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Election algorithms with random delays in
trees
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The election is a classical problem in distributed algorithmic. It aims to design and to analyze a distributed algorithm
choosing a node in a graph, here, in a tree. In this paper, a class of randomized algorithms for the election is studied.
The election amounts to removing leaves one by one until the tree is reduced to a unique node which is then elected.
The algorithm assigns to each leaf a probability distribution (that may depends on the information transmitted by the
eliminated nodes) used by the leaf to generate its remaining random lifetime. In the general case, the probability of
each node to be elected is given. For two categories of algorithms, close formulas are provided.
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1 Introduction
1.1 The problem
Starting from a configuration where all processors are in the same state, the goal of an election algorithm
is to obtain a configuration where exactly one processor is in the state leader, the other ones being in the
state lost. The (leader) election problem is often the first problem to solve in a distributed environment.
A leader permits to centralize some information, to make some decisions, to coordinate the processors
for subsequent tasks. Hence, the election problem – first posed by Le Lann in [6] – is one of the most
studied problems in distributed algorithmic, and this under many different assumptions [9]. The graph
encoding the relations between the processors can be a ring, a tree, a complete or a general connected
graph. The system can be synchronous or asynchronous and processors may have access to a total or
partial information of the geometry of the underlying graph, or of the current state of the system, etc.

In this paper we consider the case of election in trees, when the nodes have at time t = 0 a very par-
tial information on the geometry of the tree: each node only knows its number of neighbors. A possible
method for electing in a tree, introduced by Angluin ([1] Theorem 4.4), amounts to eliminating succes-
sively the leaves till only one node remains, the leader. In this paper, we investigate this method in the
general case: assume that a node u being a leaf (was a leaf at time t = 0, or that becomes a leaf at time
t) decides to live a random remaining time Du before being eliminated; in other words, it is eliminated at
time t+Du except if it is elected before this date. Starting with a given tree T0 at time 0, denote by Tt the
tree constituted with the non-eliminated nodes at time t. The family (Tt)t≥0 is a random process taking
its values in the set of trees. Given T0, the distribution of (Tt)t≥0 – and then, also the probability that a
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given node is elected – depends on the way the nodes choose the distribution according to which they will
compute their random remaining lifetime.
– In [7] the authors consider two elementary approaches. The first one is based on the assumption that
all sequences of leaves elimination have the same probability (no distributed algorithm seems to have this
property). Their second approach assumes that at each step all leaves have the same probability of being
removed. This corresponds to the case where the D′us are all exponentially distributed with parameter 1.
The authors study thoroughly both approaches and prove many properties of resulting random processes.
– In [8], the authors show that if the nodes suitably choose their remaining random lifetime then a to-
tally fair election process is possible, the nodes being elected equally likely (in Section 3.2 this example is
revisited). In [4] and [3], the authors extend the result from [8] to a more general class of graphs: the poly-
ominoid graphs. They also prove a conjecture: the expected value of the election duration is equal to log n.

In this paper, we investigate the general case, namely, we consider the case where a leaf u generates its
remaining lifetime Du according to a distribution Du, where Du may depend on all the information that
u has at its disposal (see Remark 2 below). We warm the reader to distinguish the notation Du and Du.

Remark 1 – In order to avoid that two nodes may disappear exactly at the same time, the distributionsDu
need to avoid atoms (points with a positive mass). Even if not recalled in the statements, we assume that
the distributions Du have no atom. (In Section 3.3 a case where Du maybe 0 with a positive probability
arises and leads to problems).

– It is assumed throughout the paper, that the nodes own independent random generators. This assump-
tion is needed each time that the independence argument is used in the paper.

1.2 The general scheme
Throughout this paper T = (V,E) is a tree in the graph theoretic sense: V is its set of nodes, E the set
of edges. The graph T is acyclic and connected, and undirected. The size of T , denoted by |T |, is the
number of nodes.

In the class of algorithms we study, a node u becoming a leaf at time t (or which was a leaf at time
t = 0) disappears at time t + Du (except if it is elected before!); the quantity Du, called the remaining
lifetime of u, is computed locally by the leaf u. The description of the way u chooses the distribution Du
is crucial: this description is in fact equivalent to the description of an algorithm using the general method
of elimination of leaves. We then enter into details here.

When a leaf is eliminated, it may transmit to its unique neighbor some information (this notion will be
formalized below). During the execution of the algorithm, as a result of the successive eliminations of
the leaves, each internal node u eventually becomes a leaf, say at time tu. At this time, it may use the
information received to compute the distribution Du: then, it generates a random variable Du following
Du using a random generator. After this delay (at time tu + Du), u is eliminated: it may transmit some
information to its (unique) neighbor, and disappears from the tree. The election goes on till eventually
only one single node remains; this node is then elected.

As said above, the key point here is to understand that an algorithm (from the class we study) is
parametrized by the way a node u chooses – according to the information it has – the distribution Du.

We here formalize more precisely what we understand by information received and information trans-
mitted, this needed to be coherent with the distributed model we consider. This will straightforwardly
leads to the formal definition of our class of algorithms.
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Fig. 1: On this example, are circled at each step the next leaf to disappear. On this example, the remaining lifetime
of the leaf 11, according to an algorithm ∆ is allowed to depend on the information given by the nodes 2 and 4; the
information provided by 4 may include the information it received from the node 3. The total information received
by 11 has a forest structure (a forest having 2,4 as roots, and having as set of nodes 2, 3, 4, and possibly containing
all the lifetimes, prescribed weights, and computed values of these nodes).

a) The only information a node u has at time 0 is its degree degu and a prescribed weight wu, which
is an element of R, Rd or any set (this may be viewed as a personal parameter),

b) at its time of disappearance a leaf u transmits to its unique neighbor v all the information it has:
– the information it has received from its neighbors eliminated nodes,
– the 4-tuple Lu = (degu, Du, wu,Γu) which is the local value of u; the quantity Γu is computed
by u using the information it has received and possibly the pair (degu, wu). In the application we
have, Γu is used to compute Du, and then we assume that Γu is not a function of Du. We call Γu
the computed value of u, it may belong to any set. See the remark below.

Assume that a node u becomes a leaf at time t when k of its k + 1 neighbors v1, . . . , vk, have been
eliminated. Denote by I1, . . . , Ik the information these nodes have transmitted to u. The node u has at its
disposal the multiset {I1, . . . , Ik}. Recursively, one sees that the structure of the information received by
u is a forest with k rooted trees (a forest being here a multiset of trees) rooted at the vi’s and constituted
with eliminated nodes; this forest has the geometry of the tree T fringed at the vi’s. The node u formally
knows the local value of each of the nodes of this forest.

Remark 2 • wu and Γu are not used by each algorithm: when not used, they may be supposed to be 0.
• The notion of computed values aims to simplify the description of some algorithms, summing the needed
information. Formally the transmission of this value is not necessary since it can be computed by a node
having in hand all the other information.
• Let µ be a distribution on R with cumulative distribution function F . If U is uniform on [0, 1] then the
law of F−1(U) is µ, where F−1(u) = inf{x | F (x) ≥ u} is the right continuous inverse of F ; hence to
simulate any distribution µ, a uniform random variable on [0, 1] is sufficient. We assume that the nodes
have at their disposal some independent random generators providing uniform random values on [0, 1].

Hence clearly, the information a node has received can be encoded without loss of information by a
labelled forest f , where each node v is labelled by the 4-tuple Lv . The set of received information will
then be identified with F the set of forests labelled by 4-tuple corresponding to the Lu’s.

The other information at the disposal of a given node u that may be used to computeDu is its own local
information L?u = (deg(u), wu,Γu), where as said above Γu has been computed using (deg(u), wu) and
the received information. We denote by L? the set of local information.



614 Jean-François Marckert, Nasser Saheb-Djahromi and Akka Zemmari

An algorithm is then just parametrized by a function ∆

∆ : F × L? −→ M
(f, l?) 7−→ ∆(f, l?)

where M is the set of probability measures having their support included in [0,+∞). The function
∆ associates with a pair (f, l?) a probability distribution ∆(f, l?). Any map ∆ encodes an algorithm
ALGO(∆): when ALGO(∆) is used, a node u becoming a leaf and having received the information f
and having as local information l?u, computes Du = ∆(f, l?) and generates Du according to Du. The
maps ∆ exemplified below depend only on a part of the information received. The algorithms ALGO(∆)
are in the class of algorithms using the method of Angluin, and satisfy the constraints to be distributed.

Example 1 We translate into the form ALGO(∆) the algorithm defined in Métivier & al. [8]. For each
node u, wu = 1. A node which is a leaf at time 0 computes Γu = 1. Let u be an internal node and
Γv1 , . . . ,Γvk

be the computed values of the eliminated neighbors of u. Then u computes:

Γu = 1 + Γv1 + · · ·+ Γvk
. (1)

Now the application ∆ depends only on the computed values: suppose that u has received (f, l?) and has
computed Γu, then Du = ∆(f, l?) is simply Expo(Γu), the exponential distribution(i) with parameter
Γu. Hence, Du = Expo(1) if u is a leaf at time 0, and if u becomes a leaf later, then Du = Expo(Γu),
where Γu equals one plus the size of the forest of eliminated nodes leading to it (see Fig. 1). It turns
out that in this case, each node is elected equally likely (for all tree T ). We provide in Section 3.2 a new
proof of this fact. Métivier et al. [8], [4] and [5] introduced election algorithms on trees, k-trees and
polyominoids having also this property.

We address the question to compute according a general ALGO(∆), the probability qu that a given
node u is eventually elected. In Section 2 we answer in the general case to this question, and express the
result in terms of properties of some variables arising in a related problem of directed elimination.

In the sequel, we introduce and study two categories of algorithms in the class of algorithms ALGO(∆).
Before discussing their properties, we have to say that in order to get close formulas for (qu)u∈V , some
stabilities in the computations are necessary, and this is not possible for general functions ∆. The two
categories we propose raise on two different kinds of stability: the (max,+) algebra in distribution, and
the stable distributions for the convolutions.

– The first one is built using the properties of the exponential distribution, and generalizes the computa-
tion of Métivier & al: the application ∆ takes its values in the set of exponential distributions union the set
of convolutions of such distributions. This category contains an algorithm ALGO(∆) such that (qu)u∈V
is proportional to the prescribed weights (wu)u∈V . For technical reasons the prescribed weights (wu)u∈V
are to be integer valued. When the (wu)u∈V are allowed to be real numbers, we propose an algorithm
which elects proportionally to these weights in case of success, but which fails with a low probability,

– the second category may be less interesting from an algorithmic point of view, since the algorithms
are more time consuming than the algorithms of the first category; it has however two main advantages: it
clarify in some sense the properties needed to make the computation for a given function ∆, and it leads
to a surprising proof of some mathematical identities involving the function arctan.

(i) a random variable r.v. E has the distribution Expo(a), for some a > 0 if P(E ≥ x) = exp(−ax), for all x ≥ 0.
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2 General case: probability of a given node to be elected
In this section, we give a general formula giving (qu)u∈V for ALGO(∆). The proposition below is a
generalization of a proposition of Métivier &. al [8] (the coupling argument we use is new).

The idea of the proof is to decompose the event {u is not elected } into disjoint events: if u is not
elected, this means that u has become a leaf (or was a leaf at t = 0) and then has been eliminated. Let t
be the time when u has become a leaf. At this time u had only one neighbor v, and since afterward u was
not elected, this means that u has disappeared before v. If at time 0, u has k neighbors v1, . . . , vk in the
tree T , all of these nodes are possibly the last surviving node v evoked above: the family of events

Ei = {u is not elected and the last neighbor of u was vi}. (2)

are the “disjoint events” mentioned above. We just have to compute P(Ei).
Our idea to compute the probability of this event is to change of point of view, and to introduce a

notion of directed elimination: if u is eliminated before v, this means that the sub-tree T [u, v] – which is
defined to be the tree rooted in u maximal for the inclusion in T which does not contain v (see Fig. 2)) –
disappears entirely before T [v, u]; in the tree T [u, v] the elimination is done from the leaves to the root u.

2.1 Directed elimination in rooted trees

u v

v
u

Fig. 2: A tree T , and the two rooted trees T [v, u] and T [u, v]

We define an algorithm ALGO?(∆) (very similar to ALGO(∆)) which aims to eliminate all the nodes
of a rooted tree, from the leaves to the root. We do not investigate the election since the last living node
will be the root, but we are interested in the duration of the directed elimination of the whole tree.

We define ALGO?(∆) recursively on a rooted tree τ . The only difference between ALGO(∆) and
ALGO?(∆) is that with ALGO?(∆) the root of τ is never considered as a leaf: using ALGO?(∆)
– the leaves of τ are eliminated as with ALGO(∆), transmit and receive the same information, and
compute their remaining lifetimes distribution with the same function ∆, but the root of τ is not considered
as a leaf, even if it has only one child,
– when the root v of τ becomes alone, it has received some information from its neighbors (or none if it
was yet alone at time 0), then it computes using ∆ the distribution D?v , and generate D?

v accordingly; in
other words, the root once alone behaves as a leaf in ALGO(∆). After the delay D?

v , v disappears.

We define the duration D?(τ) of the whole tree τ rooted in v according to ALGO?(∆) as the date of
disappearance of v. If τ is a rooted tree with root u, and such that the subtree of τ rooted at the children
of u are τ1, . . . , τk: one has

D?(τ) = D?
u + max

i
D?(τi); (3)

D?
u has a distribution given by ∆ with the same rules as in ALGO(∆).
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We come back in the election problem in a (unrooted) tree T according to ALGO(∆). Let u and v be
two neighbors in a tree T ; consider in one hand the event

Eu,v = {u is not elected and the last neighbor of u is v}

corresponding to a generic event Ei in (2). In the other hand, the two trees T [u, v] and T [v, u] are rooted
trees, respectively in u and v; consider two independent directed eliminations on these trees as explained
above, and denote by D?(T [u, v]) and D?(T [v, u]) their independent durations. It turns out that

Proposition 1 The following identity holds true:

P(Eu,v) = P
(
D?(T [u, v]) < D?(T [v, u])

)
. (4)

Proof: We propose a proof via a coupling argument. The idea is to compare the election process which
takes place in T with the directed eliminations in T [v, u] and T [u, v], that are directed. The comparison
is not immediate since these algorithms are not defined on the same probability space.

The algorithms ALGO(∆) and ALGO?(∆) allow each node u to choose a distribution Du or D?u de-
pending on the information received, from which the nodes generate their lifetimes Du or D?

u. According
to Remark 2, a variable U uniform is sufficient to generate Du or D?

u. Hence, we suppose that at time 0
each node w in the tree T has at its disposal a real number Uw obtained by a uniform random generator
on [0, 1]. This is the key-point: a node w in T maybe considered also as a node in T [v, u] or in T [u, v],
depending on which of these trees it belongs. If one now executes ALGO(∆) on T and ALGO?(∆) on
T [u, v] and T [v, u] using the variable Uw for the generation of the Dw’s and the D?

w’s, one can compare
the events {Eu,v} and {D?(T [u, v]) < D?(T [v, u])}, since they are now on the same probability space.

It turns out that for each assignment of the Uw’s, we have {Eu,v} = {D?(T [u, v]) < D?(T [v, u])}.
Indeed, since both algorithms use the Uw’s, since the algorithms have the same constructions and the same
rules concerning ∆, we see that the disappearance of leaves coincide in the two models till the disappear-
ance of u or of v: after this time, the information transmitted are different, and then the two processes
evolve in a non comparable manner. Now, in the election process ALGO(∆) in T , if u is eliminated before
v, then the tree T [u, v] has lived a directed election, and thus D?(T [u, v]) coincides with the disappear-
ance time of u (for ALGO(∆)). At this time, since v is still alive, this means that the directed elimination
in T [v, u] is not finished, thus D?(T [u, v]) < D?(T [v, u]). Conversely, if D?(T [u, v]) < D?(T [v, u]),
then u disappears before v according to ALGO(∆), since till the time min(D?(T [u, v]), D?(T [v, u])) the
two elimination processes coincide.

We then have construct a probability space (the one where are defined the Uw’s) on which the two
events {Eu,v} and {D?(T [u, v]) < D?(T [v, u])} coincide; thus, they have the same probability. 2

As a corollary we have

Corollary 1 Let u be a node of a tree T and u1,..., uk its neighbors. Using ALGO(∆)

qu = 1−
∑

1≤i≤k

P
(
D?(T [u, ui]) < D?(T [ui, u])

)
. (5)
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3 First category: around the (max, +) algebra
In this category, the distribution Du are either the exponential distribution or a convolution of such dis-
tributions. We will see that this category contains the algorithm of Métivier &. al. allowing to elect
uniformly in the tree, an algorithm electing proportionally to positive integer valued prescribed weights,
some algorithms allowing to elect proportionally to some structural features of the tree.

Before doing this, we recall some classical facts. In the sequel E [a] denote a r.v. having the Expo(a)
distribution, and Mn = max1≤i≤n E [1]

i is the maximum of n i.i.d. r.v. Expo(1) distributed. The distri-
bution of Mn is denoted from now on byMn (we have P(Mn ≤ x) = (1− exp(−x))n, for any x ≥ 0).

Lemma 1 Let E [1], ..., E [n] be n independent exponential random variables with parameters 1, . . . , n.
The random variables E [1] + ...+ E [n] has distributionMn.

Proof: Consider (Êi, 1 ≤ i ≤ n), the order statistics of n i.i.d. Expo(1) random variables E [1]
1 , . . . , E [1]

n ,
that is the sequence (E [1]

i , 1 ≤ i ≤ n), sorted in the increasing order. The variable Mn = max E [1]
i is

also the sum of the random variables Êi − Êi−1, for i = 1, . . . , n with the convention Ê0 = 0. Using the
memoryless property of the exponential distribution, one has Êi−Êi−1

d= E [n+1−i] for all i ∈ {1, . . . , n},
and the variables (Êi − Êi−1) are independent (for more details, see Proposition p.19 in Feller [2]). 2

From the lemma we easily derive:

Corollary 2 i) Consider k ≥ 1 positive integers a1, . . . , ak summing to n. If the r.v. Mai
’s are indepen-

dent, and independent of E [n+1] then Mn+1
d= E [n+1] + max1≤i≤kMai .

ii) For any k ≥ 1 and n ≥ 1, set

Yn,k
d= E [n+1] + E [n+2] + ...+ E [n+k], (6)

where the variables E [n+i] are independent. We have Mn+k
d= Mn + Yn,k.

3.1 The algorithms of the first category
The first category of algorithms we design is based on Corollary 2. It may be more easily understood
via the directed elimination ALGO?(∆), where the duration of a rooted tree τ according to ALGO?(∆)
will have distributionMn, for some n. The application ∆ will take its values in the set of distributions
{Y[n, k], n ≥ 1, k ≥ 1}, where Y[n, k] is the distribution of Yn,k (given in (6)).

The only difference between the algorithms of the first category is the computed values Γu’s : the class
of algorithm considered is then simply parametrized by the possible computed values Γ satisfying the
constraint below. It is convenient to consider bi-dimensional computed values Γu = (Cu, gu) where Cu
will be use to add some quantities coming from the received information, and gu is used to make some
local computations.

Here are in two points the description of all the algorithms of the first category:
– At time 0, the computed value Γu of any leaf u is Γu = (0, gu) where gu is a positive integer. Then set

Du = Y[0, gu] d= MCu+gu
. (7)



618 Jean-François Marckert, Nasser Saheb-Djahromi and Akka Zemmari

– Let u be an internal node in T becoming a leaf; let f be the received information, and in particular let
Γ1 = (C1, g1), . . . ,Γk = (Ck, gk) be the computed values of its eliminated neighbors. Then the node u
compute an integer value gu according to its information (f and L?u), and let Cu =

∑k
i=1 Ci + gi. Then

set Du = Y [Cu, gu] .

Let us think in terms of directed elimination. Recall that the notion of computed values are defined
similarly in ALGO?(∆) and in ALGO(∆), but in the directed case, it is convenient to make appear the
tree notation in the computed values instead of the node notation.

If a rooted tree τ is reduced to a leaf u, set C(τ) = 0, g(τ) = gu. If τ has root u, and if the sub-trees
rooted at the children of u are τ1, . . . , τk, then set C(τ) =

∑k
i=1 C(τi)+g(τi). The lifetime of the root of

τ is then distributed as the maximum of theD?(τi)′s plus a random variable distributed as Y(C(τ), g(τ)).
To simplify a bit the formula, for any rooted tree τ , let

Θ(τ) = g(τ) + C(τ). (8)

Proposition 2 For any algorithm ALGO?(∆) of the first category the duration of a rooted tree τ satisfies

D?(τ) d= MΘ(τ).

Proof: The lifetime of a tree τ reduced to a leaf is Y(0, g(τ)) = MC(τ)+g(τ) = MΘ(τ). Assume by
induction that the proposition is true for any rooted tree having less than n nodes. Consider now τ a
rooted tree with n nodes and the τi defined as above. By recurrence D?(τi)

d= MΘ(τi), and thus, by
independence of the MΘ(τi)’s, D?(τ) = Y [

∑
i Θ(τi), g(τ)] + maxiMΘ(τi) is in distribution equal to

M(
P

i Θ(τi))+g(τ)
d= MΘ(τ) by Corollary 2. 2

As a corollary we have

Theorem 1 For any algorithm ALGO(∆) of the first category, any tree T ,

qu = 1−
∑

1≤i≤k

Θ(T [ui, u])
Θ(T [u, ui]) + Θ(T [ui, u])

(9)

Proof: This is a consequence of Propositions 1 and 2 and of the following identity: if Ma and Mb are
independent, then P(Ma < Mb) = a/(a+ b). 2

This theorem has a direct consequence quite surprising, since it deals with very general function Γ. It
is obtained by summing Equality (9) over all nodes:

Corollary 3 For any tree T , any choice of positive integer values function Γu = (Cu, gu)∑
u

[
1−

∑
i

Θ(T [ui, u])
Θ(T [ui, u]) + Θ(T [u, ui])

]
= 1.

Remark 1 ensures that almost surely the election eventually succeeds. Indeed, each leaf eventually dies
out with probability one, and then the election stops after a finite time. All the disappearance dates are
different, since the lifetimes distributions have no atom: at the end it eventually remains only one leaving
node which is elected.

Remark 3 In general the denominator in the RHS of (9) depends on the node u and, thus, apart from the
two first examples below where this denominator is constant, the formula (9) cannot be “simplified”.
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3.2 Examples
1. The uniform electing algorithm (treated in Example 1) is a particular case of this model by letting
gu = 1 and, therefore, Θ(t) = |t|, the total number of nodes in t. Since each node is either in
T [u, ui] or in T [ui, u], by (9)

qu = 1−
∑

1≤i≤k

|T [ui, u]|
|T [u, ui]|+ |T [ui, u]|

= 1− |T \ {u}|
|T |

=
1
|T |

;

this is the uniform distribution on T , as found by Métivier & al.

2. Assume that all prescribed weights are positive integers. If gu = wu for every nodes then Θ(t) =∑
u∈t wu the total weight of the rooted tree t. In this case qu = wu

w(T ) where w(T ) =
∑
u∈T w(u)

is the total weight in T . Indeed, in the RHS of (9) the denominator is equal to w(T ) whatever is the
value of i, and summing the numerators gives w(T )− wu.

3. For gu = deg(u), qu becomes proportional to deg(u) (take wu = deg(u) in the previous point 2).

4. In the case where gu = 1 for the leaves and gu = |t| more generally for all the nodes, then
Θ(t) = PLS(t) + |t| becomes the path length of (the rooted tree) t plus its size. Then Formula (9)
gives the value of qu.

3.3 Real-valued weights
In Example 3.2.2, we gave an algorithm of the first category such that qu is proportional to wu provided
that the w′us are integers. The computations relying on Corollary 2, the weights have to be integer valued,
or say have a known common divisor. A natural question arises: is there an algorithm such that qu is
proportional to general real-valued weights wu’s? We were not able to answer to this question, but using
a randomized version of the algorithms of the first category, we provide an algorithm that may fail with a
small probability, but such that conditionally on success, the qu’s are indeed proportional to the wu’s.

The difference with the algorithm described above is as follows. Instead of using its weight wu as
a parameter in a distribution Y(n, k), a node u becoming a leaf, uses its weight wu as a parameter of
a Poisson distribution: it generates Wu a r.v. following the Poisson(wu) distribution and then uses this
integer as its weight in the description of algorithms of the first category we gave. In other words, the
computed value gu instead of being simply wu will take the value k with probability exp(−wu)wku/k!.
Let us discuss some points linked to the failure of the algorithm.

Remark 4 – If the random generated Wu is zero for some u, then conditionally to Wu the remaining
lifetime is Expo(0) distributed, that is zero almost surely: u is eliminated immediately.
– If all nodes generate zero, then the algorithm fails: it terminates without choosing any node. The
probability of failure for the algorithm is e−w(T ) where w(T ) =

∑
u∈V wu is the total weight. It becomes

insignificant wheneverw(T ) grows. To guarantee the success with a high probability, it suffices to multiply
w by a great number c known by all nodes.

The following lemma, which is easily proved, simplifies the proof of the main proposition of this section.
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Lemma 2 Let X1, ..., Xn be n independent r.v. of Poisson distributions with parameters λ1, ..., λn re-
spectively. For any k > 0, the distribution of X1 conditionally on X1 + · · · + Xn = k is binomial
B(k, λ1/(λ1 + · · ·+ λn)).

Proposition 3 Let T be any tree. The probability that the algorithm chooses a node u conditioned by the
event that not all nodes generate 0 is proportional to wu : P

(
u elected

∣∣∣ ∑v∈V Wv > 0
)

= wu/w(T ).

Proof: Consider some integers (kv)v∈V , with at least one kv > 0. Given the values Wv = kv according
to Section 3.2, second example, we have:

P (u elected |Wv = kv for any v in T ) = ku/(
∑
v∈V

kv).

Therefore the probability that the algorithm chooses u conditioned by
∑
vWv > 0, is nothing but:

P(u elected
∣∣∣ ∑

v

Wv > 0) = E

(
Wu∑
vWv

∣∣∣ ∑
v

Wv > 0

)
,

where E denotes the expected value. But then, according to the previous lemma, for a fixed k > 0,

E

(
Wu∑
vWv

|
∑
v

Wv = k

)
=

wu∑
v wv

.

This implies that if the sum of generated numbers is positive, whatever the values it takes, the probability
of u to be elected is wuP

v wv
. The proposition follows. 2

4 Second category: around the stable distributions
The second category relies on Formula (3). One sees that choosing a suitableD? may let the max operator
acting on the RHS disappears: the idea is to choose D?

u under the form

Du = Xu −max
i
D(τi) +

∑
i

D(τi) (10)

for some Xu whose distribution depends of the information received by u. In this case Formula (3)
concerning the directed elimination becomes simply

D?(τ) = Xu +
∑
i

D?(τi).

And the duration of a rooted tree satisfies:

D?(τ) = Xu +
∑
i

D?(τi) =
∑

v nodes in τ

Xv. (11)

Once again, the involved variablesXv have a distribution that may depend on the history of the elimination
of the sub-tree of τ rooted in v. The algorithms of the second category are parametrized by all the possible
distribution for Xu (the variables Xu appearing in (10) and (11)).
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In the case where the Xv are i.i.d, the distribution of D?(τ) is simple: it is a sum of |τ | i.i.d. random
variables, and then it is indexed by the unique integer |τ |. Denoting by Sn a sum of n i.i.d. copies of Xv ,
according to Corollary 1 we have for a node u having u1, . . . , uk as neighbors,

qu = 1−
∑

1≤i≤k

P
(
S|T [u,ui]| < S|T [ui,u]|

)
. (12)

There is an interesting case where the computation in (12) can be made explicitly, and leads to close
formulas: the case of the stable distribution with index 1/2. The stable distributions are the families
of distribution that are stable for the convolution (see Feller [2] for more information). We say that X
has the stable distribution with index 1/2 if the density of X is f(t) = 1t≥0

e−1/(2t)
√

2πt3
. If X1, . . . , Xk are

independent copies of X then Sk = X1 + · · ·+Xk
d= k2X . Consider now Sm and S′n two independent

sums of m and n independent copies of X . One has

P(Sm < S′n) = P(m2X ≤ n2X ′) (13)

for two copiesX andX ′ ofX . Using the density ofX andX ′, one gets P(Sm < S′n) = 2
π arctan(n/m).

Hence

Lemma 3 For any tree T , for any node u having u1, . . . , uk as neighbors, under the algorithm presented
above

qu = 1−
∑

1≤i≤k

2
π

arctan
(
|T [ui, u]|
|T [u, ui]|

)
.

In particular, since
∑
qu = 1 this gives for each tree a formula related to the arctan function. We review

below some examples and derive formulas.

4.1 Applications: some identities involving the arctan function
Consider the star tree with n nodes: it is the tree where a node v has n − 1 neighbors, say v1, . . . , vn−1.
By symmetry qvi does not depend on i; since vi has for only neighbor v, by Lemma 3

qv1 = 1− (2/π) arctan(n− 1).

Using again Lemma 3, one has for the center of the star tree

qv = 1− 2(n− 1)
π

arctan
(

1
n− 1

)
.

Since qv +
∑n−1
i=1 qvi

= 1 (since a node is eventually elected with probability 1), we get for any n ≥ 2,

arctan(n− 1) + arctan(1/(n− 1)) = π/2. (14)

Consider now a sequence of trees Tn such that Tn is formed by two stars having αn + 1 and βn + 1
nodes with center u and v, linked by an edge between u and v. The election probability of any leaf is
qvi

= 1− (2/π) arctan (αn + βn+1) , when

qu = 1− 2αn
π

arctan
(

1
αn + βn+1

)
− 2
π

arctan
(
βn + 1
αn + 1

)
qv = 1− 2βn

π
arctan

(
1

αn + βn+1

)
− 2
π

arctan
(
αn + 1
βn + 1

)
.
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Using (αn + βn)qv1 + qu + qv = 1 and (14), we get

2
π

(
arctan

(
αn + 1
βn + 1

)
+ arctan

(
βn + 1
αn + 1

))
= 1.

If αn/βn → x > 0, by continuity of arctan one obtains the famous formula

arctan(x) + arctan(1/x) = π/2.

Going further, let Tn be the sequence of trees having a path of size k (k nodes u1, . . . , uk such that there
is an edge between ui and ui+1 and such that ui has αn,i other neighbors that are leaves). The probability
of election of any of the

∑
αn,i leaves is ql = 1− 2

π arctan(
∑
αni

+ k − 1), that of ui is

1− 2
π

[
αn,i arctan

(
1∑

αn,i + k − 1

)
+ arctan

(∑
j>i(αn,j + 1)∑
j≤i(αn,j + 1)

)
+ arctan

(∑
j<i(αn,j + 1)∑
j≥i(αn,j + 1)

)]
.

Finally, assuming that for any i, αn,i → αi for some positive real number αi, we get by continuity, and
using that the sum of all events must be 1, that for any positive real number α1, . . . , αk,

∑
i

[
arctan

(∑
j>i αj∑
j≤i αj

)
+ arctan

(∑
j<i αj∑
j≥i αj

)]
=
π

2
(k − 1). (15)

Each simple finite tree used as a skeleton on which are grafted some packets of leaves (with size αn,k, k
corresponding to a labeling of the nodes of the skeleton) will provide a formula similar to (15).
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