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A graph is aPs-indifference graph if it admits an orderirgon its vertices such that every chordless path with vertices
a, b, ¢, d and edgesb, bc, cd hasa<b<c<dord < c<b< a We present a linear time recognition for these
graphs.
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1 Introduction

A P4 is a chordless path of four vertices. A graphPsindifference if it admits an ordering: on its
vertex set such that eve®y abcdhasa<b<c<dord < c<b<a Such an ordering is called a
Ps-indifference ordering. Th&s-indifference graphs were introduced in [Chv84] as a paléicclass of
perfectly orderable graphsA graph is perfectly orderable if there exists an orderingts vertex set for
which the greedy colouring algorithm produces an optimé&anng.

The first recognition algorithm foP,-indifference graphs is due to Hoang and Reed and has the com
plexity of O(n®) [HR89]. They compute the equivalence classes of someaalati thePy’s of the graph.
They then check that these classes do not contain a certagnaph with 6 vertices. Later, Raschle and
Simon, studying more carefully tty’s relations, proposed ad(n’m) recognition algorithm [RS97].

Recently, Hoang, Maffray and Noy gave a characterizatipofolbidden induced subgraphs [HMN99]
and raised the question of the existence of a linear timeggr@ton algorithm. We answer their question in
the affirmative way using some of their theorems. Moreoveabgorithm computes an adequate ordering
of the vertices when it concludes that the input grapPyindifference.
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2 Theoretical basis
We use the following theorems from [HMN99]:
Theorem 1 [HMN99] Any R-indifference graph fulfills the following properties:

1. Ifit contains a G (a chordless cycle of length 4) then it contains an homogesseet.
2. Ifit contains no G then it is an interval graph.

These two properties inspire the following recognitionaalthm: Compute the modular decomposition
tree of the input. For each quotient graph of any node of geeverify that it is an interval graph. Compute
an interval representation of it and use it to test whether & Ps-indifference graph and to compute a
good ordering of the vertices if there exists one. The ewizteof linear time algorithms for modular
decomposition and interval graph recognition [MS94, MSH8/91] make this scheme possible for a
linear time recognition algorithm.

To justify such an algorithm, we first need some additionabtietical results linkings-indifference
graphs and modular decomposition.

Theorem 2 [HMN99] The composition of two graphs ig-shdifference iff they are bothsAndifference
graphs.

To make the paper self-contained and because the algostetrongly based on theorem 2, we present
its proof. This result first appeared in [HMN99].

Proof: Let G be the composition of two grapl@ andG, whereG is obtained fromG; by replacing a
vertexup by Gy by linking all the vertices o5, to all the neighbors ofi,.

First suppos& is Ps-indifference. We prove thds; andG; are alsdPs-indifference. Letzy < --- < 7,
be aPs-indifference ordering of the vertices & The induced order of the vertices @b will obviously
fulfill the same conditionGs is thus clearly &;-indifference graph. Consider the ordering of the vertices
of G; obtained fromz; < --- < z, by erasing all the vertices @b, but one that is replaced hy. It is
clearly aPs-indifference ordering.

Second suppoge; andG; arePy-indifference graphs. We show th@tis also aPs-indifference graph.
Lety: < --- <yp be aPs-indifference ordering of the vertices G andx; < --- < Xm be aPs-indifference
ordering of the vertices 0B; whereu, = Xc. Thenxy < -+ < X1 <Y1 <+ <Yp < Xiy1 < -+ < Xm IS
clearly aPs-indifference ordering of the vertices &f. O

An immediate corollary of Theorem 2 is the following:

Corollary 1 A graph is a B-indifference graph iff all the quotient graphs of its maaiulecomposition
tree are B-indifference graphs.

Notice that the second part of the proof of theorem 2 alsoggawesimple way to compute Bs-
indifference ordering of the composition of soRgindifference graphs from thels-indifference or-
derings.

Corollary 2 A Py-indifference ordering can be computed in linear time fréva B-indifference orderings
of the quotient graphs.

Proof: Assume you are given®-indifference ordering for each quotient graph. Then uis& modular
tree decomposition in a post-order fashion, and for eacle hodo the following:
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¢ if N is a leaf, then it corresponds to a single vertex and the orgés trivial.

¢ if N is an internal node, then for each sg§rof N you have &,-indifference ordering;. Letoy the
Ps;-indifference ordering oH, the quotient graph associatedNo EachS corresponds to a vertex
x; of H. Theno a P4-indifference ordering of the graph whose tree decompmsit rooted afN,
can be obtained by substituting eashto x; in oy.

The linearity of the above algorithm comes from the lingadt the sum of the sizes of the quotient
graphs. |

So now, to complete our recognition algorithm Rfindifference graphs, we just need to compute
Ps-indifference ordering and to recognize prifeindifference graphs.

3 Recognition of prime interval P4-indifference graphs

Let G be a prime interval graph. Lét,..., I, be a minimal interval representation of it where e§g¢ls
an integer interval of1, N]n (with N minimal). If uis a vertex, we denote by its associated interval.
Recall that by definition, two verticasandv of G are linked iffl intersectd,. We say that two intervals
overlapwhen they intersect without one being included in the otren two intervals do not intersect,
we say that the one with greater (resp. smaller) elememgeer(resp.smalle) than the other.

We are now going to show how a minimal interval representaalose to &;-indifference ordering.
The following theorem can easily be deduced from the proofgHiMN99]. It links minimal interval
representations arféh-indifference orderings.

Theorem 3 [HMN99] Consider a prime interval graph G and a minimal intet representation of it. Let
< be the relation satisfying X y for any vertices ) satisfying one of the three following properties:

1. lxand | overlap and the left bound of is smaller than the left bound of.|

2. Ixisincluded in§ and there exists a#%,y,z t such thaty and I, overlap and the left bound of is
smaller than the left bound of.|

3. lyisincluded in } and there exists a3, X,z t such that} and k overlap and the left bound of is
smaller than the left bound of.I

G is a R-indifference graph iff< is acyclic. Moreover any extension &f (i.e. for each xy x <y
implies x< y or for each xy x < y implies x> y) is a B-indifference ordering.

Notice that the previous remarks imply theandy are vertices of some, in each of the three situations
of Theorem 3. Moreover any two consecutive vertices of sBgrage in relation by<. And all above, any
P4 a,b,c,d either verifiesma< b <c<dord < c<b<a. See [HMN99] for the details of the proofs.

In order to use theorem 3 to findRg-indifference ordering, in cas&s and3., we have to find somgy
containingx andy. Such a work is the bootleneck of complexity issue. The rnexinha is the new tool
that makes possible the design of a linear time recognitigorithm.

Lemmal Let b and ¢ be two vertices. The corresponding intervgland L in a minimal interval
representation overlap iff b and ¢ are the middle verticesarhe B.
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Fig. 1: Any P, d,b’,c,d’ is embedded in the interval representation as shown. Eithem,b' =b,c’ =c,d' =d or
ad=db=cd=bd=a

Proof: Consider &, a,b,c,d with edgesab, bc,cd. We claim that the intervall, andl. associated tb
andc must overlap. They intersect since the two vertices areetinkSincd, intersectdy, but notle, Iy
cannot be included ify. For a similar reason withly, Ic cannot be included it,. Thus anyP, is of the
form illustrated by Figure 3 in the interval representation

Conversely, when two intervalg andl. overlap therb andc are the middle vertices of at least one
P4. This is due to the fact that the interval representationdegs chosen minimal. Suppose for example
that some elements &f are smaller than those &f (the other case is symmetrical). Lidte the greatest
integer ofly that is not inl;. There must exist an intervi] containing without intersectind. otherwise
i could be removed yielding a more compact representatiomti@dicting the minimality of the present
one). The same argument allows to conclude that there misstsmme intervaly intersectind but not
Ip. a,b,c,d is then aPy. |

Therefore theorem 3 can be rewriten as follows (in particodse<2. and3.):

Corollary 3 Consider a prime interval graph G and a minimal interval repentation of it. Lek be
the relation satisfying x y for any vertices y satisfying one of the three following properties (these
situations are illustrated by figure 3):

1. Iy and | overlap and the left bound of is smaller than the left bound of.|
2. Ixisincluded in | and there exists some intervaldreater than } overlapping J.
3. lyisincluded in § and there exists some intervaldmaller than | overlapping k.

G is a R-indifference graph iff< is acyclic. Moreover any extension &f (i.e. for each xy x <y
implies x< y or for each xy x <y implies x> y) is a R-indifference ordering.

Corollary 4 The recognition of prime findifference graphs can be done in linear time.

Proof: Let us briefly describe the recognition algorithm :

e Test if the input graph is an interval graph and if so computeéir@mal interval representation. It
can be done in linear time by any linear interval graphs reiamn algorithm (see [BL76, KM89,
HM91, HMPV97, COS98] for example).

e The< relation can easily be computed in linear time by storingdach interval the two intervals
overlapping it which have the rightmost left bound and thfemest right bound when they exist.
During this computation, you can find all the relations cep@ending to overlapping intervals (case
(1) of figure 3). Then the relations corresponding to casei2) (3) of figure 3 can be computed.
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Fig. 2: The three situations of Theorem 3 implyirg: y for a P4-indifference ordering.

e Using a Depth First Search, the acyclicity @fcan be tested and a linear extension of it can be
computed (it there exists one). It can be done in linear time.

O

4 Conclusions

This paper shows how a linear time algorithm for Byeindifference graphs recognition can be designed.
This algorithm strongly relies on modular decompositiomgseprocessing. But linear time modular de-
composition algorithms are still complicated to programti$e natural questionis: can this preprocessing
step be avoided ?

So it has been shown that prirRg-indifference graphs are interval graphs. It is well knolwattLex-
icographic Breadth First Search (Lex-BFS) [RTL76] playsimportant role on interval graphs [HM91,
C0S98, HMPV97]. The order Lex-BFS visits the vertices of ithfgut graph can be seen as the output
of Lex-BFS: a Lex-BFS ordering. For example in [COS98], 4 spgof particular Lex-BFS are used to
compute a characteristic ordering of interval graphs (t#tfesweep starts on the last visited vertex of the
previous sweep). One can wonder if Lex-BFS can be used to utengPs-indifference ordering. As
illustrated by the graph of figure 4, the answer is no.

a d

a d’

Fig. 3: A graph such that no Lex-BFS ordering i®gindifference ordering

On the above graph, no Lex-BFS ordering iBsaindifference ordering. So there is no hope for some
special Lex-BFS as those defined in [COS98]. We can rematkthismgraph contains module$g,a’'}
and{d,d’}). It seems that restricted to prinf-indifference graphs, 2 sweeps of Lex-BFS computes a
Ps;-indifference ordering (it can be a simplification of the ggated algorithm). But up to now, we do not
know how to avoid the modular decomposition.
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The presented algorithm relies on some properties of prinaplgs and also on sonf& relations.
Can these structural results be adapted to other classesfetcly orderable graphs like for example
Ps-comparability graphss-simplicial graphs ... in order to design efficient recogmnitalgorithms ?

We thank the referees for their fruitful remarks on the preéaton of the result.
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