fi ℄yi �xi�1�yi 	 ϕ for all 1� i � n

Let n be the number of variables ofϕ andd be the maximal depth of any treeα�z� for z	V.
Note thatd is finite sinceV is finite and all treesα�z� for z	V have finite depth.

We show that for allx 	 �x� the length of the paths inDα��x� is bounded byn� d. Let
π � π1 � � �πp 	 Dα��x�.

1. Case�x�π℄�� 	 L�Aϕ�. Then we have

Aϕ � x
ε

�� x1
π1�� y1

ε
�� x2

π2�� y2 � � � xp
πp
�� yp

ε
�� xp�1

and hence, with an argument as in the proof of Lemma 6.4, thatx i�1�yi 	 ϕ for all
1� i � p. By 
�-closeness, all variablesxi have to be different, hencep� n� n�d.

2. Caseπ � π1π��, �z?�π�℄�x?�π1℄� 	 L�Aϕ� andπ�π�� 	 Dα�z�. In this case�π��� � d by
assumption and�π1� � n as in the first case, hencep� �π1�� �π��� � d�n.

�

Lemma 6.10 The variable assignmentα� is a solution ofϕ (if α is a solution of
�

L�Ax
ϕ�

which we assume).

Proof. Let V � V ��xϕ� be the set of global variables. We have to show that all basic
constraints inϕ are validated byα�. There are three kinds of basic constraints:a�x�, x� f ℄y
andx�y, and we have to consider all combinations ofx andy being inV or not. Hence
there are 10 different cases.

1. Casex� f ℄y	 ϕ, x�y	V both global. In this case we have

��x� f ℄����x?� f ℄�y?�ε℄���y?�ε℄�x?� f ℄�� 
 L�Ax
ϕ�

These three path constraints are hence satisfied byα, and so isx� f ℄y which is also
satisfied byα� sincex�y	V and thusα�x� � α��x� andα�y� � alpha��y�.
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2. Casex� f ℄y	 ϕ, x	V global,y �	V local. For allπ�a, we have to prove the following
two equivalences:π 	 Dα��y� iff f π 	 Dα�x� and�π� a� 	 Lα��y� iff � f π� a� 	 Lα�x�

(a) We assumeπ 	 Dα��y� and showf π 	 Dα�x�:

i. Case π is contributed toDα��y� by the first clause of its definition,
i.e. �y�π℄�� 	 L�Aϕ�. The assumptionx� f ℄y 	 ϕ and Claim C2 imply
�x� f π℄�� 	 L�Aϕ� and thus, sincex	 V, �x� f π℄�� 	 L�A x

ϕ�. Sinceα is a
solutionL�Ax

ϕ� we concludef π 	 Dα�x�.

ii. Caseπ is contributed toDα��y� by the second clause of its definition, i.e.
there existµ�µ��µ�� and a variablez	V such thatπ � µµ�� and:

�z?�µ�℄�y?�µ℄� 	 L�Aϕ�� µ�µ�� 	 Dα�z�

The first condition�z?�µ�℄�y?�µ℄� 	 L�Aϕ� and assumptionx� f ℄y	 ϕ yield
�z?�µ�℄�x?� f µ℄� 	L�Aϕ� due to Lemma 6.3 part 1. Sincez�x	V we obtain
�z?�µ�℄�x?� f µ℄� 	 L�Ax

ϕ�, and sinceα is a solution ofL�A x
ϕ� and since

µ�µ�� 	 Dα�z� that f π � f µµ�� 	 Dα�x�.

(b) We assumef π	Dα�x� and showπ	Dα��y�. Applied to our assumptionx� f ℄y	
ϕ, Lemma 6.3 implies:

�x?� f ℄�y?�ε℄� 	 L�Aϕ�

In combination withf π 	 Dα�x� andx	 V the second clause of the definition
of Dα��y� yieldsπ 	 Dα��y�.

(c) We assume�π� a� 	 Lα��y� and show� f π� a� 	 Lα�x�.

i. Case�π� a� is contributed toLα��y� by the first clause of its definition. Thus
�a�y�π℄�� 	 L�Aϕ� such thatx� f ℄y implies �a�x� f π℄�� 	 L�Aϕ� and thus,
sincex	V, �a�x� f π℄�� 	L�Ax

ϕ�. Sinceα is a solutionL�Ax
ϕ� we conclude

� f π� a� 	 Lα�x�.

ii. Case�π� a� is contributed toLα��y� by the second clause of its definition.
There existµ�µ��µ�� and a global variablez	V such thatπ � µµ�� and:

�z?�µ�℄�y?�µ℄� 	 L�Aϕ�� �µ�µ��� a� 	 Lα�z�

Due to Lemma 6.3 this implies�z?�µ�℄�x?� f µ℄� 	 L�Aϕ� and hence, since
z�x 	V, that�z?�µ�℄�x?� f µ℄� 	 L�Ax

ϕ�. Sinceα is a solution of
�

L�Ax
ϕ�

and�µ�µ��� a� 	 Lα�z� we obtain that� f µµ��� a� � � f π� a� 	 Lα�x�.

(d) We assume� f π� a� 	 Lα�x� and show�π� a� 	 Lα��y�. The assumptionx� f ℄y	 ϕ

and Lemma 6.3 imply
�x?� f ℄�y?�ε℄� 	 L�Aϕ�

In combination with� f π� a�	 Lα�x� the second clause of the definition ofLα��y�
yields�π� a� 	 Lα��y�.

3. Casex� f ℄y	 ϕ, x �	V local,y	V global.

From now on we only prove the assertions concerning the domains of the trees, the
proofs for the labeling functions being analogous as we have seen in the case above.
So, we have to prove the following equivalence for allπ: π 	 D α�y� iff f π 	 Dα��x�.

(a) We assumeπ 	 Dα�y� and showf π 	 Dα��x�.

Sincex� f ℄y	 ϕ we have that�y?�ε℄�x?� f ℄� 	 L�Aϕ�, hencef π 	 Dα��x� by the
second clause of the definition ofα �.

(b) We assumef π 	 Dα��x� and showπ 	 Dα�y�.
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i. Suppose thatf π 	 Dα��x� follows from the first clause of the definition
of Dα��x�.

There existsy��u such thatAϕ � x
f

�� y� π
�� u. The closeness ofϕ under

the decomposition rule
� yieldsy��y	 ϕ. Hence,Aϕ � y
ε
�� y� π

�� u,
i.e. �y�π℄�� 	 L�Aϕ�, and henceπ 	 α�y�.

ii. Suppose thatf π 	 Dα��x� follows from the second clause of the definition
of Dα��x� Hence there existµ�µ�µ�� andz	V such thatf π � µµ�� and:

�z?�µ�℄�x?�µ℄� 	 L�Aϕ��µ
�µ�� 	 Dα�z�

According to Lemma 6.3 there exist a suffixν̃ of µ� andµ, sayµ� νν̃ and
µ� � ν�ν̃ and variablesu�v such that:

Aϕ �� z
ν�

�� v and Aϕ � x
ν
�� v

ν̃
�� u

Since f π � νν̃µ�� there are three cases, depending on whether the leading
f in f π belongs toν, ν̃ or to µ��.
A. Caseν � f ν�� for someν��.

Since f π � νν̃µ�� there is ay� such that

Aϕ � x
f

�� y� ν��

�� v

Due to the
�-closeness ofϕ andx� f ℄y	 ϕ we obtain thaty��y	 ϕ.
Hence, lemma 6.3 yields

�z?�µ�℄�y?�ν��ν̃℄� 	 L�Aϕ�

hence�z?�µ�℄�y?�ν��ν̃℄� 	 L�Ax
ϕ� due toy�z	V. Sinceα is a solution

of L�Ax
ϕ� andµ�µ�� 	 Dα�z� we concludeπ � ν��ν̃µ�� 	 Dα�y�.

B. Caseν � ε andν̃ � f ν̃� for someµ̃.
Similar to the case above but with the decomposition rule
� applied
to ν̃.

C. Caseν � ν̃ � ε andµ�� � f µ̃��.
In this caseµ� ε, hence�z?�µ�℄�x?�ε℄� 	 L�Aϕ� and consequently by
rule 3.10 of the automaton,�z?�µ� f ℄�x?� f ℄� 	 L�Aϕ�. Hence,α is a
solution of�z?�µ� f ℄�y?�ε℄�, from which we conclude thatπ 	 Dα��y�.

4. Casex� f ℄y	 ϕ, x�y 
	V both local. We omit this case which is similar to the previous
one.

5. Casex�y	 ϕ andx�y	V. This case is trivial since�x?�ε℄�y?�ε℄� 	 L�A x
ϕ� and since

α is a solution ofL�Ax
ϕ�,

6. Casex�y	 ϕ andx	V, y �	V. Let π 	 Dα��y�. By construction of the automaton,
�x?�ε℄�y?�ε℄� 	 L�Aϕ�, henceπ	 Dα��y� by the second clause of the definition ofα �.

7. Casex�y	 ϕ andx �	V, y	V. Let π 	 Dα��x� we have to show thatπ 	 Dα�y�.

(a) If �x�π℄�� 	 L�Aϕ� then, by construction of the automaton,�y�π℄�� 	 L�A ϕ�.
Hence,π 	 Dα�y� sinceα is a solution ofL�Ax

ϕ�.

(b) If there is a�z?�µ�℄�x?�µ℄� 	 L�Aϕ� with z 	 V, µ�µ�� 	 Dα�z� and π � µµ��,
then we also have�z?�µ�℄�y?�µ℄� 	 L�Aϕ� by construction of the automaton,
and hence�z?�µ�℄�y?�µ℄� 	 L�Ax

ϕ� sincey�z	 V. Sinceµ 	 Dα��x� and since
α� is a solution ofx?�ε℄�y?�ε℄, we conclude thatµ	 Dα��y� � Dα�y�, and hence
π 	 Dα�y�.
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8. Casex�y	 ϕ, x 
	V, y 
	V. Similar to the previous case.

9. Casea�x� 	 ϕ, andx	V. This is trivial since in this casea�x� 	 L�Aϕ�, andα is a
solution ofL�Aϕ� that coincides withα� onx sincex	V.

10. Casea�x� 	 ϕ, andx 
	V. Omitted.

�

7 Completeness of the Entailment Test

We first recall some known results on simpler forms of entailment and then prove Proposi-
tion 7.3 from which the completeness of the entailment test follows.

7.1 Simpler Forms of Entailment

The following results on simpler forms of entailment from [18, 17] can be derived from
the existence of least solutions for satisfiable constraints. These results will be used for
proving the completeness of our entailment test as stated in Proposition 5.10.

Proposition 7.1 (Quantifier Free Entailment [18]) If ϕ is 
-closed thenϕ �� x�y if and
only if x� y or x�y	 ϕ, andϕ �� x�y if and only if x� y or x�y	 ϕ.

Proof. Both properties are subsumed by Proposition 6 in [18]. �

Proposition 7.2 (Entailment of Simple Path Constraints [17])Let ϕ be satisfiable and

-closed. For every variable x	 V �ϕ� and all a�π the following two equivalences hold:

1. ϕ �� x�π℄� iff �x�π℄�� 	 L�Aϕ�

2. ϕ �� a�x�π℄� iff �a�x�π℄�� 	 L�Aϕ�

Proof. Modulo notation, this proposition is identical to Corollary 5.4 in [17]. Our notation
�x�π℄�� 	 L�Aϕ� used here is equivalent to the existence ofz with ϕ � z?�ε℄�x�π℄ in the
notation of [17]. Similarly,�a�x�π℄�� 	 L�Aϕ� is writtenϕ � a�x�π℄� in the notation of [17].
�

7.2 The Completeness Proof

In this section we prove that our automaton construction and, as a consequence the entail-
ment test, is complete.

Proposition 7.3 (Completeness)For all constraints ϕ and path constraintsψ with
V �ψ�
 V �ϕ� andF �ψ�
 F �ϕ�:

if ϕ �� ψ then�ψ� 	 L�Aϕ�

The proof will proceed by induction on the length of the paths used in the path constraintψ.
In the induction step we will need to apply the induction hypothesis on path constraints with
smaller paths. The idea is to remove a featuref at some positionx of the path constraintψ
entailed by the constraintϕ, thus yielding an extensionϕ x

f of ϕ to be defined exactly in
Definition 7.4. Then the induction roughly works as follows:

� From the hypothesis, conclude that the path constraintψ � obtained by removingf at
x from ψ is entailed by the extended constraintϕx

f , thanks to Lemma 7.6.
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� Apply the induction hypothesis to conclude that the path contraint with smaller paths
ψ� is recognized by the automatonAϕx

f
of the extended constraint.

� With a simple argument we will get that the original path constraintψ is also recog-
nized by the automatonAϕx

f
of the extended constraint.

� Finally, we conclude that the original path constraintψ is recognized by the automa-
tonAϕ of the original constraint, thanks to Lemma 7.7.

Definition 7.4 (Constraint Extension) For all constraintsϕ and features f fix a fresh
variable xf and define theextensionϕx

f of ϕ atx and f as follows:

ϕx
f � ϕ � x� f ℄xf �

�
�xf�y � �x��y� : x� x��x�� f ℄y��y� � y	 ϕ�

�
�
�y�xf � �x��y� : y� y��x�� f ℄y� �x� � x	 ϕ�

�
�
�y�xf �xf�y � �x��y� : x� x��x�� f ℄y��y��y	 ϕ�

�
�
�y�xf �xf�y � �x��y� : x�x��x�� f ℄y��y�y� 	 ϕ�

� xf � xf �xf�xf

Lemma 7.5 If ϕ is satisfiable and
-closed, thenϕx
f also is satisfiable and
-closed.

Proof. Slightly tedious but straightforward. See Lemma 7 of [18] for the proof. �

Lemma 7.6 (Semantic Properties of Extensions)For all x�y�π�π ��a� f :

1. If ϕ �� x?� f π℄�a thenϕx
f �� xf ?�π℄�a

2. If ϕ �� x?� f π℄�y?�π�℄ thenϕx
f �� xf ?�π℄�y?�π�℄

3. If ϕ �� x?�π℄�y?� f π�℄ thenϕ
y
f �� x?�π℄�y f ?�π�℄

4. If ϕ �� x?� f π℄�y?�π�℄ thenϕx
f �� xf ?�π℄�y?�π�℄

5. If ϕ �� x?�π℄�y?� f π�℄ thenϕ
y
f �� x?�π℄�y f ?�π�℄

Proof. For illustration, we check only case 1.

ϕ �� x?� f π℄�a implies ϕ �� �x f �x� f ℄xf � xf ?�π℄�a�
implies ϕ�x� f ℄xf �� xf ?�π℄�a
implies ϕx

f �� xf ?�π℄�a

The other cases are proven analogously. �

Lemma 7.7 For all ϕ and path constraintsψ of one of the forms u1?�π1℄�u2?�π2℄,
u1?�π1℄�u2?�π2℄, or u?�π℄�a, and withV �ψ�
 V �ϕ� andF �ψ�
 F �ϕ� :

If �ψ� 	 L�Aϕx
f
� then�ψ� 	 L�Aϕ�

This statement is repeated as Lemma 7.9 in Section 7.3 and proved there.

Proof of Proposition 7.3The proof is by case distinction overψ.

1. ψ � x�π℄�: If ϕ �� x�π℄� then�x�π℄�� 	 L�Aϕ� by Proposition 7.2.(1).

2. ψ � a�x�π℄�: If ϕ �� a�x�π℄� then�a�x�π℄�� 	 L�Aϕ� by Proposition 7.2.(2).
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3. ψ � x?�π℄�a: We assume�x?�π℄�a� 
	 L�Aϕ� and showϕ 
�� x?�π℄�a by induction
onπ.

π � ε: We distinguish three cases, depending on the numbern of distinct labelsc
such that�x?�ε℄�c� 	 L�Aϕ�.

n� 0: Letbbe an arbitrary label distinct froma. Then clearlyϕ�b�x� is
-closed
and satisfiable and entails�x?�ε℄�a. Henceϕ 
�� x?�ε℄�a.

n� 1: Let b be the unique label such that�x?�ε℄�b� 	 L�Aϕ�. The assumption
�x?�π℄�a� 
	 L�Aϕ� impliesa 
� b. Clearly,ϕ�b�x� is satisfiable and en-
tails�x?�ε℄�a. Henceϕ 
�� x?�ε℄�a.

n� 2: This case is impossible under our assumption that�x?�ε℄�a� 
	 L�Aϕ�,
since the automaton has the property that whenever�x?�ε℄�b���x?�ε℄�c� 	
L�Aϕ� for b 
� c then�x?�ε℄�a� 	 L�Aϕ� for all labelsa.

π � f π�: By Lemma 7.7,�x?�π℄�a� 
	 L�Aϕx
f
�, and hence�x f ?�π�℄�a� 
	 L�Aϕx

f
�.

By induction assumption this impliesϕx
f 
�� xf ?�π�℄�a and hence, by clause 1

of Lemma 7.6,ϕ 
�� x?� f π�℄�a, that is,ϕ 
�� x?�π℄�a.

4. ψ � x?�π℄�y?�π�℄: Assume that�x?�π℄�y?�π�℄� 
	 L�Aϕ�. We showϕ 
�� x?�π℄�y?�π�℄
by simultaneous induction overπ andπ �.

π � π� � ε: Thenψ � x?�ε℄�y?�ε℄ is equivalent to the basic constraintx�y. Since
x�y	V �ϕ� andϕ is 
-closed, Proposition 7.1 implies thatϕ 
�� x�y if and only
if x�y 
	 ϕ. However,�x?�ε℄�y?�ε℄� 
	 L�Aϕ� implies x�y 
	 ϕ, again due to

-closedness, and henceϕ 
�� x�y.

π � f π��: By Lemma 7.7,�x?� f π��℄�y?�π�℄� 
	 L�Aϕx
f
� and hence�x f ?�π��℄�y?�π�℄� 
	

L�Aϕx
f
�. By induction assumption this impliesϕx

f 
�� xf ?�π��℄�y?�π�℄ and hence

ϕ 
�� x?� f π��℄�y?�π�℄ by Lemma 7.6, clause 2.

π� � f π��: Symmetric, using clause 3 of Lemma 7.6.

5. ψ � x?�π℄�y?�π�℄: Assume that�x?�π℄�y?�π�℄� 
	 L�Aϕ�. We showϕ 
�� x?�π℄�y?�π�℄
by simultaneous induction overπ andπ �.

π � π� � ε: Thenψ � x?�ε℄�y?�ε℄ is equivalent to the basic constraintx�y. Since
x�y	V �ϕ� andϕ is 
-closed, Proposition 7.1 implies thatϕ 
�� x�y if and only
if x�y 
	 ϕ. However,�x?�ε℄�y?�ε℄� 
	 L�Aϕ� impliesx�y 
	 ϕ, henceϕ 
�� x�y.

π � f π��: By Lemma 7.7,�x?� f π��℄�y?�π�℄� 
	 L�Aϕx
f
�, hence�x f ?�π��℄�y?�π�℄� 
	

L�Aϕx
f
�. By induction assumption this yieldsϕx

f 
�� xf ?�π��℄�y?�π�℄ and, by

Lemma 7.6, clause 4,ϕ 
�� x?� f π��℄�y?�π�℄.

π� � f π��: Symmetric, using clause 5 of Lemma 7.6.

�

7.3 Details of the Completeness Proof

Lemma 7.8 Let ϕ be an
-closed constraint, u0�un 	 V �ϕ�, x	 V a variable, f	 F a
feature, andπ1�π2�π3 	 F �ϕ�� paths with features fromϕ.

1. If there exists a variable ui1 	 V �ϕx
f � such that the extensionϕx

f satisfies

Aϕx
f
�� u0

π1�� ui1 and Aϕx
f
� un

π2�� ui1

then�u0?�π1℄�un?�π2℄� 	 L�Aϕ� holds for the nonextended constraintϕ.
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u0 un

ui2 � ui3

ui1

π1

π2

π3

Fig. 13: The transitions used in the proof of Lemma 7.8.

2. If there exists a variable ui1 	 V �ϕx
f � such that the extensionϕx

f satisfies

Aϕx
f
�� u0

π1�� ui1 and Aϕx
f
�� un

π2π3�� ui1

then�u0?�π1℄�un?�π2π3℄� 	 L�Aϕ� holds for the nonextended constraintϕ.

Proof. The proof of both parts are so similar that we can savely restrict ourselves to show
the slightly more envolved part 2.

We can decompose the transitions into (see Figure 13)

Aϕx
f
�� u0

π1�� ui1� Aϕx
f
�� un

π2�� ui3�

Aϕx
f
� ui2

π3�� ui1� ui2�ui3 	 ϕx
f �

Let q̄ be the sequence of states of the transitionAϕx
f
�� u0

π1�� ui1, followed by the states of

the transitionAϕx
f
� ui2

π3�� ui1 in reverse order, and without the last stateui1, followed

by the sequence of states of the transitionAϕx
f
�� un

π2�� ui3 in reverse order. Hence the
first state of ¯q is u0, the last state isun, and the length of ¯q is the length of the three
transition sequences plus 2 (since we ignored one occurrence ofu1).

Let �u0� � � � �un� be the sequence of variables occuring as first variable-symbol in the states
of q̄. Thus, the length of this sequence,n� 1, is equal to the length of ¯q, andu 0 andun

are those of the lemma. Furthermore, leti 1, i2 and i3 the indices corresponding to the
above decomposition of the transitions (see also Figure 13). This sequence of variables is
exactly the sequence of variables that we encounter in the graph of Figure 13 when, starting
from u0, we go downπ1, then upπ3 to ui2, over toui3 and then up toun.

We prove�u0?�π1℄�un?�π2π3℄� 	 L�Aϕ� by well-founded induction on the lexicographic
order on the triple of natural numbers�ma�mb�mb� defined below.

ma is the length of�ui3� � � � �un�, i.e. n� i3�1.

mb is the number of occurrences ofx f in �u0� � � � �un�.

mb is the length of�u0� � � � �un�, i.e. n�1.

The idea of the proof is to remove eitheru0 or else the left-most occurrence ofx f from
the sequence�u0� � � � �un�. The induction step requires a number of case distinctions on the
shape of the given transitions.

1. Casei2 � 0.

(a) Casei3 � n. Thusu0�un 	 ϕx
f . Sinceu0�un 	 V �ϕ� it follows thatu0�un 	 ϕ.

The
-closedness ofϕ yields �u0?�π1℄�un?�π2π3℄� 	 L�Aϕ� sinceπ1 � π2 �
π3 � ε in this case.
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(b) Casei3 � n. Sinceπ1 � π3 � ε, we can apply the induction hypothesis to the
situation whereu0 andun are swapped whereby the measurema is strictly de-
creased. Hence,�un?�π2℄�u0?�ε℄� 	 L�Aϕ� and by symmetry of the automaton
construction�u0?�ε℄�un?�π2℄� 	 L�Aϕ�.

2. Casei2 
� 0.

(a) Caseu1 	 V �ϕ�. We can apply the induction hypothesis to�u1� � � � �un� since
the measuremb is decreased properly whereasma andmb remain unchanged.
For all constraints that might connectu0 to u1, the expected conclusion can be
composed from the induction hypothesis and Lemma 6.3.

(b) Caseu1 � xf . We can assume the transition sequenceAϕx
f
�� u0

π1�� ui1 to

be non-empty since it is not possible to havex f � f ℄u0 (by construction ofϕx
f ).

Hence, should this transition be empty the relation betweenu0 andu1 is u0�u1

we can take this as part ofAϕx
f
�� u0

π1�� ui1. We distinguish two subcases: the

transitionAϕx
f
�� u0

π1�� ui1 relatesu0 to u1 either via an ordering or a feature
selection constraint.

i. Caseu0�xf 	 ϕx
f . We further distinguish on which constraint connectsx f

to u2, either inAϕx
f
�� u0

π1�� ui1 or in Aϕx
f
� ui2

π3�� ui1.

A. Casexf �g℄u2 	 ϕx
f for some featureg	 F . This is impossible since

ϕx
f does not contain any selection constraints headed byx f .

B. Casexf�u2 	 ϕx
f . Transitivity (
���-closure ofϕ) yieldsu0�u2 	 ϕ.

Thus, we can cancel outu1 from the sequence: the induction hypothe-
sis applied to�u0�u2� � � � �un� proves�u0?�π1℄�un?�π2π3℄� 	 L�Aϕ� as
required.

C. Caseu2�g℄xf 	ϕx
f for someg	F . Note that this situation may happen

for i1 � 1 andi2 � 1. By construction ofϕx
f we knowu2 � x andg� f .

Sinceu0 	 V �ϕ� andu0�xf 	 ϕx
f , the construction ofϕx

f ensures the
existence of variablesx1�x2 	 F such thatx1�x� x1� f ℄x2 � u0�x2 	
ϕ. We can now cancel out the occurrence ofx f at u1: the induction
hypothesis applies to the sequence�u0�x2�x1�x�u3� � � � �un� sincema

remains unchanged whereasmb is decreased by 1. Thereby the lexi-
cographic order on�ma�mb�mb� is decreased properly even thoughmb

might be increased.

D. Casexf�u2 	 ϕx
f . This may happen but only ifi 1 � i2 � 1 andi3 � 2.

Sinceϕx
f is 
���-closed by Lemma 7.5,u0�xf � xf�u2 	 ϕx

f implies
u0�u2 	 ϕx

f . Again, we can cancel out the occurrence ofx f at u1.

ii. Caseu0�g℄xf 	 ϕx
f . Thus,u0 � x andg� f by construction ofϕx

f . We dis-
tinguish further depending on which constraint connectsx f to u2 in either

Aϕx
f
�� u0

π1�� ui1 or Aϕx
f
� ui1

π2�� ui2.

A. The casex f �g℄u2	 ϕx
f for some featureg	F is impossible asϕx

f does
not contain any selection constraints headed byx f .

B. Casexf�u2 	 ϕx
f . If u2 � xf then we trivially cancel out the occur-

rence ofx f atu2. Otherwise,u2	V �ϕ�. The construction ofϕx
f yields

that there exist variablesx1�x2 satisfyingx�x2 � x1� f ℄x2 � x1�u2 	 ϕ.
Hence, we can apply the induction hypothesis to�x�x2�x1�u2� � � � �un�.

C. Caseu2�g℄xf 	 ϕx
f for someg	F . Thus,i1 � 1, i2 � 1, u2 � x, f � g,

andπ1 � f and there exists a pathπ�
3 with π3 � π�

3 f . The induction hy-
pothesis applied to�u0�u2� � � � �un� yields�x?�ε℄�un?�π2π�

3℄� 	 L�Aϕ�.
Due to the assumptionπ1 	 F �ϕ�� of the Lemma, it follows thatf 	
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F �ϕ� such thatf belongs to the signature of the automatonA ϕ. Thus,
�x?� f ℄�un?�π2π�

3 f ℄� 	 L�Aϕ�, i.e. �u1?�π1℄�un?�π2π3℄� 	 L�Aϕ�.

D. Casexf�u2 	 ϕx
f . Now, we havei1 � i2 � 1, i3 � 2, π1 � f , and

π3 � ε. There are again two sub-cases which we consider below:

Subcases of 2.(b).ii.D:

1. Caseu2 � xf . Fromun 	 V �ϕ� it follows thatn� 3. We distinguish further, accord-

ing to the constraint which connectsu3 to xf in Aϕx
f
� un

π2�� ui3�� u2�.

(a) Caseu3�xf 	 ϕx
f . The
���-closedness ofϕx

f entailsu3�xf 	 ϕx
f (Lemma 7.5).

We cancel out the occurrence ofx f at u2 by applying the induction hypothesis
to the sequence�u0�u1�u3� � � � �un�.

(b) Caseu3�g℄xf 	 ϕx
f for someg	 F . Hence,u3 � x, g � f , and there existsπ�

2

such thatπ2 � π�
2 f . Now, we can cancel out both occurrences ofx f at u2 and

at u3: the induction hypothesis applied�x�u3� � � � �un� yields�x?�ε℄�un?�π�
2℄� 	

L�Aϕ�. Sinceπ2 	 F �ϕ� is assumed by the Lemma, we know thatf 	 F �ϕ�.
Thus�x?� f ℄�un?�π�

2 f ℄� 	 L�Aϕ� from Lemma 6.3, i.e.,�x?�π1℄�un?�π2π3℄� 	
L�Aϕ�.

2. Caseu2 
� xf . Thus,u2 	 V �ϕ� andx f�u2 	 ϕx
f . We distinguish two possibilities

for this to happen, according to the construction ofϕ x
f .

(a) Casex�x1 � x1� f ℄x2 � x2�u2 	 ϕ for some variablesx1�x2. The induction hy-
pothesis applied to the sequence�x�x1�x2�u3� � � � �un� yields�x?� f ℄�un?�π2℄� 	
L�Aϕ� as required.

(b) Casex�x1 � x1� f ℄x2 � u2�x2 	 ϕ for some variablesx1�x2. The induction
hypothesis can be applied to the situation whereu0 andun are swapped (note
thatπ3 � ε) wherebyma does not increase (it has been strictly positive before,
and now is 1) andmb decreases properly (since the occurrence ofx f at u1 is
eliminated). The induction hypothesis yields�un?�π2℄�x?� f ℄� 	 L�Aϕ� such
that symmetry implies�x?� f ℄�un?�π2℄� 	 L�Aϕ� as required.

�

Lemma 7.9 Let ψ be a path constraint of one of the forms u1?�π1℄�u2?�π2℄,
u1?�π1℄�u2?�π2℄, or u?�π℄�a. For all ϕ with V �ψ�
 V �ϕ� andF �ψ�
 F �ϕ�:

If �ψ� 	 L�Aϕx
f
� then�ψ� 	 L�Aϕ�

Proof. From Lemmas 7.8 and 6.3. �
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