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Rationality, irrationality, and Wilf equivalence
in generalized factor order
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Abstract. Let P be a partially ordered set and consider the free monoid P ∗ of all words over P . If w,w′ ∈ P ∗

then w′ is a factor of w if there are words u, v with w = uw′v. Define generalized factor order on P ∗ by letting
u ≤ w if there is a factor w′ of w having the same length as u such that u ≤ w′, where the comparison of u and w′

is done componentwise using the partial order in P . One obtains ordinary factor order by insisting that u = w′ or,
equivalently, by taking P to be an antichain.

Given u ∈ P ∗, we prove that the language F(u) = {w : w ≥ u} is accepted by a finite state automaton. If P is
finite then it follows that the generating function F (u) =

P
w≥u w is rational. This is an analogue of a theorem of

Björner and Sagan for generalized subword order.

We also consider P = P, the positive integers with the usual total order, so that P∗ is the set of compositions. In this
case one obtains a weight generating function F (u; t, x) by substituting txn each time n ∈ P appears in F (u). We
show that this generating function is also rational by using the transfer-matrix method. Words u, v are said to be Wilf
equivalent if F (u; t, x) = F (v; t, x) and we can prove various Wilf equivalences combinatorially.

Björner found a recursive formula for the Möbius function of ordinary factor order on P ∗. It follows that one always
has µ(u,w) = 0,±1. Using the Pumping Lemma we show that the generating function M(u) =

P
w≥u |µ(u,w)|w

can be irrational.

Résumé. Soit P un ensemble partiellement ordoné. Nous considérons le monoı̈de libre P ∗ de tous les mots utilisant
P comme alphabet. Si w,w′ ∈ P ∗, on dit que w′ est un facteur de w s’il y a des mots u, v avec w = uw′v. Nous
definissons l’ordre facteur généralisé sur P ∗ par: u ≤ w s’il y a un facteur w′ de w ayant la même longueur que u tel
que u ≤ w′, où la comparison de u avec w′ est faite lettre par lettre utilisant l’ordre en P . On obtient l’ordre facteur
usuel si on insiste que u = w′ ou, ce qui est la même chose, en prenant P comme antichaı̂ne.

Pour n’importe quel u ∈ P ∗, nous démontrons que le langage F(u) = {w : w ≥ u} est accepté par un automaton
avec un nombre fini d’états. Si P est fini, ca implique que la fonction génératrice F (u) =

P
w≥u w est rationnelle.

Björner et Sagan ont démontré le théorème analogue pour l’ordre où, en la définition au-dessus, w′ est un sous-mot
de w.

Nous considérons aussi le cas P = P, les entiers positifs avec l’ordre usuel, donc P ∗ est l’ensemble des compositions.
En ce cas on obtient une fonction génératrice pondéré F (u; t, x) en remplaçant txn chaque fois on trouve n ∈ P
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en F (u). Nous démontrons que cette fonction génératrice est aussi rationnelle en utilisant la Méthode Matrice de
Tranfert. On dit que let mots u, v sont Wilf-équivalents si F (u; t, x) = F (v; t, x). Nous pouvons démontré quelques
équivalances dans une manière combinatorie.

Björner a trouvé une formule recursive pour la fonction Möbius de l’ordre facteur usuel sur P ∗. Cette formule
implique qu’on a toujours µ(u,w) = 0,±1. En utilisant le Lemme de Pompage, nous démontrons que la fonction
génératrice M(u) =

P
w≥u |µ(u,w)|w peut être irrationnelle.

Keywords: composition, factor order, finite state automaton, partially ordered set, rational generating function, Wilf
equivalence

1 Introduction and definitions
Let P be a set and consider the corresponding free monoid or Kleene closure of all words over P :

P ∗ = {w = w1w2 . . . w` : ` ≥ 0 and wi ∈ P for all i}.

Let ε be the empty word and for any w ∈ P ∗ we denote its cardinality or length by |w|. Given w,w′ ∈
P ∗, we say that w′ is a factor of w if there are words u, v with w = uw′v, where adjacency denotes
concatenation. For example, w′ = 322 is a factor of w = 12213221 starting with the fifth element of w.
Factor order on P ∗ is the partial order obtained by letting u ≤fo w if and only if there is a factor w′ of w
with u = w′.

Now suppose that we have a poset (P,≤). We define generalized factor order onP ∗ by letting u ≤gfo w
if there is a factor w′ of w such that

(a) |u| = |w′|, and

(b) ui ≤ w′i for 1 ≤ i ≤ |u|.

We call w′ an embedding of u into w, and if the first element of w′ is the jth element of w, we call j an
embedding index of u into w. We also say that in this embedding ui is in position j + i− 1. To illustrate,
suppose P = P, the positive integers with the usual order relation. If u = 322 and w = 12213431 then
u ≤gfo w because of the embedding factor w′ = 343 which has embedding index 5, and the two 2’s of u
are in positions 6 and 7. Note that we obtain ordinary factor order by taking P to be an antichain. Also,
we will henceforth drop the subscript gfo since context will make it clear what order relation is meant.
Generalized factor order is the focus of this extended abstract.

Returning to the case where P is an arbitrary set, let Z〈〈P 〉〉 be the algebra of formal power series with
integer coefficients and having the elements of P as noncommuting variables. In other words,

Z〈〈P 〉〉 =

{
f =

∑
w∈P∗

cww : cw ∈ Z for all w

}
.

If f ∈ Z〈〈P 〉〉 has no constant term, i.e., cε = 0, then define

f∗ = ε+ f + f2 + f3 + · · · = (ε− f)−1.
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(We need the restriction on f to make sure that the sums are well defined as formal power series.) We say
that f is rational if it can be constructed from the elements of P using only a finite number of applications
of the algebra operations and the star operation.

A language is any L ⊆ P ∗. It has an associated generating function

fL =
∑
w∈L

w.

The language L is regular if fL is rational.
Consider generalized factor order on P ∗ and fix a word u ∈ P ∗. There is a corresponding language

and generating function

F(u) = {w : w ≥ u} and F (u) =
∑
w≥u

w.

Our first result is as follows.

Theorem 1.1 If P is a finite poset and u ∈ P ∗ then F (u) is rational.

Theorem 1.1 is an analogue of a result of Björner and Sagan [4] for generalized subword order on P ∗.
Generalized subword order is defined exactly like generalized factor order except that w′ is only required
to be a subword of w, i.e., the elements of w′ need not be consecutive in w. For related results, also see
Goyt [5].

Given any set, P , a nondeterministic finite automaton or NFA over P is a digraph (directed graph) ∆
with vertices V and arcs ~E having the following properties.

1. The elements of V are called states and |V | is finite.

2. There is a designated initial state α and a set Ω of final states.

3. Each arc of ~E is labeled with an element of P .

Given a (directed) path in ∆ starting at α, we construct a word in P ∗ by concatenating the elements on
the arcs on the path in the order in which they are encountered. The language accepted by ∆ is the set of
all such words which are associated with paths ending in a final state. It is a well-known theorem that, for
|P | finite, a language L ⊆ P ∗ is regular if and only if there is a NFA accepting L. (See, for example, the
text of Hopcroft and Ullman [6, Chapter 2].)

We will demonstrate Theorem 1.1 by constructing a NFA accepting the language for F (u). This will
be done in the next section. In fact, the NFA still exists even if P is infinite, suggesting that more can be
said about the generating function in this case.

We are particularly interested in the case of P = P with the usual order relation. So P∗ is just the set
of compositions (ordered integer partitions). Given w = w1w2 . . . w` ∈ P∗, we define its norm to be

Σ(w) = w1 + w2 + · · ·+ w`.

Let t, x be commuting variables. Replacing each n ∈ w by txn, we get an associated monomial called
the weight of w

wt(w) = t|w|xΣ(w).
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For example, if w = 213221 then

wt(w) = tx2 · tx · tx3 · tx2 · tx2 · tx = t6x11.

We also have the associated weight generating function

F (u; t, x) =
∑
w≥u

wt(w).

Our NFA will demonstrate, via the transfer-matrix method, that this is also a rational function of t and x.
The details will be given in Section 3.

Call u,w ∈ P∗ Wilf equivalent if F (u; t, x) = F (v; t, x). This definition is modelled on the one used in
the theory of pattern avoidance. See the survey article of Wilf [8] for more information about this subject.
Section 4 is devoted to stating various Wilf equivalences all of which can be proved combinatorially.

Björner [2] gave a recursive formula for the Möbius function of (ordinary) factor order. It follows from
his theorem that µ(u,w) = 0,±1 for all u,w ∈ P ∗. Using the Pumping Lemma [6, Lemma 3.1] we show
that there are finite sets P and u ∈ P ∗ such that the language

M(u) = {w : µ(u,w) 6= 0}

is not regular. This is done in Section 5. The final section is devoted to comments and open questions.

2 Construction of automata
We will now introduce another language which is related to F(u) and which will be useful in proving
Theorem 1.1. We say that u is a suffix (respectively, prefix) of w if w = vu (respectively, w = uv) for
some word v. Let S(u) be all the w ∈ F(u) such that, in the definition of generalized factor order, the
only possible choice for w′ is a suffix of w. Let S(u) be the corresponding generating function.

The next result follows easily from the definitions and so we omit the proof. In it, we will use the
notation Q to stand both for a subset of P and for the generating function Q =

∑
a∈Q a. Context will

make it clear which is meant.

Lemma 2.1 Let P be any poset and let u ∈ P ∗. Then we have the following relationships

F(u) = S(u)P ∗ and F (u) = S(u)(ε− P )−1

between the languages and between the generating functions. 2

We will now prove that the two languages we have defined are accepted by NFAs. An example follows
the proof so the reader may want to read it in parallel.

Theorem 2.2 Let P be any poset and let u ∈ P ∗. Then there are NFAs accepting F(u) and S(u).

Proof: We first construct an NFA, ∆, for S(u). Let ` = |u|. The states of ∆ will be all subsets T of
{1, . . . , `}. The initial state is ∅. Letw = w1 . . . wm be the word corresponding to a path from ∅ to T . The
NFA will be constructed so that if the path is continued, the only possible embedding indices are those in
the set {m− t+ 1 : t ∈ T}. In other words, for each t ∈ T we have

u1u2 . . . ut ≤ wm−t+1wm−t+2 . . . wm, (1)
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Fig. 1: A NFA accepting S(132)

for each t ∈ {1, . . . , `} − T this inequality does not hold, and u 6≤ w′ for any factor w′ of w starting
at an index smaller then m − ` + 1. From this description it is clear that the final states should be those
containing `.

The definition of the arcs of ∆ is forced by the interpretation of the states. There will be no arcs out of
a final state. If T is a nonfinal state and a ∈ P then there will be an arc from T to

T ′ = {t+ 1 : t ∈ T ∪ {0} and ut+1 ≤ a}.

It is easy to see that (1) continues to hold for all t′ ∈ T ′ once we append a to w. This finishes the
construction of the NFA for S(u). To obtain an automaton for F(u), just add loops to the final states of
∆, one for each a ∈ P . 2

As an example, consider P = P and u = 132. We will do several things to simplify writing down the
automaton. First of all, certain states may not be reachable by a path starting at the initial state. So we
will not display such states. For example, we can not reach the state {2, 3} since u1 = 1 ≤ wi for any i
and so 1 will be in any state reachable from φ. Also, given states T and U there may be many arcs from T
to U , each having a different label. So we will replace them by one arc bearing the set of labels of all such
arcs. Finally, set braces will be dropped for readability. The resulting digraph is displayed in Figure 1.

Consider what happens as we build a wordw starting from the initial state ∅. Since u1 = 1, any element
of P could be the first element of an embedding of u into w. That is why every element of the interval
[1,∞) = P produces an arrow from the initial state to the state {1}. Now if w2 ≤ 2, then an embedding
of u could no longer start at w1 and so these elements give loops at the state {1}. But if w2 ≥ 3 then an
embedding could start at either w1 or at w2 and so the corresponding arcs all go to the state {1, 2}. The
rest of the automaton is explained similarly.

As an immediate consequence of the previous theorem we get the following result which includes
Theorem 1.1.
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Theorem 2.3 Let P be a finite poset and let u ∈ P ∗. Then the generating functions F (u) and S(u) are
rational. 2

3 The positive integers
If P = P then Theorem 2.3 no longer applies to the generating functions F (u) and S(u). However,
we can still show rationality of the weight generating function F (u; t, x) as defined in the introduction.
Similarly, we will see that the series S(u; t, x) =

∑
w∈S(u) wt(w) is rational.

Note first that Lemma 2.1 still holds for P and can be made more explicit in this case. Extend the
function wt to all of Z〈〈P〉〉 by letting it act linearly. Then

wt(ε− P)−1 =
1

1−
∑
n≥1 tx

n
=

1
1− tx/(1− x)

=
1− x

1− x− tx
.

We now plug this into the lemma just cited.

Corollary 3.1 We have F (u; t, x) = (1− x)S(u; t, x)/(1− x− tx). 2

It follows that if one of these three series is rational then the other one is as well.
We will now use the NFA, ∆, constructed in Theorem 2.2 to show that S(u; t, x) is rational. This is

essentially an application of the transfer-matrix method. See the text of Stanley [7, Section 4.7] for more
information about this technique. The transfer matrix M for ∆ has rows and columns indexed by the
states with

MT,U =
∑
n

wt(n)

where the sum is over all n which appear as labels on the arcs from T to U . For example, consider the
case where w = 132 as done at the end of the previous section. If we list the states in the order

∅, {1}, {1, 2}, {1, 3}, {1, 2, 3}

then the transfer matrix is

M =



0
tx

1− x
0 0 0

0 t(x+ x2)
tx3

1− x
0 0

0 tx 0 tx2 tx3

1− x
0 0 0 0 0

0 0 0 0 0


Now Mk has entries Mk

T,U =
∑
w wt(w) where the sum is over all words w corresponding to a

directed walk of length k from T to U . So to get the weight generating function for walks of all lengths
one considers

∑
k≥0M

k. Note that this sum converges in the algebra of matrices over the formal power
series algebra Z[[t, x]] because none of the entries of M has a constant term. It follows that

L :=
∑
k≥0

Mk = (I −M)−1 =
adj(I −M)
det(I −M)

(2)
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where adj denotes the adjoint.
Now

S(u; t, x) =
∑
T

L∅,T

where the sum is over all final states of ∆. So it suffices to show that each entry of L is rational. From
equation (2), this reduces to showing that each entry of M is rational. So consider two given states T,U .
If T is final then we are done since the T th row of M is all zeros. If T is not final, then consider

T ′ = {t+ 1 : t ∈ T ∪ {0}}. (3)

If U = T ′ then there will be an N ∈ P such that all the arcs out of T with labels n ≥ N go to T ′. So
MT,T ′ will contain

∑
n≥N tx

n = txN/(1−x) plus a finite number of other terms of the form txm. Thus
this entry is rational. If U 6= T ′, then there will only be a finite number of arcs from T to U and so MT,U

will actually be a polynomial. This shows that every entry of M is rational and we have proved, with the
aid of the remark following Corollary 3.1, the following result.

Theorem 3.2 If u ∈ P∗ then F (u; t, x) and S(u; t, x) are rational. 2

4 Wilf equivalence
Recall that u, v ∈ P∗ are Wilf equivalent, written u ∼ v, if F (u; t, x) = F (v; t, x). By Corollary 3.1,
this is equivalent to S(u; t, x) = S(v; t, x). It follows that to prove Wilf equivalence, it suffices to find a
weight-preserving bijection f : L(u)→ L(v) where L = F , or S. Since∼ is an equivalence relation, we
can talk about the Wilf equivalence class of u which is {w : w ∼ u}. It is worth noting that the automata
for the words in a Wilf equivalence class need not bear a resemblance to each other. Part of the motivation
for this section is to try to explain as many Wilf equivalences as possible between permutations.

First of all, we consider three operations on words in P∗. The reversal of u = u1 . . . u` is ur =
u` . . . u1. It will also be of interest to consider 1u, the word gotten by prepending one to u. Finally, we
will look at u+ which is gotten by increasing each element of u by one. It is not hard to give combinatorial
proofs for the three facts in the next theorem, but due to space limitations we will only do so for the second.

Theorem 4.1 We have the following Wilf equivalences.

(a) u ∼ ur,

(b) if u ∼ v then 1u ∼ 1v,

(c) if u ∼ v then u+ ∼ v+.

Proof: (b) We can assume we are given a weight-preserving bijection f : S(u) → S(v). Since 1 is the
minimal element of P,

S(1u) = {w ∈ P∗ : w2w3 . . . w|w| ∈ S(u)}.

So f induces a weight-preserving bijection g : S(1u)→ S(1v) defined by

g(w1w2 . . . wn) = w1f(w2 . . . wn)



522 Sergey Kitaev, Jeffrey Liese, Jeffrey Remmel, and Bruce Sagan

and we are done. 2

Applying the previous result, we can obtain all the Wilf equivalences in the symmetric groups S2 and
S3. In S2 we have 12 ∼ 21 by (a). So 23 ∼ 32 by (c) and 123 ∼ 132 by (b). Continuing in this way, we
obtain

123 ∼ 321 ∼ 132 ∼ 231 and 213 ∼ 312.

These two groups are indeed in different equivalence classes as one can use equation (2) to compute that

S(123; t, x) =
t3x6

(1− x)2(1− x− tx+ tx3 − t2x4)

while

S(213; t, x) =
t3x6(1 + tx3)

(1− x)(1− x+ t2x4)(1− x− tx+ tx3 − t2x4)
.

We will need a new result to explain some of the equivalences in S4 such as 2134 ∼ 2143. This is done
by the next result which, in conjunction with Theorem 4.1, can be used to derive all of the equivalences
in S4. We omit the proof due to space limitations.

Theorem 4.2 Let x, y, z ∈ {1, . . . ,m}∗ and suppose n > m. Then

xmynz ∼ xnymz.

5 The Möbius function
We will now show that the language for the Möbius function of ordinary factor order is not regular. This
is somewhat surprising because Björner and Reutenauer [3] showed that this language is regular if one
considers ordinary subword order, and then Björner and Sagan [4] extended this result to generalized
subword order. We will begin by reviewing some basic facts about Möbius functions. The reader wishing
more details can consult [7, Chapter 3].

For any poset P , the incidence algebra of P over the integers is

I(P ) = {α : P × P → Z : α(a, b) = 0 if a 6≤ b}.

This set is an algebra whose multiplication is given by convolution (α ∗ β)(a, b) =
∑
c∈P α(a, c)β(c, b).

It is easy to see that the identity for this operation is the Kronecker delta

δ(a, b) =
{

1 if a = b,
0 else.

So it is possible for incidence algebra elements to have multiplicative inverses.
One of the simplest elements of I(P ) is the zeta function

ζ(a, b) =
{

1 if a ≥ b,
0 else.

Note that F (u) can be rewritten as F (u) =
∑
w∈P∗ ζ(u,w)w. It turns out that ζ has a convolutional

inverse µ in I(P ). This function is important in enumerative and algebraic combinatorics. Björner [2]
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has given a formula for µ in ordinary factor order which we will need. To describe this result, we must
make some definitions. The dominant outer factor of w, denoted o(w), is the longest word other than w
which is both a prefix and a suffix of w. Note that we may have o(w) = ε. The dominant inner factor
of w = w1 . . . w`, written i(w), is w2 . . . w`−1. Finally, a word is flat if all its elements are equal. For
example, w = abbaabb has o(w) = abb and i(w) = bbaab.

Theorem 5.1 (Björner) In (ordinary) factor order, if u ≤ w then

µ(u,w) =


µ(u, o(w)) if |w| − |u| > 2 and u ≤ o(w) 6≤ i(w),
1 if |w| − |u| = 2, w is not flat, and u = o(w) or i(w),
(−1)|w|−|u| if |w| − |u| < 2,
0 otherwise. 2

Continuing the example
µ(b, abbaabb) = µ(b, abb) = 1.

Note that this description is inductive. It also implies that µ(u,w) is ±1 or 0 for all u,w in factor order.
We will show that the languageM(u) = {w : µ(u,w) 6= 0} need not be regular. To do this, we will

need the Pumping Lemma which we now state. A proof can be found in [6, pp. 55–56].

Lemma 5.2 (Pumping Lemma) Let L be a regular language. Then there is a constant n ≥ 1 such that
any z ∈ L can be written as z = uvw satisfying

1. |uv| ≤ n and |v| ≥ 1,

2. uviw ∈ L for all i ≥ 0. 2

Roughly speaking, any word in a regular language has a prefix of bounded length such that pumping up
the end of the prefix keeps one in the language.

Theorem 5.3 Consider (ordinary) factor order where P = {a, b}. ThenM(a) is not regular.

Proof: Suppose, to the contrary, thatM(a) is regular and let n be the constant guaranteed by the pump-
ing lemma. We will derive a contradiction by letting z = abnabna where, as usual, bn represents the letter
b repeated n times.

First we show that z ∈ M(a). Indeed, o(z) = abna and i(z) = bnabn which implies that a ≤ o(z) 6≤
i(z). So we are in the first case of Björner’s formula and µ(a, z) = µ(a, abna). Repeating this analysis
with abna in place of z gives µ(a, z) = µ(a, a) = 1. Hence z ∈M(a) as promised.

Now pick any prefix uv of z as in the Pumping Lemma. There are two cases. The first is if u 6= ε.
So v = bj for some j with 1 ≤ j < n. Picking i = 2, we conclude that z′ = uv2w = abn+jabna is
inM(a). But o(z′) = a and i(z′) = bn+jabn. Thus |z′| − |a| > 2 and a ≤ o(z′) ≤ i(z′), so z′ does
not fall into any of the first three cases of Björner’s formula. This implies that µ(a, z′) = 0 and hence
z′ 6∈ M(a), which is a contradiction in this case.

The second possibility is that u = ε and v = abj for some 0 ≤ j < n. Similar considerations to
those in the previous paragraph show that if we take z′ = uv2w then µ(a, z′) = 0 again. So we have a
contradiction as before and the theorem is proved. 2
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6 Comments, conjectures, and open questions
6.1 Mixing factors and subwords
It is possible to create languages using combinations of factors and subwords. This is an idea that was
first studied by Babson and Steingrı́msson [1] in the context of pattern avoidance in permutations. Many
of the results we have proved can be generalized in this way. We will indicate how this can be done for
Theorem 2.2.

A pattern p over P is a word in P ∗ where certain pairs of adjacent elements have been overlined
(barred). For example, in the pattern p = 11332461 the pairs 13, 33, and 61 have been overlined. If
w ∈ P ∗ we will write w for the pattern where every pair of adjacent elements in w is overlined. So every
pattern has a unique factorization of the form p = y1 y2 . . . yk. In the preceding example, the factors are
y1 = 1, y2 = 133, y3 = 2, y4 = 4, and y5 = 61.

If p = y1 y2 . . . yk is a pattern and w ∈ P ∗ then p embeds into w, written p→ w, if there is a subword
w′ = z1z2 . . . zk of w where, for all i,

1. zi is a factor of w with |zi| = |yi|, and

2. yi ≤ zi in generalized factor order.

For example 324 → 14235 and there is only one embedding, namely 425. For any pattern p, define the
language

F(p) = {w ∈ P ∗ : p→ w}

and similarly for S(p). The next result generalizes Theorem 2.2 to an arbitrary pattern. It is proved by
pasting together automata like those constructed in that theorem.

Theorem 6.1 Let P be any poset and let p be a pattern over P . Then there are NFAs accepting F(p) and
S(p). 2

6.2 Rationality for infinite posets
It would be nice to have a criterion that would imply rationality even for some infinite posets P . To this
end, let x = {x1, . . . , xm} be a set of commuting variables and consider the formal power series algebra
Z[[x]]. Suppose we are given a function

wt : P → Z[[x]]

which then defines a weighting of words w = w1 . . . w` ∈ P ∗ by

wt(w) =
m∏
i=1

wt(wi).

To make sure our summations will be defined in Z[[x]], we assume that there are only finitely many w of
any given weight and call such a weight function regular.

For u ∈ P ∗, let
F (u; x) =

∑
w≥u

wt(w)
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and similarly for S(u; x). Suppose we want to make sure that S(u; x) is rational. As done in Section 3,
we can consider a transfer matrix with entries

MT,U =
∑
a

wt(a)

where the sum is over all a ∈ P occurring on arcs from T to U . Equation (2) remains the same, so it
suffices to make sure that MT,U is always rational.

If there is an arc labeled a from T to U then we must have U ⊆ T ′ where T ′ is given in equation (3).
Recalling the definition of ∆ from the proof of Theorem 2.2, we see that the a’s appearing in the previous
sum are exactly those satisfying

1. a ≥ ut+1 for t+ 1 ∈ U , and

2. a 6≥ ut+1 for t+ 1 ∈ T ′ − U .

To state these criteria succinctly, for any subword y of u we write a � y (respectively, a 6� y) if a ≥ b
(respectively, a 6≥ b) for all b ∈ y. Finally, note that, from the proof of Theorem 2.2, similar transfer ma-
trices can be constructed for F (u; x) and A(u; x). We have proved the following result which generalizes
Theorem 3.2.

Theorem 6.2 Let P be a poset with a regular weight functionwt : P ∗ → Z[[x]], and let u ∈ P ∗. Suppose
that for any two subwords y and z of u we have∑

a�y
a 6�z

wt(a)

is a rational function. Then so are F (u; x) and S(u; x). 2

6.3 Irrationality for infinite posets
When P is countably infinite it is possible for the generating functions we have considered to be irrational.
As an example, fix a distinguished element a ∈ P . For each A ⊆ P with a ∈ A, we define an order
≤A by insisting that the elements of P − {a} form an antichain, and that a ≤A b if and only if b ∈ A.
Consider the corresponding suffix language SA(a). Clearly SA(a) = (P − A)∗A and so no two of these
languages are equal. It follows that the mapping A → SA(a) is injective. So one of the SA(a) must
be irrational since there are uncountably many possible A but only countably many rational functions in
Z〈〈P 〉〉.

6.4 Wilf equivalence and strong equivalence
There are a number of open problems and questions raised by our work on Wilf equivalence.

(1) If u ∼ v, then must v be a rearrangement of u? This is the case for all the Wilf equivalences we
have proved.

(2) What about Wilf equivalence in [m]∗ where [m] = {1, 2, . . . ,m}? Given a positive integer m,
one can define Wilf equivalence of words u, v ∈ [m]∗ in the same way that we did for P∗. We write
u ∼m v for this relation. Is it true that u ∼m v if and only if u ∼ v?
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(3) If u+ ∼ v+ then is u ∼ v? In other words, does the converse of Theorem 4.1 (c) hold? It is not
hard to see that the converse of (b) is true.

(4) Find a theorem which, together with the results already proved, explains all the Wilf equiva-
lences in S5. We have a conjecture that would be helpful in this regard.

Conjecture 6.3 For any a, b, c ∈ [2,∞) we have

a1b2c ∼ a2b1c.

(5) Is it always the case that the number of elements of Sn Wilf equivalent to a given permutation
is a power of 2? Our computations show that this is always true for n ≤ 5.

6.5 The languageM(u)

We have shown thatM(u) is not always regular and so the corresponding generating function M(u) is
not always rational. But this leaves open whetherM(u) might fall into a more general class of languages
such as context free grammars (CFGs). There is a Pumping Lemma for CFGs, see [6, Section 6.1]. So it
is tempting to try and modify the proof of Theorem 5.3 to show thatM(u) is not even a CFG. However,
all our attempts in that direction have failed. IsM(u) a CFG or not?
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[4] BJÖRNER, A., AND SAGAN, B. E. Rationality of the Möbius function of a composition poset. Theoret. Comput.
Sci. 359, 1-3 (2006), 282–298.
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