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Triangulations of root polytopes
and reduced forms
(Extended abstract)

Karola Mészáros1

1Department of Mathematics, Massachusetts Institute of Technology, Cambridge MA 02139 USA

Abstract. The type An root polytope P(A+
n ) is the convex hull in Rn+1 of the origin and the points ei − ej for

1 ≤ i < j ≤ n + 1. Given a tree T on vertex set [n + 1], the associated root polytope P(T ) is the intersection
of P(A+

n ) with the cone generated by the vectors ei − ej , where (i, j) ∈ E(T ), i < j. The reduced forms of
a certain monomial m[T ] in commuting variables xij under the reduction xijxjk → xikxij + xjkxik + βxik,
can be interpreted as triangulations of P(T ). If we allow variables xij and xkl to commute only when i, j, k, l are
distinct, then the reduced form of m[T ] is unique and yields a canonical triangulation of P(T ) in which each simplex
corresponds to a noncrossing alternating forest.

Résumé. Le polytope des racines P(A+
n ) de type An est l’enveloppe convexe dans Rn+1 de l’origine et des points

ei − ej pour 1 ≤ i < j ≤ n + 1. Étant donné un arbre T sur l’ensemble des sommets [n + 1], le polytope des
racines associé, P(T ), est l’intersection de P(A+

n ) avec le cône engendré par les vecteurs ei − ej , où (i, j) ∈ E(T ),
i < j. Les formes réduites d’un certain monômem[T ] en les variables commutatives xij sous la reduction xijxjk →
xikxij + xjkxik + βxik peuvent être interprétées comme des triangulations de P(T ). Si on impose la restriction
que les variables xij et xkl commutent seulement lorsque les indices i, j, k, l sont distincts, alors la forme réduite
de m[T ] est unique et produit une triangulation canonique de P(T ) dans laquelle chaque simplexe correspond à une
forêt alternée non croisée.
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1 Introduction
This work was initially inspired by an exercise in Stanley’s Catalan Addendum (S, Exercise 6.C6), which
calls on us to consider the monomial w = x12x23 · · ·xn,n+1 in commuting variables xij . Starting with
p0 = w, produce a sequence of polynomials p0, p1, . . . , pm as follows. To obtain pr+1 from pr, choose
a term of pr which is divisible by xijxjk, for some i, j, k, and replace the factor xijxjk in this term with
xik(xij + xjk). Note that pr+1 has one more term than pr. Continue this process until a polynomial pm

is obtained, in which no term is divisible by xijxjk, for any i, j, k. Such a polynomial pm is a reduced
form of w. Remarkably, while the reduced form is not unique, it turns out that the number of terms in a
reduced form is always the Catalan number Cn = 1

n+1

(
2n
n

)
.
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Certain generalizations of this problem reach far beyond its setting in the world of polynomials. On one
hand, the reductions can be interpreted in terms of root polytopes and their subdivisions, yielding a geo-
metric, and subsequently a combinatorial, interpretation of reduced forms. On the other hand, using the
combinatorial results obtained about the reduced forms, we obtain a method for calculating the volumes
and Ehrhart polynomials of certain root polytopes. This “two way traffic” between the combinatorics of
reduced forms and geometry is a satisfying outcome.

Root polytopes were defined by Postnikov in (P). The full root polytope P(A+
n ), which is the convex

hull in Rn+1 of the origin and points ei − ej for 1 ≤ i < j ≤ n + 1, already made an appearance in
the work of Gelfand, Graev and Postnikov (GGP), who gave a canonical triangulation of it in terms of
noncrossing alternating trees on [n+ 1]. We obtain canonical triangulations for all acyclic root polytopes,
of which P(A+

n ) is a special case.
We define acyclic root polytopes P(T ) for a tree T on vertex set [n+ 1] as the intersection of P(A+

n )
with a cone generated by the vectors ei − ej , where (i, j) ∈ E(T ), i < j. Let

Ḡ = ([n+ 1], {(i, j) | there exist edges (i, i1) . . . , (ik, j) in G such that i < i1 < . . . < ik < j}),

denote the transitive closure of the graph G. Recall that a graph G on vertex set [n + 1] is said to be
noncrossing if there are no vertices i < j < k < l such that (i, k) and (j, l) are edges in G. A graph G
on vertex set [n + 1] is said to be alternating if there are no vertices i < j < k and (i, j) and (j, k) are
edges in G. Alternating trees were introduced in (GGP). Gelfand, Graev and Postnikov (GGP) showed
that the number of noncrossing alternating trees on [n+ 1] is counted by the Catalan number Cn.

Theorem 1 If T is a noncrossing tree on vertex set [n+1] and T1, . . . , Tk are the noncrossing alternating
spanning trees of T̄ , then the root polytopes P(T1), . . . ,P(Tk) are n-dimensional simplices with disjoint
interiors whose union is P(T ). Furthermore,

volP(T ) = fT,n
1
n!
,

where fT,n denotes the number of noncrossing alternating spanning trees of T̄ .

We can describe the intersections of the top dimensional simplices P(T1), . . . ,P(Tk) in Theorem 1
in terms of certain noncrossing alternating spanning forests of T̄ and using this calculate the Ehrhart
polynomial of the polytope P(T ). Theorem 1 can also be generalized for any tree T , but we omit these
details in this abstract.

The proof of Theorem 1 relies on relating the triangulations of a root polytope P(T ) to reduced forms
of a monomial m[T ] in variables xij , which we now define. Let A and B be two associative algebras over
the polynomial ring Q[β], where β is a fixed constant, generated by the set of elements {xij | 1 ≤ i <
j ≤ n + 1} modulo the relation xijxjk = xikxij + xjkxik + βxik. Algebra A is commutative, i.e. it
has additional relations xijxkl = xklxij for all i, j, k, l, while B is noncommutative and has additional
relations xijxkl = xklxij for i, j, k, l distinct only.

We treat the first relation as a reduction rule:

xijxjk → xikxij + xjkxik + βxik. (1)

A reduced form of the monomial m in algebra A (algebra B) is a polynomial PA
n (polynomial PB

n )
obtained by successive applications of reduction (1) until no further reduction is possible, where we



Triangulation of root polytopes and reduced forms 649

allow commuting any two variables (commuting any two variables xij and xkl where i, j, k, l are distinct)
between reductions. Note that the reduced forms are not necessarily unique.

A possible sequence of reductions in algebra A yielding a reduced form of x12x23x34 is given by

x12x23x34 → x12x24x23 + x12x34x24 + βx12x24

→ x24x13x12 + x24x23x13 + βx24x13 + x34x14x12 + x34x24x14

+βx34x14 + βx14x12 + βx24x14 + β2x14

→ x13x14x12 + x13x24x14 + βx13x14 + x24x23x13 + βx24x13

+x34x14x12 + x34x24x14 + βx34x14 + βx14x12 + βx24x14

+β2x14 (2)

where the pair of variables on which the reductions are performed is in boldface. The reductions are
performed on each monomial separately.

Some of the reductions performed above are not allowed in the noncommutative algebra B. The fol-
lowing is an example of how to reduce x12x23x34 in the noncommutative case.

x12x23x34 → x12x24x23 + x12x34x24 + βx12x24

→ x14x12x23 + x24x14x23 + βx14x23 + x34x12x24 + βx14x12

+βx24x14 + β2x14

→ x14x13x12 + x14x23x13 + βx14x13 + x24x14x23 + βx14x23

+x34x14x12 + x34x24x14 + βx34x14 + βx14x12 + βx24x14

+β2x14 (3)

In the example above the pair of variables on which the reductions are performed is in boldface, and
the variables which we commute are underlined.

The “reason” for allowing xij and xkl to commute only when i, j, k, l are distinct might not be apparent
at first, but as we will prove in section 5 it insures that, unlike in the commutative case, there are unique
reduced forms for a natural set of monomials. Kirillov (K) observed previously that the monomial w =
x12x23 · · ·xn,n+1 has a unique reduced form in algebra B and asked for a nice combinatorial proof of
this fact. We provide such a proof, as the uniqueness of the reduced form of w is a special case of our
results.

Before we can state a simplified version of our main result on reduced forms, we need one more
piece of notation. Given a graph G on vertex set [n + 1] we associate to it the monomial mA[G] =∏

(i,j)∈E(G) xij ; if G is edge-labeled with labels 1, . . . , k, we can also associate to it the noncommutative

monomial mB [G] =
∏k

a=1 xia,ja
, where E(G) = {(ia, ja)a | a ∈ [k]}.

Theorem 2 Let T be a noncrossing tree on vertex set [n+ 1], and PA
n a reduced form of mA[T ]. Then,

PA
n (xij = 1, β = 0) = fT,n,

where fT,n denotes the number of noncrossing alternating spanning trees of T̄ .
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If we label the edges of T so that it becomes a good tree (to be defined in section 4), then the reduced
form PB

n of the monomial mB [T ] is

PB
n (xij , β = 0) =

∑
T0

xT0 ,

where the sum runs over all noncrossing alternating spanning trees T0 of T̄ with lexicographic edge-
labels (to be defined in section 5) and xT0 is defined to be the noncommutative monomial

∏n
l=1 xil,jl

if
T0 contains the edges (i1, j1)1, . . . , (in, jn)n.

We can generalize Theorem 2 for any β; see sections 2 and 5. Theorem 2 can also be generalized for
any tree T , but we omit these details in this abstract.

Our extended abstract is organized as follows. In section 2 we reformulate the reduction process in
terms of graphs and elaborate further on Theorem 2. In section 3 we discuss acyclic root polytopes and
relate them to reduced forms. In section 3 we also outline some of the steps for proving Theorems 1 and
2. The lemmas in section 4 indicate the significance of considering reduced forms in the noncommuta-
tive algebra B and prepares the ground for proving Theorem 2. In section 5 we conclude the proofs of
Theorems 1 and 2.

2 Reductions in terms of graphs
We can phrase the reduction process described in section 1 in terms of graphs. This view will be useful
throughout the abstract. Think of a monomial m ∈ A as a directed graph G on the vertex set [n+ 1] with
an edge directed from i to j for each appearance of xij in m. Let GA[m] denote this graph. If, however,
we are in the noncommutative version of the problem, and m =

∏p
l=1 xil,jl

, then we can think of m as
a directed graph G on the vertex set [n + 1] with p edge labels 1, . . . , p, such that the edge labeled l is
directed from vertex il to jl. Let GB [m] denote the edge-labeled graph just described. Let (i, j)a be the
notation for an edge (i, j) labeled a. It is straightforward to reformulate the reduction rule (1) in terms of
reductions on graphs. If m ∈ A, then it reads as follows.

The reduction rule for graphs: Given a graph G0 on vertex set [n+ 1] and (i, j), (j, k) ∈ E(G0) for
some i < j < k, let G1, G2, G3 be graphs on vertex set [n+ 1] with edge sets

E(G1) = E(G0)\{(j, k)} ∪ {(i, k)},
E(G2) = E(G0)\{(i, j)} ∪ {(i, k)},
E(G3) = E(G0)\{(i, j)}\{(j, k)} ∪ {(i, k)}. (4)

We say that G0 reduces to G1, G2, G3 under the reduction rules defined by equations (4).
The reduction rule for graphs GB [m] with m ∈ B is explained in section 4.
An A-reduction tree T A

R for a monomial m0, or equivalently, the graph GA[m0], is constructed as
follows. The root of T A

R is labeled by GA[m0]. Each node GA[m] in T A
R has three children, which

depend on the choice of the edges of GA[m] on which we perform the reduction. Namely, if the reduction
is performed on edges (i, j), (j, k) ∈ E(GA[m]), then the three children of the node G0 = GA[m] are
labeled by the graphs G1, G2, G3 as described by equation (4). For an example of an A-reduction tree,
see Figure 1 (disregard the edge-labels).

Summing the monomials to which the graphs labeling the leaves of the reduction tree T A
R correspond

multiplied by suitable powers of β, we obtain a reduced form of m0.
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Fig. 1: This is an A-reduction tree with root mA[x12x23x34], when the edge-labels are disregarded. The boldface
edges indicate where the reduction is performed. We can read off the following reduced form of x12x23x34 from the
set of leaves: x14x13x12 +x14x23x13 +βx14x13 +x24x14x23 +βx14x23 +x34x14x12 +x34x24x14 +βx34x14 +
βx14x12+βx24x14+β2x14. When the edge-labels are taken into account, this is theB-reduction tree corresponding
to equation (3). Note that in the second child of the root we commuted edge-labels 1 and 2.
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Let T be a noncrossing tree on vertex set [n + 1]. In terms of reduction trees, Theorem 2 states that
the number of leaves labeled by graphs with exactly n edges of an A-reduction tree with root labeled T is
independent of the particular A-reduction tree. The generalization of Theorem 2 states that the number of
leaves labeled by graphs with exactly k edges of an A-reduction tree with root labeled T , is independent
of the particular A-reduction tree for any k. In terms of reduced forms we can write this as follows. If PA

n

is the reduced form of a monomial mA[T ] for a noncrossing tree T , then

PA
n (xij = 1) =

n−1∑
m=0

fT,n−mβ
m,

where fT,k denotes the number of noncrossing alternating spanning forests of T̄ with k edges and addi-
tional technical requirements. Also, if PB

n is the reduced form of a monomial mB [T ] for a noncrossing
good tree T (defined in section 4), then

PB
n (xij) =

∑
F

xF ,

where the sum runs over all noncrossing alternating spanning forests F of T̄ with lexicographic edge-
labels (defined in section 5) and additional technical requirements.

If we consider the reduced forms of the path monomial w =
∏n

i=1 xi,i+1, then T = P = ([n +
1], {(i, i + 1) | i ∈ [n]}), and fP,k is simply the number of noncrossing alternating spanning forests on
[n+1] with k edges containing edge (1, n+1). Furthermore, PB

n (xij) =
∑

F x
F ,where the sum runs over

all noncrossing alternating spanning forests F on [n + 1] with lexicographic edge-labels and containing
edge (1, n+ 1). Let sn,k denote the number of ways to draw k diagonals of a convex (n+ 2)-gon that do
not intersect in their interiors.

Lemma 3 With the notation above, fP,k+1 = sn,k.

Cayley (C) in 1890 showed that sn,k =
1

n+ 1

(
n+ k + 1

n

)(
n− 1
k

)
. Using Lemma 3 and the expres-

sion by Cayley, we obtain PA
n (xij = 1) =

∑n−1
m=0 sn,n−m−1β

m.

3 Acyclic root polytopes
In the terminology of (P), a root polytope of type An is the convex hull of the origin and some of the
points ei − ej for 1 ≤ i < j ≤ n+ 1, where ei denotes the ith coordinate vector in Rn+1. A very special
root polytope is the full root polytope

P(A+
n ) = ConvHull(0, e−ij | 1 ≤ i < j ≤ n+ 1),

where e−ij = ei − ej . We study a class of root polytopes including P(A+
n ), which we now discuss.

Let G be a connected simple graph on vertex set [n+ 1]. Define

VG = {e−ij | (i, j) ∈ E(G), i < j}, a set of vectors associated to G;

CG = 〈VG〉 := {
∑

e−ij∈VG

cije
−
ij | cij ≥ 0}, the cone associated to G; and
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V̄G = Φ+ ∩ CG, all the positive roots of type An contained in the cone associated to G,

where Φ+ = {e−ij | 1 ≤ i < j ≤ n + 1} is the set of positive roots of type An. The idea to consider
the positive roots of a root system inside a cone appeared earlier in Reiner’s work (R1), (R2) on signed
posets.

The root polytope P(G) associated to graph G is

P(G) = ConvHull(0, e−ij | e
−
ij ∈ V̄G).

Note that P(A+
n ) = P(P ) for the path graph P = ([n], {(i, i + 1) | i ∈ [n]}). While the choice of

G such that P(A+
n ) = P(G) is not unique, it becomes unique if we require that for no edge (i, j) ∈

E(G) can the corresponding vector e−ij be written as a nonnegative linear combination of the vectors
corresponding to the edges E(G)\{e}. Graph P satisfies this requirement.

Define
Ln = {G = ([n+ 1], E(G)) | G is an acyclic graph},

and
L(A+

n ) = {P(G) | G ∈ Ln}, the set of acyclic root polytopes.

Note that the condition thatG is an acyclic graph is equivalent to VG being a set of linearly independent
vectors. To avoid too much detail, in this extended abstract we restrict out attention to the acyclic root
polytopes arising from noncrossing trees, however, our methods yield analogous results for all acyclic
root polytopes.

The full root polytope P(A+
n ) ∈ L(A+

n ), since the path graph P is acyclic. We show below how to
obtain central triangulations for all polytopes P ∈ L(A+

n ). A central triangulation of a d-dimensional
root polytope P is a collection of d-dimensional simplices with disjoint interiors whose union is P , the
vertices of which are vertices of P and the origin is a vertex of all of them. Depending on the context we
also take the intersections of these maximal simplices to be part of the triangulation.

Lemma 4 For an acyclic root polytope P(G) = CG ∩ P(A+
n ).

We now state the crucial lemma which relates root polytopes and algebras A and B defined in section
2.

Lemma 5 (Reduction Lemma) Given a graph G0 ∈ Ln with d edges let (i, j), (j, k) ∈ E(G0) for some
i < j < k and G1, G2, G3 as described by equation (4). Then G1, G2, G3 ∈ Ln,

P(G0) = P(G1) ∪ P(G2)

where all polytopes P(G0),P(G1),P(G2) are d-dimensional and

P(G3) = P(G1) ∩ P(G2) is (d− 1)-dimensional.

What the Reduction Lemma really says is that performing a reduction on graphG0 ∈ Ln is the same as
“cutting” the d-dimensional polytope P(G0) into two d-dimensional polytopes P(G1) and P(G2), whose
vertex sets are subsets of the vertex set of P(G0), whose interiors are disjoint and whose union is P(G0).

Proof Idea of Theorems 1 and 2: Let T be any tree on vertex set [n + 1] and consider any A-reduction
tree T A

R with root T . For simplicity only consider the nodes labeled by graphs with n edges, which
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corresponds to setting β = 0. Let T1, . . . , Tk be the trees with n edges labeling leaves of T A
R . Then,

by applying the Reduction Lemma multiple times, we obtain that P(T1), . . . ,P(Tk) are d-dimensional
polytopes, whose vertex sets are subsets of the vertex set of P(T ), whose interiors are disjoint and whose
union is P(T ). Clearly then

volP(T ) = volP(T1) + · · ·+ volP(Tk).

Since T1, . . . , Tk are leaves of T A
R , they must be alternating. Postnikov showed (P, Lemma 13.2) that

for an alternating tree Ti on vertex set [n + 1], the polytope P(Ti) a simplex with volP(Ti) = 1
n! . His

definitions in (P) differ from ours, but for this alternating tree case his Lemma 13.2 can be reformulated
suitably. Thus, we obtain that volP(T ) = k

n! , where k is the number of leaves of T A
R labeled by trees.

Note, this shows that the number of leaves of an A-reduction tree labeled by trees is independent of which
A-reduction tree we consider. As explained in section 2, summing the monomials to which the graphs
labeling the leaves of a reduction tree T A

R correspond multiplied by suitable powers of β, we obtain a
reduced form of the monomial corresponding to the root of T A

R . Thus, we just showed that if PA
n is this

reduced form, then PA
n (xij = 1, β = 0) = k, which is part of the statement of Theorem 2. What k

exactly is, how to obtain the canonical triangulation described in Theorem 1 and how to express explicitly
the reduced form of mB [T ] as stated in Theorem 2 is all outlined in section 5. 2

4 Reductions in the noncommutative case
In this section we state two crucial lemmas about reduction (1) in the noncommutative case necessary
for proving Theorem 2. While in the commutative case reductions on GA[m] could result in crossing
graphs, we prove that in the noncommutative case exactly those reductions from the commutative case
are allowed which result in no crossing graphs, provided that m = mB [T ] for a noncrossing tree T with
suitable edge labels specified below. Furthermore, we also show that if there are any two edges (i, j) and
(j, k) with i < j < k in a successor of GB [m], then after suitably many commutations it is possible to
apply reduction (1). Thus, once the reduction process terminates, the set of graphs obtained as leaves of
the reduction tree are alternating forests. Now, unlike in the commutative case, they are also noncrossing.
In fact, each noncrossing alternating spanning forest of T̄ satisfying certain additional technical conditions
occurs among the leaves of the reduction tree exactly once, yielding a complete combinatorial description
of the reduced form of mB [T ].

In terms of graphs the partial commutativity means that if G contains two edges (i, j)a and (k, l)a+1

with i, j, k, l distinct, then we can replace these edges by (i, j)a+1 and (k, l)a, and vice versa. Reduction
rule (1) on the other hand means that if there are two edges (i, j)a and (j, k)a+1 in G0, then we replace
G0 with three graphs G1, G2, G3 on vertex set [n+ 1] and edge sets

E(G1) = E(G0)\{(i, j)a}\{(j, k)a+1} ∪ {(i, k)a} ∪ {(i, j)a+1}
E(G2) = E(G0)\{(i, j)a}\{(j, k)a+1} ∪ {(j, k)a} ∪ {(i, k)a+1}
E(G3) = (E(G0)\{(i, j)a}\{(j, k)a+1})a ∪ {(i, k)a}, (5)

where (E(G0)\{(i, j)a}\{(j, k)a+1})a denotes the edges obtained from the edgesE(G0)\{(i, j)a}\{(j, k)a+1}
by reducing the label of each edge which has label greater than a by 1.
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A B-reduction tree T B
R is defined analogously to an A-reduction tree, except we use equation (5) to

describe the children. See Figure 1 for an example. A graph H is called a B-successor of G if it is
obtained by a series of reductions from G. For convenience, we refer to commutativity of xij and xkl for
distinct i, j, k, l as reduction (2), by which we mean the rule xijxkl ↔ xklxij , for i, j, k, l distinct, or,
in the language of graphs, exchanging edges (i, j)a and (k, l)a+1 with (i, j)a+1 and (k, l)a for i, j, k, l
distinct.

A forest H on vertex set [n + 1] and k edges labeled 1, . . . , k is good if it satisfies the following
conditions:

(i) If edges (i, j)a and (j, k)b are in H , i < j < k, then a < b.
(ii) If edges (i, j)a and (i, k)b in H are such that j < k, then a > b.
(iii) If edges (i, j)a and (k, j)b in H are such that i < k, then a > b.
(iv) H is noncrossing.
No graph H with a cycle could satisfy all of (i), (ii), (iii), (iv) simultaneously, which is why we only

define good forests. Note, however, that any forest H has an edge-labeling that makes it a good forest.

Lemma 6 If the root of a B-reduction tree is labeled by a good forest F , then all nodes of it are also
labeled by good forests.

A reduction applied to a noncrossing graph G is noncrossing if the graphs resulting from the reduction
are also noncrossing.

The following is then a trivial corollary of Lemma 6.

Corollary 7 If G is a good forest, then all reductions that can be applied to G and its B-successors are
noncrossing.

Lemma 8 Let G be a good forest. Let (i, j)a and (j, k)b with i < j < k be edges of G such that no edge
of G crosses (i, k). Then after finitely many applications of reduction (2) we can apply reduction (1) to
edges (i, j) and (j, k).

Corollary 9 If F labels a leaf of a B-reduction tree whose root is labeled by a good forest, then F is a
noncrossing alternating forest.

5 Proof Idea of Theorems 1 and 2
This section is devoted to understanding how to conclude the proofs of Theorems 1 and 2 started at the
end of section 3. We first finish the sketch of the proof of Theorem 2, and then conclude with Theorem 1.

To prove Theorem 2 we describe the reduced form of mB [T ] for a good graph T , which, unlike in
the commutative case, is unique. For simplicity we lay out the exact details for the monomial wB =∏n

i=1 xi,i+1. We index w by B to indicate that we are in the noncommutative algebra B.
Given a noncrossing alternating forest F on vertex set [n+1] with k edges, the lexicographic order on

its edges is as follows. Edge (i1, j1) is less than edge (i2, j2) in lexicographic order if j1 > j2, or j1 = j2
and i1 > i2. The forest F is said to have lexicographic edge-labels if its edges are labeled with integers
1, . . . , k such that if edge (i1, j1) is less than edge (i2, j2) in lexicographic order, then the label of (i1, j1)
is less than the label of (i2, j2) in the usual order on the integers. Clearly, given any graph G there is a
unique edge-labeling of it which is lexicographic.
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Lemma 10 If a noncrossing alternating forest F is a B-successor of a good forest T , then upon some
number of reductions (2) it is possible to obtain a noncrossing alternating forest F ′ with lexicographic
edge-labels.

Proposition 11 By choosing the series of reductions suitably, the set of leaves of a B-reduction tree with
root GB [wB ] can be all noncrossing alternating forests F on vertex set [n+ 1] containing edge (1, n+ 1)
with lexicographic edge-labels.

Idea of Proof: By Corollary 9 all leaves of a B-reduction tree are noncrossing alternating forests on
vertex set [n + 1]. It is easily seen that they all contain edge (1, n + 1). By the correspondence between
the leaves of a B-reduction tree and simplices in a triangulation of P(GB [wB ]), it follows that no forest
appears more than once among the leaves. Thus, it suffices to prove that any noncrossing alternating forest
F on vertex set [n+1] containing edge (1, n+1) appears among the leaves of a B-reduction tree and that
all these forests have lexicographic edge-labels. One can construct such a B-reduction tree inductively. 2

Theorem 12 The set of leaves of a B-reduction tree with root GB [wB ] is, up to applications of reduction
(2), the set of all noncrossing alternating forests with lexicographic edge-labels on the vertex set [n + 1]
containing edge (1, n+ 1).

Idea of Proof: By Proposition 11 there exists a B-reduction tree which satisfies the conditions above.
Since the roots of type An are unimodular, it can be shown that the number of k-dimensional simplices
in a central triangulation of a type An root polytope is fixed for any k. Thus, the number of forests on
vertex set [n + 1] and k edges among the leaves of an B-reduction tree is fixed. Also, no vertex-labeled
forest, with edge-labels disregarded, can appear twice among the leaves of a B-reduction tree. Together
with Lemma 10 these imply the statement of Theorem 12. 2

Using Theorem 12 we obtain the following characterziation of reduced forms of the noncommutative
monomial wB .

Theorem 13 If the polynomial PB
n (xij) is a reduced form of wB , then

PB
n (xij) =

∑
F

βn−|E(F )|xF ,

where the sum runs over all noncrossing alternating forests F with lexicographic edge-labels on the vertex
set [n+ 1] containing edge (1, n+ 1), and xF is defined to be the noncommutative monomial

∏k
l=1 xil,jl

if F contains the edges (i1, j1)1, . . . , (ik, jk)k.

As a corollary to Theorem 13 we obtain the other part of Theorem 2 for the commutative monomial
wA =

∏n
i=1 xi,i+1.

Theorem 14 If the polynomial PA
n (xij) is a reduced form of wA, then

PA
n (xij = 1) =

n−1∑
m=0

sn,n−m−1β
m,

where sn,k is the number of noncrossing alternating forests on vertex set [n + 1] with k + 1 edges,
containing edge (1, n+ 1).
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Idea of Proof: While wA may have many reduced forms, any reduced form arises from an A-reduction
tree, which in turn gives a triangulation of P(A+

n ). A triangulation of P(A+
n ) can be shown to have a

fixed number of simplices of a certain dimension, using that the positive roots of type An are unimodular.
Using this it can be shown that there is a fixed number of leaves with k edges in any A-reduction tree.
Using Theorem 13 we obtain that there are sn,k leaves with with k + 1 edges in any A-reduction tree. 2

Observe that the above theorems imply that the poset of all noncrossing alternating spanning forests on
the vertex set [n + 1] containing the edge (1, n + 1) equals the face poset of the triangulation of the full
type An root polytope P(A+

n ) obtained from the noncommutative process as described in Theorem 12.
By face poset we mean the poset whose elements are the top dimensional simplices in the triangulation of
P(A+

n ) and all their nonempty intersections and the order is given by inclusion.
The Schröder numbers sn count the number of ways to draw any number of diagonals of a convex

(n+2)-gon that do not intersect in their interiors. Recall that in section 2 sn,k denoted the number of ways
to draw k diagonals of a convex (n + 2)-gon that do not intersect in their interiors. Cayley (C) in 1890

showed that sn,k =
1

n+ 1

(
n+ k + 1

n

)(
n− 1
k

)
. As indicated in Lemma 3, it is not by coincidence that

we used sn,k to also denote the number of noncrossing alternating forests on vertex set [n+ 1] and k + 1
edges, containing edge (1, n+ 1).

Theorems 13 and 14 imply Theorem 2 for the special case T = P = ([n + 1], {(i, i + 1) | i ∈ [n]}).
We can generalize Theorems 12, 13 and 14 to monomials mB [T ], where T is a good tree. Theorem
2 stated in the Introduction is a weaker version of these generalizations, but is easier to state. In the
most general statements of Theorems 12, 13 and 14 we need to replace the condition “all noncrossing
alternating forests on [n + 1] containing edge (1, n + 1)” with “all noncrossing alternating forests on
[n+ 1] containing edge (1, n+ 1) and certain technical requirements,” the details of which we omit here.
The proofs of the analogous statements use the statements of Theorems 12, 13 and 14 as base cases. If
the polynomial PB

n (xij) is a reduced form of mB [T ] for a good tree T , then

PB
n (xij) =

∑
F

βn−|E(F )|xF ,

where the sum runs over all noncrossing alternating spanning forests F of T̄ with lexicographic edge-
labels on the vertex set [n + 1] containing edge (1, n + 1) and satisfying some technical requirement.
Also,

PA
n (xij = 1) =

n−1∑
m=0

fT,n−mβ
m,

where fT,n−m is the number of noncrossing alternating forests on vertex set [n + 1] with n −m edges,
containing edge (1, n+ 1) and satisfying some technical requirement.

We are now ready conclude the proof of Theorem 1. Recall that at the end of section 3 we proved that if
T1, . . . , Tk are the trees labeling leaves of T A

R with root T , then P(T1), . . . ,P(Tk) form a central triangu-
lation of P(T ). Note that the set of leaves of aB-reduction tree T B

R can also be obtained as a set of leaves
of some A-reduction tree T A

R , by simply disregarding the edge-labels of the graphs corresponding to the
nodes of T B

R . The generalization of Theorem 12 implies that that the set of leaves of a B-reduction tree
with rootmB [T ] which are trees are all noncrossing alternating spanning trees of T̄ with lexicographic or-
dering. Thus, there is an A-reduction tree with root mA[T ] whose leaves that are trees are all noncrossing
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alternating spanning trees of T̄ . Therefore, if T1, . . . , Tk are all noncrossing alternating spanning trees of
T̄ , then the root polytopes P(T1), . . . ,P(Tk) are n-dimensional simplices with disjoint interiors whose
union is P(T ), yielding the canonical triangulation described in Theorem 1. Also, from this triangulation
it follows that volP(T ) = fT,n

1
n! , where fT,n denotes the number of noncrossing alternating spanning

trees of T̄ , since as noted at the end of section 3 each P(Ti) has volume 1
n! . This concludes the proof of

Theorem 1.
Theorem 1 can be generalized so that we not only describe the n-dimensional simplices in the triangu-

lation of P(T ), but also describe their intersections in terms of noncrossing alternating spanning forests
in T̄ . Using the special property of Φ+ that the vectors in it are unimodular, we can also calculate the
Ehrhart polynomial of P(T ) for any tree T . We now define Ehrhart polynomials for integer polytopes,
and state our main result pertaining to them. For further background on the theory of Ehrhart polynomials
see (BR).

Given a polytope P ⊂ Rn+1, the tth dilate of P is

tP = {(tx1, . . . , txn+1)|(x1, . . . , xn+1) ∈ P}.

The Ehrhart polynomial of an integer polytope P ⊂ Rn+1 is then defined to be

LP(t) = #(tP ∩ Zn+1).

Theorem 15 The Ehrhart polynomial of the polytope P(T ), where T is a noncrossing tree on vertex set
[n+ 1], is

LP(T )(t) = (−1)n
n∑

i=0

(−1)ifT,i

(
t+ i

i

)
,

where fT,i is the number of noncrossing alternating forests on vertex set [n+ 1] with i edges, containing
edge (1, n+ 1) and satisfying some technical requirement.

For T = P = ([n], {(i, i + 1) | i ∈ [n]}) Theorem 15 specializes to the Ehrhart polynomial of
P(P ) = P(A+

n ) with fP,i = sn,i−1. The Ehrhart polynomial of P(A+
n ) was previously calculated by

Fong (F) by different methods.
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