Discrete Mathematics and Theoretical Computer Scieh@900, 011-030

Unification of Higher-order Patterns modulo
Simple Syntactic Equational Theories

Alexandre Boudét

LRI, Bat. 490, Université Paris-Sud, 91405 Orsay Cedexnéea
email : boudet@Iri.fr

received December 6, 199@vised January 11, 200@ccepted March 15, 2000

We present an algorithm for unification of higher-order @ats modulo simplesyntactic equational theorieas
defined by Kirchner [14]. The algorithm by Miller [17] for path unification, refined by Nipkow [18] is first modified
in order to behave as a first-order unification algorithm. nftree mutation rulefor syntactic theories of Kirchner
[13, 14] is adapted to patteErunification. If the syntactic algorithm for a theoByterminates in the first-order case,
then our algorithm will also terminate for patteerunification. The result is a DAG-solved form plus some eaureti
of the formAx.F (X) = AX.F(X™), wherexT is a permutation ok. When all function symbols aecomposabléhese
latter equations can be discarded, otherwise the comgtibilsuch equations with the solved form remains open.

Keywords: Unification, Higher-order unification

1 Introduction

Unification is a crucial mechanism in logic programming antbeated theorem proving. Unification
modulo an equational theoEyhas been introduced by Plotkin [20] and has become an areaedirch of
its own. With the emergence of higher-order logic prograngmaind rewrite systems [17, 18, 16], the issue
of higher-order unification is of growing interest. Higheder unification is known to be undecidable
[10, 8], but Miller has shown that the unification problem igidable forpatterns which are terms of
the simply-typed lambda-calculus in which the arguments fyea variable are always distinct bound
variable$. Patterns allow to define higher-order functions usinggpatmatching, as well as interesting
higher-order rewrite systems. The aim of the present work a&pply the methods initiated by Kirchner
for first-orderE-unification to the case of patteErunification. This requires to adapt theutationrule

to the case of patterns.

In practice, patterns are very similar to first-order termsause the condition that the arguments of
the free variables are pairwise distinct bound variablekidisrto have free variables “in the middle” of
the terms. The free variables (with their restricted kindrgiuanents) arat the leave®f a pattern. The
syntactic theories have been defined by Kirchner [13, 14]@setoollapse-free equational theories which

TThis research was supported in part by the EWG CCL, and the “G®fragrammation du CNRS”.
* Actually, even the decidability of higher-order matchingi#l open beyond order 4 [10, 7, 19].

1365-80500) 2000 Maison de I'Informatique et des Mathématiques Diesr@MIMD), Paris, France

12 Alexandre Boudet

admit a finite presentation such that every equational #raaan be proved by using at most one axiom
at the root. This property provides us with complete (noredeinistic) top-down strategies for searching
proofs or unifiers. One may guess which axiom applies at theawndtthen pursue the search in the
subterms.

A difficulty with pattern unification is that one needs to irduze new variables. For instance, the
most general unifier akxyzF (x,y) = AxyzG(z x), where the free variables aFeandG is 0 = {F —
Axy.H(x),G — Axy.H(y)}, whereH is a new free variable. We will see that not only the solving of
such flexible-flexible equation&€., having a free variable at the top on both sides) requirettodiuce
new variables. On the other hand, new variables are not ndedédst-order unification. Our ultimate
goal is to take advantage of the resemblance of patterns wéthofider terms for lifting the methods
that have been developed for two decades for first-dedenification. In the present paper we want to
present an algorithm for pattern unification modulo syrntattteories which behaves exactly as in the
first-order case, hence yielding in particular a termirgaifigorithm whenever the first-order algorithm
terminates. For this, we will introduce a preliminary nonetdgtinistic step in which grojectionsuch
as the above substitutiamis chosen. After this step, a first goal is achieved with an élgorwhich
does not introduce further new variables and whose (noar&itules behave as in first-order unification
(in a sense that will be made precise later). Then, we will adapthikier'smutationrule to the case
of pattern unification. The flexible-flexible equations wittetsame head variable on both sides (like
Axy.F(x,y) = Axy.F (y,x)) arefrozen Such equations are always solvable (by a projection), budaveot
know how to test their compatibility with the rest of the preivi in general.We will give an interpretation
I of pattern unification problems in terms of first-order urgfion problems such that if a rule applies to
P yeldingQ, the corresponding rule of the first-order algorithm will pp 7(P) yielding 71(Q). Finally,
we will show how to handle the equations likgy.F (x,y) = Axy.F (y,x) in the case where all the function
symbols arelecomposable

2 Preliminaries

We assume the reader is familiar with simply-typed lambdeattas, and equational unification. Some
background is available ie.g.[9, 12] for lambda-calculus arig-unification.

2.1 Patterns and equational theories

Given a setB of base typeghe set7 of all typesis the closure of8 under the (right-associative) function
space constructes. Thesimply-typed lambda-ternase generated from a g4 V; of typed variables
and a sebJ;c s C; of typed constantasing the following construction rules:

X€eVp ceC s:T—=>T t:1 X:1T s: 7
X:T c:T (st) : ¢ AXS:T—=T

The order of a base type is 1, and the order of an arrowtypet’ is the maximum of the order af
plus 1 and the order af. The order of a term is the order if its type.

We shall use the following notationax; - - - AXn.swill be written AXg.s, or evemx.sif nis not relevant.
If in a same expressior appears several times it denotes the same sequence oflesridihe curly-
bracketed expressiofX,} denotes the (multi) sefxs,...,x,}. In addition, we will use the notation
t(Ug,...,Un) Ort(ty) for (---(t ug)---un). The free (resp. bound) variables of a terrare denoted by
FV(t) (resp. BY(t)). Thepositionsof a termt are words ovef 0,1}, A is the empty word (denoting

Unification of Higher-order Patterns modulo Simple Syntactio&épnal Theories 13

the root position) and|, is the subterm of at positionp. The notatiort[u], stands for a ternh with a
subtermu at positionp, t[us, . .., Up] for a termt having subtermss, ..., un.

Unless otherwise stated, we assume that the terms &rdang 3-normal form [9], the3 andn rules
being respectively oriented as follows:

(AXM)N —g M{x+ N} (only the free occurrences gfare replaced bil), F —n AXq.F (Xq) if the type
of Fisa; — ... = ap — a, anda is a base type. In this cade,is said to havarity n.
Then-long 3-normal form of a term is denoted by ig

A substitutiono is a mapping from a finite set of variables to terms of the sype, twritteno = {x1 —
t1,. .., Xn tn}.

Miller [17] has defined thepatternsas those terms of the simply-typed lambda-calculus in which
the arguments of a free variables anegquivalent to) pairwise distinct bound variables. Foransg,
Mxyz f(H(x,Y),H(x,2)) andAx.F (Azx(2))8 are patterns whilaxy.G(x, X, y), Axy.H (x, f (y)) andAxy.H (F (x),y)
are not patterns. Patterns have useful applications irehigtder logic programming [17], pattern rewrite
systems [18, 16, 4], or definitions of functions by cases itfional programming languages.

It is known that higher-order unification and even secondepuaiification are undecidable [10, 8]. On
the contrary, patterns have decidable and unitary unifioati

Theorem 1 ([17]) Pattern unification is decidable, and there exists an aldyoni that computes a most
general unifier of any solvable pattern unification problem.

The equational theories we consider here are the usual fitst-equational theories: given a gebf
(unordered) first-order axioms built over a signatdrethere is arelementary equational proofss g t if
there exist an axiorh=r € E, a positionp of s and a substitutiod such that|, = 10 andt = s[rf]. If
p = A, we call this proof a\-step Theequational theory=g generated by Es the reflexive transitive
closure&e of .

The following is a key theorem due to Tannen. It allows us tarietstur attention to=g for deciding
n-B-E-equivalence of terms in-long, 3-normal form :

Theorem 2 ([5]) Let E be an equational theory and s and t two terms. Thepgg t <= siE:E t ig.
2.2 Unification problems
Definition 1 Unification problems are inductively defined as follows:

e T (the trivial unification problem) and. (the unsolvable unification problem) are unification prob-
lems.

e An equation s=t where s andt are patterns of the same type is a unificationi@nob

e If P and Q are unification problems and X is a variable, then®, PV Q and(3X) P are unification
problems.

Any substitution is a solution of, L has no solutions and the is a solution of s=t if so =g to.
The solutions of RQ (resp. Pv Q) are the intersection (resp. the union) of the solutionB ahd Q. A
substitutiono is a solution of(3X) P if there exists a solution of P identical topexcept maybe on X.

§ We will always write such a pattern in thg-equivalent) formAx.F (x), where the argument of the free varialflds indeeda
bound variable.

14 Alexandre Boudet

As usual, we restrict our attention to the problems of the form
(EIY) SS=t1 A - A=t

the only disjunctions being implicitely introduced by themdeterministic rules.

Terminology In the following,free variabledenotes an occurrence of a variable which isxibbund and
bound variablean occurrence of a variable whichhsbound. To specify the status of a free variable with
respect to existential quantifications, we will explicitelyiterexistentially quantifiedr not existentially
quantified In the sequel, upper-cabe G, X,... will denote free variables, b, f, g,... constants, and v,

Z, X1,... bound variables.

Without loss of generality, we assume that the left-handssiohel right-hand sides of the equations have
the same prefix ok-bindings. This is made possible because the two terms badve ¢of the same type,
and by usingx-conversion if necessary. In other terms, we will assume Heaétuations are of the form
AX.s= AX.t wheres andt do not have an abstraction at the top.

Definition 2 An equation isjuasi-solvedf it is of the formAX.F (Yn) = AXc.s andF V(s) N {X} C {¥n}
andF¢ FV(s).

Rather than computing substitutions, we will compute DAG-adlforms, from which it is trivial to
extract solved form which represents its own mgu.

Lemma 1 Ifthe equation\Xi.F (V) = AXk.s is quasi-solved, then itis has the same solutiongas$ (Yn) =
AVn.s and (byn-equivalence) as = Ayq.s. A most general unifier of such an equatiofifs— Ayn.s}.

For the sake of readability, we will write a quasi-solved equain the formF = Ayy.s instead of
AXi-F (Yn) = AX.sin the following definition and in the ruldglerge andCheck* of the next section.

Definition 3 A DAG-solved formis a unification problem of the form
(3Y1...Ym) Xi=S1 A - AXn=$%

where forl <i <n, X and s have the same type, andX X fori # jand X ¢ F V/(s;) fori < j.
A solved formis a unification problem of the form

(3Y1...Ym) Xi=S1 A+ AXn=%

where forl <i < n, X and s have the same type; & not existentially quantified, and Kas exactly one
occurrence.

Unification of Higher-order Patterns modulo Simple Syntactio&épnal Theories 15

A solved form is obtained from a DAG-solved form by applyind@sg as possible the rules

Quasi-solved
A.F(Yn) =AXSAP = F=AWrsAP

Replacement
F=A¥nSAP = F=AVn.S A P{F — AVyh.s}
if F has a free occurrence ih

EQE
FF) F=tAP =P
if F has no free occurrence ih

2.3 Syntactic equational theories

Claude Kirchner [13] has defined tgntactic theoriesis those collapse-free equational theories which
admit a finite presentation such that every equational pranfoe performed by applying at most once an
axiom at the root. Such a property provides complete top-divategies for equational proofs or unifica-
tion. At first, the unification community was not aware of théseence of many syntactic theories besides
commutativity and its variants. Kirchner and Klay noticecttihés enough for a theorfg to be syntactic
that every equation of the forrf(xy, ..., %)) = 9(y1,---,Ym) has a finite complete set &-unifiersZ¢ g
[15]. The permutative theories like commutativity, or mgemerally the theories presented by axioms of
the formf(xq,...,%a) = f(Xya),-- -, Xnn)) Wherertis a permutation ofl, ..., n) are syntactic, and the al-
goritm of figure 1 terminates for such theories. The themfesssociativity, associativity-commutativity
left-distributivity are syntactic, but the algorithm doest terminate in general. Arnborg and Tidén give
a criterion which allows to avoid non-termination in the caskefi-distributivity by detecting unsolvable
problems [24]. Boudet and Contejean give a criterion fomprg the search space and discarding some
non-minimal solutions which ensures the termination whilesprving the completeness in the case of
associativity-commutativity [2].

Definition 4 An equational theory isyntacticif it possesses a finitesolvent presentatida. A set E of
equations is aesolvent presentatiaf every E-equality proof can be performed using the axioms of E
with at most oné\-step. E g is the set of the axioms of E of the forrfsf, ..., s,) = g(t1,.. . ,tm).

In the following, we assume that the set of first-order axi@his a resolvent presentation. In addition,
we require thaE-is asimpletheory, that is a theory containing no equalities of the ferae u whereu
is a strict subterm o.

Figure 1 gives a set of rules for first-order unification madsimple syntactic theories. The reader is
referred toe.g.[13, 14, 12, 2] for some background on syntactic theories.

3 Free pattern unification revisited

In this section, we propose a modification of Miller’s algbnit [17], refined by Nipkow [18] for pattern
unification. We introduce a preliminary non-deterministiep in which we choose those arguments of
the free variables which will effectively participate in th@wion, and those that will be eliminated by a
projection. After this step, we may assume that the value aviidable by a solutiow will effectively

16

Alexandre Boudet

Trivial
s=sAP =P

Merge
X=SAX=t = X=SAs=t
if xe X ands,t ¢ X

Var-Rep (Coalesce)
(Fz,...,z0) X=yAP = (37,...,z7) xX=yY A P{x—y}
if X,y € V(P)

Mutate
f(s,.-.,5) =9ty tm)

= (EVV(f(']_,,'n) = g(rl,---,rm))) /\lﬁiSns = |i/\1§j§mtj =Tj
wheref(l,...,In) = 9(r1,...,rm) € Ef g

Check*

X1=t1[X2]p1 A X2=t2[X3]p2 A A Xp =tn[X1]pn = 1
if somep; #A\

Fig. 1: A set of rules for unification modulo simple syntactic thegri

Unification of Higher-order Patterns modulo Simple Syntactio&épnal Theories 17

depend on each of its arguments, forbidding any furtherggotmn. The price to pay is an exponential
blowup in the complexity, and the loss of minimality of the@ilighm. On the other hand, the complexity
of equational unification algorithms is already at leastomgntial for most of the theories of interest. The
advantage of this approach is that the simplification ruéaslme modified in order to avoid introducing
new variables which are needed precisely for possible piojez The resulting algorithm, after the
preliminary non-deterministic step mimics closely a fiostler unification algorithm. There is no need
then for a new termination proof, and the algorithm will exteas in the first-order case to deal with
syntactic equational theories.

In this section, the terms we consider are built over a setpddyariables and a st of typedfree
constantsthat is constants which are not constrained by any equétioeary. We give an example to
show a crucial difference of pattern unification with firstter unification.

Example 1 Consider the equation
AXaXoXa.F (X1,%2) = AXaxoXz.a(G(x3),b(x2,X3), H (X1), X1, X2, X3])

Nipkow's algorithm transforms this equation into

(E|L1 v L4) F= >\X1X2.a(L1(X1,X2), ceey L4(X1,X2))
A)\X1X2X3.L1(X1,X2) = >\X1X2X3.G(X3)
A MXXoxa.La(X1,X2) = AxpXexa.b(X2, X3)
A AXaXoxa.La(Xg,X%2) = AxgXoxz.H (xq1)
A AMXaXoXz.La(X1,X2) = AX1X2X3.S[X1, X2, X3]

The first equation will be propagated in the rest of the probhl&he second equation will be solvable
by mapping both L and G onto a new 0-ary variable. The third equation is notable since kL does not
have % as one of its arguments. The fourth equation has sol{tign— Axy.H(x)}, and the last equation
will be solvable or not, depending on the context s.

The above example shows that when the head of the left-handfsadeequation, is a free variable, one
cannot say whether this equation is solvable even if the-tiginid side does not contain the left-hand side,
without traversing it all. In first-order unification, an edjoa of the formx = sis solved ifx does not
occur ins. Note that even if the equation is solvable, one magdnew variables to express the solution.

Figure 2 gives a non-deterministic algorithm for patterifigation. It is two-fold: in a first step, a
projection is choosen nondeterministically which removase of the bound variables under each free
variable. In a second step, some rules are applied as longsatbfe which recall some well-known rules
for first-order unification (see.g. [12]). It has to be noticed that after the first step, no newaldes
are added. Our algorithm will fail when encountering an equelile that of the above example after
the projection step because the sets of bound variablesrotgin both sides of the equation are not the
same.

Example 2 Consider the equation

AxyzF(y,2) = AxyzG(x,2,y)

18

Alexandre Boudet

1. APPLY THE FOLLOWING RULE FOR EVERY FREE VARIABLE- OF P:

Project
P = F=NgF'(y1,---,¥%) A P{F = AGF (y1,...,¥) }
whereF has arityn andF’ is a new variable anélys, ..., y} C {X1,...,Xn}

2. APPLY AS LONG AS POSSIBLE THE RULES

Fail
M. S=A%t AP = L
if FY(s)NXk # FV(t) "X

FF=
MNeF(Yn) =AF@Z) AP = L
if Yn # Zn.

Trivial
s=sAP =P

Decompose
AXe.a(st,...,5) = AX.aty,...,th) AP

= A5 =AXth A - A AXKS = A%t A P
if ae FCU{X}

FF+# (Coalesce)
AXCF (V) =AX.G(Z3) AP = AVn.F(Vh) = AVn.G(Z) A P{F — AVn.G(Z0)}
if F # G andF,G € ¥ V(P) andy, is a permutation of;

Merge
F=sAF=tAP = F=sAs=tAP
if [sf <[t]

Clash
AX-a(s,---,%) = A .b(ty,...,tm) AP = L
if a,be FCU{X} anda#Db

Check’
Fl:Sl[Fz()] A FZZSQ[F3()] Ao A Fn:Sn[Fl("')] AP = 1
if ones|[-] is not the empty context

Fig. 2: Non-deterministic algorithm for pattern unification

Unification of Higher-order Patterns modulo Simple Syntactio&épnal Theories 19

The values of F and G by a solutianmust depend on the same arguments and Nipkow’s algorithm will
return the solution

{F = AyzH(y,2),G— AxyzH(zy)}

Our algorithm will make, (among others) the choice to keep aldarguments of F, but only the last
two arguments of G. The problem obtained after the first prajaditep will be

F =AxyF'(x,y) A G=AxyzG(y,2) A AxyzF'(y,z) = AxyzG'(zy)
The third equation is then transformed into
F'=AyzG'(zy)

yielding a DAG solved form. It has to be noticed that no newalde is introduced in this latter transfor-
mation.

If a bad choice is made, the algorithm will fail: assume thattiétand G keep all their arguments, the
problem obtained after the projection step will be

F =My F (xy) A G=AxyzG'(x,y,2) A AxyzF'(y,2) = AxyzG'(x,Z2y)

The above problem is obviously solvable, but we forbid dueseany further projection after the initial
step, hence no solution is computed here.

Finally, some choices may lead to solutions which are lessrgéttean the mgu. In our example this
happens when the preliminary projections make F and G depelycdortheir last argument. The DAG
solved form computed will be

F=AxyF'(y) A G=AxyzG'(2) A F' =Ay.G(y)
which is strictly less general than the mgu.

Definition 5 A constant-preserving substitutitaa substitutioro such that for all Fe Dom(o) if Fo igz
MX.s then every variable & has a free occurrence in s. grojectionis a substitution of the form

0 = {F = AX&.F'(¥m) | F € Dom(0), {ym} subset of X}}

The correctness of the failure rules is given by the followstrgightforward lemmas:

Lemma 2 For every substitutiorm, there exist a projectiom and a constant-preserving substitutin
such thai 3= (18) 33

Lemma 3 The equatioAX.s = AxX.t where{X} N F V(s) # {X} N ¥ V(t) has no constant-preserving so-
lution. The equatioRX.F (y) = AX.F(Z), wherey andz are not the same sequence, has no constant-
preserving solution.

Proposition 1 The non-deterministic algorithm of figure 2 is sound and cotegdter pattern unification.
The irreducible problems are DAG-solved forms.

20 Alexandre Boudet

Proof: The lemma 2 shows that it is correct to first guess a projectidrtiaen restrict one’s attention to
constant-preserving substitutions. The lemma 3 shows ltledfailure ruledrail andFF= are complete
with respect to constant-preserving substitutions. ThesiDecomposeClash andCheck* are already
used by Nipkow. The ruleéF# (Coalescepreserves the sets of solutiodsk.F (Yn) = A%.G(Z), where

Z, is a permutation o, and{yn} C {X}, has the same solutions &%.F (Yn) = AV¥n.G(Z)), and byn-
equivalence, aB = A¥n.G(Z). Since=,g is a congruence; can be replaced byyn.G(z) in the rest of
the problem. The rule¥rivial andMerge are correct since-g is an equivalence. A case analysis shows
that if a problem is not in a DAG solved form, then some rule nagply. O

The termination of the algorithm will follow from the termitian of the first-order rules. This will be
shown in section 5.

4 Unification modulo syntactic theories

4.1 Mutation

In this section, we give mutationrule for pattern unification modukimpleequational theories. We first
introduce the notion afg-variant.

Definition 6 AnXg-variantof a first-order axiom k= r is |0 = ro whereo maps every variable Y o r
onto Y (Yn) where

1. ¥y is a subsequence &.
2. Y hastype; — --- = Th = Tif y1,...,y¥n have typesy,..., Tn and Y has type.

Example 3 Consider the first-order axiom XY =Y + X (C) (where X and Y have type shisit). A
71,22, z3-variant of C, where 2,73 are of typeNat is X'(z1,2) +Y'(z3) = Y'(z) + X'(z1,22), with X’
of typeNat — Nat — Nat andY of typeNat — Nat .

Themutationrule is the following:

Mutate
Ak f(s1,- -, %) = AK.9(ta, - - -, tm)

= AY(f(n) =9(Mm))) Ar<i<nAR-S = A li A1<jemA et = AXc.T
wheref(l,...,lIn) = 9(rs,...,rm) is anXc-variant of an equation d#¢ g

We give an example of the use of the rideitate.

Example 4 Let E be the theory of left-distributivity, presented by #x@m (V1 *V5) + (V1 % V3) = Vi *
(V2 +V3) (LD), and consider the equation

AXYZF(%,%,2) + F (x,2y) = AxyzG(x,y,2) x H(x,Y,2)

to be solved modulo E. Let us choose to apfigject with the projection{G — AxyzG'(x)}. Now, we
may restrict our attention to the constant-preserving sohsg of the problem

AxyzF (x,%,2) + F (x,2,y) = AxyzG'(x) xH(x,Y,2)

Unification of Higher-order Patterns modulo Simple Syntactio&épnal Theories 21

Let us applyMutate with the xyz-variant
(Vl(x) *VZ(XJ Y, Z)) + (V]_(X) *V3(X7 Y, Z)) = Vl(x) * (VZ(XJ Y, Z) +V3(X7 Y, Z))
of (LD). The resulting problem is
(IV1VaV3) AxyzF (X,Y,2) = AxyzVi(X) *Va(X,Y,2)
A AXyzF(X,2y) = AxyzVi(X) *V3(X,Y, 2)
A AxyzG'(x) = AxyzVi(X)
A AXyzH(x,Y,2) = AxyzVa(X,Y,2) % V3(X,Y, 2)

Merge applies to the first two equations, yielding the problem

(IViVaVs) AXYzF (x,y,2) = AxyzVi(X) *Va(X,Y, 2)
A AxyzVi(X) *Va(X,Y,2) = AxyzVi(X) *V3(X,Z,Y)
A AxyzG'(x) = AxyzVi(X)
A AxyzH(X,Y,2) = AxyzVa(X,Y,2) xV3(X,Y, 2)

Decomposeapplies to the second equation which is equivalent to

AXYZVi(X) = AXyzVi(X) A AXyzV2(X,Y,2) = AXyzV3(X,ZY)

The equatior\xyzVi(X) = AxyzVi(X) is removed byfrivial , and Coalesceapplies to the second. The
problem to be solved is now

(IV1VaV3) AXYZF (X,Y,2) = AxyzVi(X) *V3(X,ZY)
A AXYzZVa(X,Y,2) = AXyzV3(X,ZY)
A AxyzG'(x) = AxyzVi(x)
A AxyzH(X,Y,2) = AxyzV3(X,Z2Y) *V3(X, Y, 2)

EQE removes the useless existentially quantified variablg/Mlding

(3V1V3))\XyZ F (X7 Y, Z) =)\XyZV]_(X) * V3(X7 Z, y)
A AxyzG'(x) = AxyzVi(X)
A AxyzH(XY,2) = AXyzVa(X,2Y) *V3(X,Y,2)

The reader can now check that the substitution
{F = AxyzVi(x) %Va(x,2Y),G" — AxyzVi(x),H — AxyzV3(X,z Y) *V3(X,Y,2) }
is a constant-preserving solution of
AXYZF (X,¥,2) + F(X,2,y) = AX.G'(X) x H(X, Y, 2)
modulo the left-distributivity.

22 Alexandre Boudet

Lemma 4 Mutate preserves the sets of constant-preserving solutions.

Proof: The soundness is straightforward: a constant-presereintjen of the right-hand side of the rule
is a constant-preserving solution of its left-hand side.shew the completeness: consider the equation

)\ﬁf(S]_,,Sn) =)\X_kg(tla ;tm)

where f andg are algebraic constants, to be solved in a syntactic thEorBy Tannen’s theorem, a
solutiona in n-long, B-normal form must satisfy

NG A (51010, ., 5001)) = AK.g(t201], ..., 01 te)

SincekE is syntactic, there exist{ls,...,ln) = g(r1,...,rm) € Ef’gﬂ and a substitutiofl such thas of‘ =
li6forl1<i<n andtioig =ri0for 1 <i <m. Inother wordsg is anE-solution of

AFV(fn)=9m)) A s=li A ti=n

1<i<n 1<i<m

hence of
AFV((In) =9m)) A As =A%l A At =A%r

1<i<n 1<i<m

Now, we do noheedto guess amg-variant of f (I,) = g(Tm) for the correctness of the rule, but guessing
which bound variables will occur as arguments of the variabléle axioms will allow the algorithm to

fail when encountering an equatia®.s = Ax.t with {X} N F V(s) # {X} N F V(t). O

4.2 The algorithm

The algorithm of figure 2 has to be adapted in presence of aatiegal theory. First, the rul€lash has
to be modified. Indeed, an equation may be solvable if thesehits left-hand-side and righ-hand side
are different algebraic constants, by applyiigtate (see figure 3).

The ruleDecomposesan be removed if one assumes that for every congtaharity n, f(xa,...,Xn) =
f(Xl,...,Xn) S Ef’f.

More interesting is the case of the flexible-flexible equadiwith the same heads. It has been noticed
by Qian and Wang that although such equations are alwaysldeltss a projection, they do not have
finite complete sets of AC-unifiers.

Example 5 ([21]) Consider the equation® Axy.F (x,y) = Axy.F (y,x) in the AC-theory of-. For m> O,
the substitution

Om= {F =)\Xy-Gm(Hl(Xay) + Hl(ya X)J RN Hm(X7 y) + Hm(Y; X))}
is an AC-unifier of e. On the other hand, every solution of e i;atance of some;. In additionopy1 is
strictly more general thawy,.
T 0r possiblyf(Xg,..., %) = f(X,..., %) if f=g.

Unification of Higher-order Patterns modulo Simple Syntactia&nal Theories

23

1. APPLY THE FOLLOWING RULE FOR EVERY FREE VARIABLE- OF P:

Project
P = F=NgF'(y1,---,¥%) A P{F = AGF (y1,...,¥) }
whereF has arityn andF’ is a new variable anélys, ..., y} C {X1,...,Xn}

2. APPLY AS LONG AS POSSIBLE THE RULES
Fail

M. S=A%t AP = L
if FY(s)NXk # FV(t) "X

FF=

M F(Yn) =AF(zm) AP = L
if {yn} # {z}-

Freeze

(AXF (T) = ACF(Z) AP)AP: = PAXCF () = ARC.F(Z) A Pr)
if Yo is a permutation of;.

Trivial
s=sAP =P

FF# (Coalesce)
AX.F(Yn) = A%.G(zn) A P = AVn.F(Yn) = A%n.G(zn) A P{F — AVn.G(z0)}
if F # GandF,G € ¥ V(P) andy, is a permutation of;

Mutate
A f(s1,--+,%) = AX.O(tg, - - -, tm)

= 3VY(f (nl) =9(Mm))) Algign)\ﬁ-s = M li A1<jemM et = AR

wheref(l,...,lIn) = 9(rs,...,rm) is anXe-variant of an equation dr .
Merge

F=sAF=tAP = F=sAs=tAP

if [s| < t]

Clash

AXc.a(St,---,%) = AX.b(t,...,tm) AP = L
if a € Xx orb € X, aandb are not a variable ara# b

Check*

Fi=si[R(-)] A R=sR(--)] A AFR=sF(-)]AP = 1
if ones|[-] is not the empty context

Fig. 3: Algorithm for pattern unification modulo simple syntactiethies

24 Alexandre Boudet

Hence, AC-unification of patterns is not only infinitary, butllary, in the sense that some problems do
not haveminimalcomplete sets of AC-unifiers [23].

As Qian and Wang, and as in [3], we keep these equations unaltéredyntax of unification problems
is slightly modified by distinguishing the conjuncti®a of frozen equationthat will never be modified
by the simplification rules. The rulereezeignores the flexible-flexible equations with same heads and
freezeghem by storing them ifP=. This is made necessary by the fact that evapyifloes not contain
such equations at the beginning, some may appear by apphgragher rules. There are still no constant-
preserving solutions ofxg.F (Yn) = AX¢.F (7)) if {Vn} and{z} are not the same set, hence the ffeife=
of figure 2 is replaced by the two rul&seezeandFF= of figure 3. We do not go into further detail now
concerning frozen equations because first, we do not know bdvandle them in general, and second,
they will just lead to failure when all function symbols are demposable as, for instance in the case of
one-sided distributivity (see section 6).

Figure 3 presents our algorithm for pattern unification mo@usimple syntactic equational thedgy
The fact thak is a simple theory is needed to preserve the completenelis dfiftesClash andCheck*,
which are not correct in general. The r@&eck® is correct as a corollary of the following lemma :

Lemma 5 The equatiolX.F (y) = AX.S[F (2)], has no E-solution if E is a simple theory ang#p\.

Proof: By contradiction. Assume thatis a solution im-long 3-normal form, and leFo = Av.t[v]. We
have

AX.Fa(y) = ARAV.L[V](Y) =p AXt[Y]
with AX.t[y] in n-long B-normal form. On the other side, we have

(AX.HF (2)]p)0 = AX.s0[AV.L[V|(2)]p =3 AX.(so)ig t[F]p

There is a proof oAX.t[y] =g AX.(so ig [Z]p, hence there is a proof afy] =g (i” [4]p. Buta
fortiori, there is a proof of the above identity where all the occureeraf bound vanables have been
replaced by a constaat Lett’ (resp.s) bet (resp.(so)ig), where all the occurrences of bound variables

have been replaced lay We havet’ = S[t'], with p # A, which is impossible for a simple theoB: O
The ruleClashis correct as a corollary of the following lemma :

Lemma 6 The equatio\X.x;(S) = Ax.a(f) has no E-solution if xe {X} and E is a simple theory and a
is a bound variable different than ®r a constant.

Proof: By contradiction : assume is a solution. Ifais a bound varlablaJ (i #), then we would have
a proof of AX.x; (soiﬁ) AX.X; (toi”) hence ofx.(B = X; (toiﬁ) which is impossible since neither
X nor xj appear in the axioms cE If ais an algebraic constarit thet there would be a proof of
Xi (EB = f(@) which is again impossible since a simple theory admits notities with a function
symbol at the top on one side only. m|

It is now easy to show that our rules, after the projectiop,steimic exactly those of figure 1, except
for the more numerous failure cases due to the restrictiaonstant-preserving solutions.

Unification of Higher-order Patterns modulo Simple Syntactio&épnal Theories 25
5 Patterns as first-order terms

We give now an interpretation of pattern unification prokdemterms of first-order unification problems.
It just consists of forgetting the arguments of the freealaslds which are replaced by first-order variables,
and the lambda-bindings, and of replacing the bound varsay new free constants.

Definition 7 For n € N, let " be a free function symbol of arity n. The interpretatifi) of a pattern t
is the first-order term obtained from t by

1. replacing the flexible subterms of the fornixXby V¥, where X is a free variable and‘vis a
first-order variable associated with X,

2. replacing the subtermd§) by f"(5), where a is a bound variable of arity n.
3. replacing the subterms of the folmr.s by s.

The interpretationy (P) of a pattern unification problem P is the first-order unificatiproblem obtained
from P by replacing every termt by its interpretatié(t). The frozen part Pis ignored.

We will now take advantage of the fact that the algorithms afirég 2 and 3 are complete (The rules
preserve the solutions and the constant-preserving snhitespectively).

Lemma 7 Assume that a pattern unification problem P is transformed@twy an application of one of
the non-failure rules of figure 3 (except the rl®ject). Then there is a rul® of the algorithm of figure
1 such that/(Q) is obtained from/ (P) by an application oR.

Proof: The rulesMerge andMutate of figure 3 correspond to those of figure 1. The ritesezeand
Trivial of figure 3 correspond to the ruleivial of figure 1. The ruld-F# (Coalescekorresponds to the
rule Var-Rep (Coalesce)f figure 1. |

Corollary 1 If the algorithm of figure 1 terminates for a given theory E, seslour pattern unification
algorithm.

Corollary 2 If the first-order unification problend(P) has no solution, then P has no solution.

Proof: Itis enough to notice that P is irreducible by the rules of figure 3, then soli@) by the rules
of figure 1. In both cases the irreducible problems are eith@r a DAG-solved form. The result follows
by contradiction. O

This last result allows one to use some criteria for the firdeocase such as the one given by Arnborg
and Tidén for one-sided distributivity [24]. For this thgdhe syntactic algorithm does not terminate,
but the authors give a criterion allowing to discard some lvadde problems, providing a terminating
algorithm.

26 Alexandre Boudet

6 Frozen equations

The algorithm that we have presented so far transforms a atiificproblem into a problem of the form

P A P=, whereP is a DAG-solved form an@ is a conjunction of frozen equations of the fokmF (y) =
AX.F(2), wherez is a permutation of. There remains to check whether there exists an instancesof th
mgu of P that satisfies the equationsf. The problem arises when the variabléhas a “value” inP,

that is, when there is an equation of the foxmF (X) = AX.t in P.

Example 6 Assume that is an associative-commutative function symbol and thatf® is F = Axy.x+
a+y A AxyF(x,y) = Axy.F(y,x). Then, the mg§F — Axyx+a+ Yy} of P satisfies P, and we are done.
Assume now that A Pr is F = AxyH(x,y) A Axy.F(Xx,y) = Axy.F(y,X), and that+ is a commutative
function symbol. Then the substitutifid — Axy.H’(x,y) +H’(y,x) } will map the mgyF — Axy.H(x,y)}
of P onto{F — Axy.H'(x,y) + H’(y,X) } which satisfies P. Finally, if f is a free function symbol and R
Pris F =Axy.f(X,¥) A Axy.F(x,y) = Axy.F(y,X), then there is no instance of the mffe — Axy.f(x,y)}
of P satisfying P.

We do not have a general solution to this problem, but we pmpastraightforward rule which may
cause non-terminationin general, and a method that will imrtheories such as left-distributivity where
the function symbols of the theory alecomposable

The obvious rule for computing the solutionsPthat satisfyPr is the following :

F-Merge

F =AXt A AXF(X) = ARF(XT) A P
= F=AXt AAXt=AXTt A P

wherex™ is a permutation oX

Of course, we cannot guarantee the termination since thengofithe new equatiohx.t = Ax™.t can
yield new flexible flexible equations making it necessarypla F-Merge again, and so on. Actually,
we do conjecture that it is not decidable in general, givereatyE with decidable first-order unification,
whether an equation of the forkk.F(X) = AX.F(x™), wherex™ is a permutation ok, has anon-trivial
E-solution that is a solution which is not a solution modulo the emptyptie

Definition 8 A function symbol f isecomposabli
f(S]_,,SJ =E f(tla"'atn) s =glh& &S =gty

Arnborg and Tidén [24] have shown that the axion of left-distiivity forms a resolvent presentation.
This implies that both+ andx are decomposable, since there is no axiom wtfor x) at the top on both
sides.

Proposition 2 We calltrivial an E-solution of an equation which is also a solution modul® ¢émpty
theory. Assume that E is such that all the function symbols ezemiposable. Then, the equations of the
form Ax.F (X) = AX.F (X) have no non-trivial E-solutions.

Proof: By contradiction, and induction on the structure of the edla@ of F by the alledged non-trivial
solutionao in n-long B-normal form. IfF g is of the formAx.a(ts,...,t,), wherea is a free variable or a

Unification of Higher-order Patterns modulo Simple Syntactio&épnal Theories 27

bound variable, we hav&.a(ty,...,tn) = AXT.a(ty,...,tn), hence\xti = AX™.t; which is impossible by
the induction hypothesis. The same holdBdf is of the formAx. f (ty,...,t,), wheref is a decomposable
constant. O

When all function symbols are decomposable, the only smistito flexible-flexible equations with
the same head on both sides are projections as in the notigtalaase. Since we are interested in
constant-preserving solutions, we can replacd-tieezerule by the following failure rule.

F-Fail
AN F(Wn) =A% F(Z)AP = L
if ¥ is a permutation of, other than the identity.

Theorem 3 Assume E is a simple syntactic equational theory such thaydwection symbol is decom-
posable. Assume that the algorithm given in figure 2 terminfaek in the first-order case. Then, the
algorithm of figure 3, where the rulereezehas been replaced by-Fail terminates and implements a
complete pattern E-unification algorithm.

7 Conclusion

We believe that with the emergence of higher-order rewritiigher-order logic programming and functional-
algebraic programming languages, equational patterrcatin will be useful. It is certainly not a good
idea to perform a non-deterministic projection step fondtad pattern unification. We have used this
trick because when one is interested in constant-presesuingtitutions, the equations with one free vari-
able on one side behave as in the first order case. Either theyahsuitable sequence of arguments and
the equation is quasi-solved, or there is no constant-prieggsolution.

Surprisingly, the main difficulty comes from equations likey.F (x,y) = Axy.F(y,x). In the empty
theory, such equations cause no problem, but in the eqadtiare, it is the only “higher-order” problem
we have encountered. The problem of the existence of noialtselutions to such equations could be
rephrased as

Does there exist a first-order term withvariables which is invariant moduld when some
variables are permuted?

We believe that this problem is undecidable in general feottes with decidable unification, but we will
try and provide ad-hoc solutions for some familiar thearies

The assumption thd is a simple theory is essentially technical, and could b@gled as it has been
done in the first-order case for unification in combinatiohsquational theories. The mechanisms used
for preventing or solving cycles and clashes[22, 1], shbelddaptable to the pattern unification context.
Then, the syntactic approach could apply to larger claséesj@ational theories such as tkhallow
theories [6].

References

[1] Alexandre Boudet. Combining unification algorithm¥ournal of Symbolic Computatipth6:597—
626, 1993.

28 Alexandre Boudet

[2] Alexandre Boudet and Evelyne Contejean. “Syntactic” dfication. In Jouannaud [11], pages
136-151.

[3] Alexandre Boudet and Evelyne Contejean. AC-unificatibhigher-order patterns. In Gert Smolka,
editor, Principles and Practice of Constraint Programminglume 1330 of.ecture Notes in Com-
puter Sciencgpages 267281, Linz, Austria, October 1997. Springer-yerla

[4] Alexandre Boudet and Evelyne Contejean. About the Conflaesf Equational Pattern Rewrite
Systems. In C. and H. Kirchner, editofsth International Conference on Automated Dedugtion
volume 1421 ot ecture Notes in Atrtificial Intelligenc@ages 88-102. Springer-Verlag, 1998.

[5] Val Breazu-Tannen. Combining algebra and higher-otgees. InProc. 3rd IEEE Symp. Logic in
Computer Science, Edinburgbuly 1988.

[6] Hubert Comon, Marianne Haberstrau, and Jean-Pierre dawan Syntacticness, cycle-
syntacticness and shallow theoriésformation and Computatiqril1(1):154—-191, May 1994.

[7] Gilles Dowek. Third order matching is decidable.Rroceedings of the Seventh Annual IEEE Sym-
posium on Logic in Computer Sciengmages 2-10. IEEE Comp. Soc. Press, IEEE Comp. Society
Press, 1992.

[8] Warren D. Goldfarb. Note on the undecidability of the seconder unification problenTheoretical
Computer Sciengd 3:225-230, 1981.

[9] R. Hindley and J. Seldinntroduction to Combinators anil-calculus Cambridge University Press,
1986.

[10] Gérard HuetRésolution déquations dans les langages d'ordrg2, ... w. These d’Etat, Univ. Paris
7,1976.

[11] Jean-Pierre Jouannaud, editéirst International Conference on Constraints in Compuiatl Log-
ics, volume 845 otecture Notes in Computer Sciendéiinchen, Germany, September 1994. Sprin-
ger-Verlag.

[12] Jean-Pierre Jouannaud and Claude Kirchner. Solvingtems in abstract algebras: A rule-based
survey of unification. In Jean-Louis Lassez and Gordon Riptkditors,Computational Logic:
Essays in Honor of Alan RobinsoMIT-Press, 1991.

[13] Claude Kirchner. Méthodes et outils de conception&ysttique d’algorithmes d’unification dans
les théories equationnelles. These d’Etat, Univ. Nan@anée, 1985.

[14] Claude Kirchner. Computing unification algorithms. Proc. 1st IEEE Symp. Logic in Computer
Science, Cambridge, Maspages 206216, 1986.

[15] Claude Kirchner and Francis Klay. Syntactic theories anification. InProc. 5th IEEE Symp.
Logic in Computer Science, Philadelphiune 1990.

[16] Richard Mayr and Tobias Nipkow. Higher-order rewrite yss and their confluenc&heoretical
Computer Sciencd 92(1):3-29, February 1998.

Unification of Higher-order Patterns modulo Simple Syntactio&épnal Theories 29

[17] D. Miller. A logic programming language with lambda-atastion, function variables, and simple
unification. In P. Schroeder-Heister, editBxtensions of Logic ProgrammingNCS 475, Springer
Verlag, 1991.

[18] T. Nipkow. Higher order critical pairs. IRroc. IEEE Symp. on Logic in Comp. Sciepgmsterdam,
1991.

[19] Vincent PadovaniFiltrage d’ordre suggrieur. PhD thesis, Université de Paris VII, 1996.
[20] Gordon Plotkin. Building-in equational theoriddachine Intelligence7, 1972.

[21] Zhenyu Qian and Kang Wang. Modular AC-Unification of Higl@mder Patterns. In Jouannaud
[11], pages 105-120.

[22] M. Schmidt-Schauf3. Unification in a combination of ardiy disjoint equational theoriesournal
of Symbolic Computatiqri990. Special issue on Unification.

[23] Jorg H. Siekmann. Unification theoryournal of Symbolic Computatioid(3 & 4), 1989. Special
issue on unification, part one.

[24] Erik Tidén and Stefan Arnborg. Unification problems withessided distributivity. Journal of
Symbolic Computatiqr8(1-2):183-202, 1987.

30

Alexandre Boudet

