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Arnold Knopfmacher1† and Toufik Mansour2

1The John Knopfmacher Centre for Applicable Analysis and Number Theory, Department of Mathematics, University
of the Witwatersrand, P. O. Wits, 2050, Johannesburg, South Africa
arnold.knopfmacher@wits.ac.za
2Department of Mathematics, University of Haifa, 31905 Haifa, Israel
toufik@math.haifa.ac.il

A composition σ = a1a2 . . . am of n is an ordered collection of positive integers whose sum is n. An element ai in
σ is a strong (weak) record if ai > aj (ai ≥ aj) for all j = 1, 2, . . . , i− 1. Furthermore, the position of this record
is i. We derive generating functions for the total number of strong (weak) records in all compositions of n, as well as
for the sum of the positions of the records in all compositions of n, where the parts ai belong to a fixed subset A of
the natural numbers. In particular when A = N, we find the asymptotic mean values for the number, and for the sum
of positions, of records in compositions of n.
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Introduction
Let π = a1a2 · · · an be any permutation of length n, an element ai in π is a record if ai > aj for all
j = 1, 2, . . . , i− 1. Furthermore, the position of this record is i. The number of records was first studied
by Rényi [13], compare also [7]. A survey of results on this topic can be found in [2]. In the literature
records are also referred to as a left–to–right maxima or outstanding elements. In particular the study of
records has applications to observations of extreme weather problems, test of randomness, determination
of minimal failure, and stresses of electronic components. The recent paper by Kortchemski [8] defines
a new statistic srec, where srec(π) is the sum over the positions of all records in π. For instance, the
permutation π = 451632 has 3 records 4, 5, 6 and srec(π) = 1 + 2 + 4 = 7.

A word over an alphabet A, a set of positive integers, is defined as any ordered sequence of possibly
repeated elements of A. Recently, Prodinger [12] studied the statistic srec for words over the alphabet
N = {1, 2, 3, . . .}, equipped with geometric probabilities p, pq, pq2, . . ., with p + q = 1. In the case of
words there two versions: A strong record in a word a = a1 · · · an is an element ai such that ai > aj
for all j = 1, 2, . . . , i − 1 (that is, must be strictly larger than elements to the left) and weak record is
an element ai ≥ aj for all j = 1, 2, . . . , i − 1 (must be only larger or equal to elements to the left).
Furthermore, the position i is called the position of the strong record (weak record). We denote the sum of
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the positions of all strong (respectively, weak) records in a word a by ssrec (respectively, wsrec). In [12],
Prodinger found the expected value of the sum of the positions of strong records, in random geometrically
distributed words of length n. Previously, Prodinger [10] also studied the number of strong and weak
records, in samples of geometrically distributed random variables. He also studied further properties of
such records in papers such as [11] and references therein.

A composition σ = σ1σ2 . . . σm of n is an ordered collection of positive integers whose sum is n. Thus
a composition σ of n with parts in A is a restricted word over the alphabet A. We denote the set of all
compositions of n with m parts in A by CA(n,m). It is well known that the number of compositions of
n ≥ 1 with m parts in N is given by

(
n−1
m−1

)
and that the total number of compositions of n is 2n−1.

In this paper we find generating functions for these parameters, number of strong records, number
of weak records, sum of positions of strong records, and sum positions of weak records in a random
composition of n with parts in A = [d] := {1, 2, . . . , d} or A = N. We also study the mean values of
these parameters as n → ∞ in the case A = N by means of rational function asymptotics and Mellin
transforms. Details of some of the lengthier proofs will be left to the full version of the paper. We
remark that in [5], an asymptotic correspondence is established between compositions of n and samples
of geometric variable of parameter p = 1/2 and length n/2. By exploiting this correspondence, and
using the already established results of Prodinger for samples of geometric random variables, alternative
derivations of our asymptotic results can be obtained.

1 Number strong records and weak records
Let NSRA(z, y, q) and NWRA(z, y, q) be the generating function for the number of compositions of n
with m parts in A according to the number of strong and weak records, respectively, that is,

NSRA(z, y, q) =
∑
n,m≥0

∑
σ∈CA(n,m)

znymqnsr(σ),

NWRA(z, y, q) =
∑
n,m≥0

∑
σ∈CA(n,m)

znymqnwr(σ),

where nsr(σ) and nwr(σ) is the number of strong and weak records in composition σ, respectively. In
this section we find an explicit formulas for those generating functions.

Theorem 1.1 The generating function NSR[d](z, y, q) is given by

NSR[d](z, y, q) =
d∏
j=1

(
1 +

zjyq

1− y
∑j
i=1 z

i

)
.

Proof: We denote the number of occurrences of the part d in the composition σ ∈ C[d](n,m) by `(σ).
Now let us write equation for the generating function NSR[d](z, y, q). The contribution of the case
`(σ) = 0 is given by NSR[d−1](z, y, q). Assume `(σ) > 0, then σ can be decomposed as σ′dσ′′, where
σ′ is a composition with parts in [d− 1] and σ′′ is a composition with parts in [d]. Thus, the contribution
of the case `(σ) > 0 equals zdyqNSR[d−1](z, y, q)NSR[d](z, y, 1). Therefore,

NSR[d](z, y, q) = NSR[d−1](z, y, q) + zdyqNSR[d−1](z, y, q)NSR[d](z, y, 1).
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For q = 1 and by induction we have that

NSR[d](z, y, 1) =
1

1− y
∑d
j=1 z

j
.

Hence,

NSR[d](z, y, q) =
d∏
j=1

(
1 +

zjyq

1− y
∑j
i=1 z

i

)
,

as claimed. 2 Theorem 1.1 with q = 1 gives that the generating function for the number of compositions

of n with m parts in [d] is given by NSR[d](z, y, 1) = 1
1−y

Pd
i=1 z

j , see for example [4].
Also from Theorem 1.1 we get that

∂

∂q
NSR[d](z, y, 1) =

d∏
j=1

(
1 +

zjy

1− y
∑j
i=1 z

i

) d∑
j=1

zjy

1− y
∑j−1
i=1 z

i


=

1

1− y
∑d
i=1 z

i

 d∑
j=1

zjy

1− y
∑j−1
i=1 z

i

 .

Hence, the generating function for the number strong records in all compositions of n with parts in N is
given by

f(z) :=
1

1−
∑
i≥1 z

i

∑
j≥1

zj

1−
∑j−1
i=1 z

i
=

1− z
1− 2z

∑
j≥1

zj

1−
∑j−1
i=1 z

i
.

Theorem 1.2 The average number Esn of strong left-to-right maxima in the context of compositions of n
has the asymptotic expansion

Esn =
1
2

[
log2 n−

1
2

+
γ

L
− δ (log2 n)

]
+ o(1).

Here and in the rest of the paper, L = log 2; γ is Euler’s constant and δ(x) is a periodic function of
period 1 and mean 0 and small amplitude, which is given by the Fourier series

δ(x) =
1
L

∑
k 6=0

Γ (−χk) e2kπix.

The complex numbers χk are given by χk = 2kπi/L.

Proof: Firstly by summing the finite geometric series and using partial fraction decomposition,

f(z) =
z − z2

1− 2z
+ (1− z)2

∑
k≥2

[
1

1− 2z
− 1

1− 2z + zk

]
.
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Hence the average number Esn of strong left-to-right maxima in compositions of n satisfies

Esn =
1

2n−1
[zn]f(z) =

1
2

+
1

2n−1
[zn](1− z)2

n∑
k=2

[
1

1− 2z
− 1

1− 2z + zk

]
.

Let ρk be the smallest positive root of the denominator polynomial 1 − 2z + zk that lies between 1/2
and 1. An application of the principle of the argument or Rouche’s Theorem shows such a root to exist
with all other roots of modulus greater than 3/4. By dominant pole analysis,

qn,k := [zn]
(1− z)2

1− 2z + zk
= ckρ

−n
k +O

((
4
3

)n)
with ck =

(1− ρk)2

ρk(2− kρk−1
k )

,

for large n but fixed k. The denominator polynomial 1 − 2z + zk behaves like a perturbation of 1 − 2z
near z = 1/2. By ”bootstrapping” we find that

ρk =
1
2

+ 2−k−1 +O(k2−2k)

and hence ck = 1
4 + O(k2−k). The use of this approximation can be justified for a wide range of values

of k and n (see for example [3] or [6]).
Let us now restrict our attention to those k for which n−3 ≤ 2−k ≤ logn

n . For such k we can show that

qn,k = 2n−2

(
exp

(
− n

2k
)

+O

(
log3 n

n

))
. (1)

Turning next to smaller values of k ≥ 2, that is, k such that 2−k > logn
n , we find that now the coefficients

qn,k are relatively small, since for such k, qn,k = O( 2n

n ) as n → ∞. Finally we must consider larger
values of k ≤ n that is, k for which n−3 > 2−k, or equivalently, k ≥ 3 log2 n. In this range we find that

qn,k = 2n−2

(
exp

(
− n

2k
)

+O

(
1
n2

))
. (2)

Then combining the estimates for qn,k over the range 2 ≤ k ≤ n above,

Esn −
1
2

=
1
2

n∑
k=2

(
1− qn,k

2n−2

)
∼ 1

2

∑
k≥0

(
1− exp

(
− n

2k
))
− 1,

as the additional tail sum
∑
k>n

(
1− exp

(
− n

2k

))
is exponentially small. It remains to estimate

h(n) :=
∑
k≥0

(
1− exp

(
− n

2k
))

,

as n→∞. For this we use Mellin transforms and find (see [1, Appendix B.7, equation (48)])

h(n) = log2 n+
1
2

+
γ

L
− δ (log2 n) +O(1/n). (3)
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The asymptotic estimate for Esn follows. 2

Remarks Asymptotically we find that the expected number of strict left-to-right maxima is half the ex-
pected size of the largest part in a random composition of n (see [9]). Also, as mentioned in the intro-
duction, the asymptotic correspondence established in [5] would allow one to use the results of Prodinger
[10] in the case p = 1/2, to give an alternative proof of Theorem 1.2.

A similar approach to that of Theorem 1.3 leads to

Theorem 1.3 The generating function NWR[d](z, y, q) is given by

NWR[d](z, y, q) =
d∏
j=1

1

1− zjyq

1−y
Pj−1

i=1 z
i

.

The generating function for the total number of weak records in compositions over N is then

g(z) :=
∂NWR[N](z, 1, q)

∂q

∣∣∣∣
q=1

=
1− z
1− 2z

∑
k≥1

zk

1−
∑k
i=1 z

i

=
(1− z)2

z

∑
k≥2

[
1

1− 2z
− 1

1− 2z + zk

]
.

Theorem 1.4 The average number Ewn of weak left-to-right maxima in the context of compositions of n
has the asymptotic expansion

Ewn = log2 n−
3
2

+
γ

L
− δ (log2 n) + o(1).

Proof: The average number Ewn of weak left-to-right maxima in compositions of n satisfies

Ewn =
1

2n−1
[zn]g(z) =

1
2n−1

[zn+1](1− z)2
n∑
k=2

[
1

1− 2z
− 1

1− 2z + zk

]
.

Then using the qn,k notation in the proof of Theorem 1.2

Ewn =
n+1∑
k=2

(
1− qn+1,k

2n−1

)
= 2Esn+1 − 1.

The asymptotic estimate then follows from that of Theorem 1.2. 2

2 The statistics ssrec and wsrec on the set of compositions
Let NSRA(z, y, q) and NWRA(z, y, q) be the generating function for the number of compositions of n
with m parts in A according to the statistic ssrec and wsrec, respectively, that is,

PSRA(z, y, q) =
∑
n,m≥0

∑
σ∈CA(n,m)

znymqssrec(σ),

PWRA(z, y, q) =
∑
n,m≥0

∑
σ∈CA(n,m)

znymqwsrec(σ).
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Theorem 2.1 The generating function PSR[d](z, y, q) is given by

1 +
d∑
k=1

qk

 ∑
d≥j1>j2>···>jk≥1

k∏
i=1

zjiyqi−1

1− yqi−1
∑ji
`=1 z

`

 .

Proof: We denote the number of occurrences of the part d in the composition σ ∈ C[d](n,m) by `(σ).
Decomposing according to `(σ) = 0 and `(σ) > 0 leads to

PSR[d](z, y, q) = PSR[d−1](z, y, q) + zdyqPSR[d−1](z, qy, q)PSR[d](z, y, 1). (4)

For q = 1, PSR[d](z, y, 1) = 1
1−y

Pd
j=1 z

j . Hence,

PSR[d](z, y, q) = PSR[d−1](z, y, q) +
zdyq

1− y
∑d
i=1 z

i
PSR[d−1](z, qy, q)

= PSR[d−2](z, y, q) +
d∑

j=d−1

zjyq

1− y
∑j
i=1 z

i
PSR[j−1](z, qy, q)

...

= 1 +
d∑
j=1

zjyq

1− y
∑j
i=1 z

i
PSR[j−1](z, qy, q).

Iterating the above recurrence relation d times we get the desired result. 2 From this we derive

Corollary 2.2 The generating function vd(z) = ∂
∂qPSR[d](z, 1, q) |q=1 is given by

z

1−
∑d
j=1 z

j

d−1∑
j=0

zj(
1−

∑j
i=1 z

i
)2 .

The above corollary gives that the generating function for the number of compositions of n according
to the total of the statistic ssrec is given by

v(z) :=
z(1− z)
1− 2z

∑
j≥0

zj(
1−

∑j
i=1 z

i
)2 .

The rather lengthy proof of the asymptotic behaviour of the coefficients of v(z) will be left for the
journal version of the paper. We obtain

Theorem 2.3 The average sum of the positions of the strong records esn in compositions of n has the
asymptotic expansion

esn =
n

4 log 2
(
1 + δ2 (log2 n)

)
+ o(n),
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where δ2(x) is a periodic function of period 1, mean zero and small amplitude, which is given by the
Fourier series

δ2(x) =
∑
k 6=0

χkΓ (−1− χk) e2kπix.

With reference again to [5], Theorem 2.3 is seen to correspond to the p = 1/2 case of the results of
Prodinger [12].

The corresponding results for PWR[d](z, y, q) are as follows.

Theorem 2.4 The generating function PWR[d](z, y, q) satisfies the following recurrence relation

PWR[d](z, y, q) = PWR[d−1](z, y, q) +
zdyq

1− y
∑d−1
i=1 z

i
PWR[d](z, qy, q).

Corollary 2.5 The generating function wd(z) = ∂
∂qPWR[d](z, 1, q) |q=1 is given by

wd(z) =
1

1−
∑d
j=1 z

j

∑
j≥1

zj(
1−

∑j
i=1 z

i
)2 .

The above corollary gives that the generating function for the number of compositions of n according
to the total of the statistic swrec is given by

w(z) :=
1− z
1− 2z

∑
j≥1

zj(
1−

∑j
i=1 z

i
)2 .

Theorem 2.6 The average sum of the positions of the weak records ewn in compositions of n has the
asymptotic expansion

ewn =
n

2 log 2
(
1 + δ2 (log2 n)

)
+ o(n),

where δ2(x) is the same periodic function that occured in Theorem 2.3.

Proof: The generating functions v(z) and w(z) are related as follows,

v(z) =
z(1− z)
1− 2z

+ zw(z).

From this we see that
[zn+1]v(z) = 2n−1 + [zn]w(z).

So that ewn = 2esn+1 − 1. The result then follows from Theorem 2.3. 2

Now, our aim is to present a combinatorial explanation for the fact that the number (sum) of the po-
sitions of weak records in all compositions of n plus 2n−1 equals the number (sum) of the positions of
strong records in all compositions of n+1, for n ≥ 1. In order to do that we need the following notations.
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Let swn,r (respectively, ssn,r) be the sum of r-th power of the positions of weak (respectively, strong)
records in all the compositions of n, namely,

swn,r =
∑
σ∈Cn

∑
σi is a weak record of σ

ir,

ssn,r =
∑
σ∈Cn

∑
σi is a strong record of σ

ir,

sw′n,r =
∑

σ∈Cn(A)

∑
σi is a weak record of σ,i>1

ir,

ss′n,r =
∑

σ∈Cn(A)

∑
σi is a strong record of σ,i>1

ir,

where Cn = ∪nm=1Cn,m is the set of all compositions of n. From the definitions, each first letter is a
weak (strong) record. Therefore,

swn,r = |Cn|+ sw′n,r and ssn,r = |Cn|+ ss′n,r, (5)

where |Cn| = 2n−1 is the number of compositions of n.

Theorem 2.7 For all n ≥ 1,
ssn+1,r = swn,r + 2n−1.

Proof: It is not hard to see that σ1 · · ·σm is a composition of n and σi, i > 1, is a weak record if and only
if σ1 · · ·σi−1(σi + 1)σi+1 · · ·σm is a composition of n and σi + 1, i > 1, is a strong record. Therefore,
the multiset of all positions i, i > 1, of the weak records in all compositions of n is the same multiset as
all positions i, i > 1, of the strong records in all compositions on n+ 1. In other words, ss′n+1,r = sw′n,r
for all n and r.

Hence, by (5) we have

ssn+1,r = 2n + ss′n+1,r = 2n + sw′n,r = 2n−1 + 2n−1 + sw′n,r = 2n−1 + swn,r,

as requested. 2
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