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Type B plactic relations for r-domino tableaux

Müge Taşkın†

Bog̃aziçi University, Turkey.

The recent work of Bonnafé et al. (2007) shows through two conjectures that r-domino tableaux have an important
role in Kazhdan-Lusztig theory of type B with unequal parameters. In this paper we provide plactic relations on
signed permutations which determine whether given two signed permutations have the same insertion r-domino
tableaux in Garfinkle’s algorithm (1990). Moreover, we show that a particular extension of these relations can describe
Garfinkle’s equivalence relation on r-domino tableaux which is given through the notion of open cycles. With these
results we enunciate the conjectures of Bonnafé et al. and provide necessary tool for their proofs.
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1 Introduction
Let W be a finite Coxeter group and let L : W 7→ Z≥0 be a weight function such that

L(uw) = L(u) + L(w) if and only if l(uw) = l(u) + l(w)

where l : W 7→ Z≥0 is the usual length function on W . As it is described by Lusztig in (15) every weight
function determines an Iwahori-Hecke algebra and some preorders on W whose equivalence classes are
called left, right and two-sided cells. The importance of these cells lies in the fact that they carry represen-
tations of W and its corresponding Iwahori-Hecke algebraH. Furthermore they have an important role in
the representation theory of reductive algebraic groups over finite or p-adic fields (15) and in the study of
rational Cherednik algebras (8) and the Calogero-Moser spaces (9).

The case L = l is in fact first introduced by Kazhdan and Lusztig in (11) as a purely combinatorial tool
for the theory of primitive ideals in the universal enveloping algebras of semisimple complex Lie algebras.
In this case the combinatorial characterizations of cells are well known, where Knuth (or plactic) relations
appear as the mediating tool. Namely, when W is type A then each right (left) cell corresponds to the
plactic (respectively coplactic) class of some standard Young tableau, whereas each two-sided cell consists
of those permutations which lie in the plactic classes of tableaux of the same shape. This characterizations
depend on Joseph’s classification of primitive ideals in type A, where Knuth (plactic) relations play a
crucial role.

In the types B,C and D, on the other hand the emerging combinatorial objects are standard domino
tableaux. The connection is first revealed in the work of Barbash and Vogan (1) where they provide
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necessary conditions for the characterizations of primitive ideals through an algorithm which uses the
palindrome representations of signed permutations in order to assign to every signed permutation α a pair
of same shape standard r-domino tableaux (P r(α), Qr(α)) bijectively, for r = 0 or r = 1. Meanwhile,
an analog of Knuth relations provided by Joseph in (10) established the sufficient conditions. On the
other hand Garfinkle (4; 5; 6) finalized classification problem for these types by showing through her two
algorithms on domino tableaux that these two sets of relations are in fact equivalent. Her first algorithm
assigns any signed permutation to a pair of same shape standard r-domino tableaux for r equals to 0 or
1 and the second defines an equivalence relation between domino tableaux through the notion of open
cycles. We remark that the extension of Garfinkle and Barbash-Vogan algorithm for larger r is given in
(14) and (3) respectively.

The case L 6= l is also known as unequal parameters Kazhdan-Lusztig theory and it appears for the
typesBn, I2(n) and F4, where the classification problem for the latter two can be dealt with computational
methods, see (7). For type Bn, the weight function is determined by two integers a, b > 0 such that
L(si) = a if 1 ≤ i ≤ n − 1 and it is equal to b if i = 0 where s0 is the transposition (−1, 1) and
{si = (i, i+ 1)|1 ≤ i ≤ n− 1} are the type A generators of Bn. Recently, the role of r-domino tableaux
in this theory is revealed in the work of Bonnafé, Geck, Iancu, and Lam (3) through two main conjectures:

• Conjecture A: If ra < b < (r + 1)a for some r ≥ 0 then two signed permutations lie in the same
Kazhdan Lusztig right (left) cell if and only if their insertion (recording) r-domino tableau are the
same.

• Conjecture B: If b = ra for some r ≥ 1 then two signed permutations lie in the same Kazhdan
Lusztig right (left) cell if and only if their insertion (recording) r-domino tableau or (r−1)-domino
tableau are the same.

On the other hand, in order to establish the proofs of these conjecture one definitely needs the plactic
relations between signed permutations which determines when the insertion r-domino tableaux of two
signed permutations are the same. Our aim here is to fill this gap.

Definition 1.1 For α = α1 . . . αn ∈ Bn and r ≥ 0 consider the following relations:

Dr
1: If αi < αi+2 < αi+1 or αi < αi−1 < αi+1 for some i, then

α = α1 . . . αi−1 (αi αi+1) αi+2 . . . αn ∼ α1 . . . αi−1 (αi+1 αi) αi+2 . . . αn

Dr
2: If there exists 0 < j ≤ r such that αj > 0 and αj+1 < 0 (or αj < 0 and αj+1 > 0) and
α1 . . . αj αj+1 is a shuffle of some positive decreasing and negative increasing sequence ending
with αj and αj+1 (or respectively αj+1 and αj) then

α = α1 . . . (αj αj+1) . . . αr+2 . . . αn ∼ α1 . . . (αj+1 αj) . . . αr+2 . . . αn

Dr
3: If |α1| > |αi| for all 2 ≤ i ≤ r + 2 and α2 . . . αr+2 is a shuffle of some positive decreasing and

negative increasing sequences, then

α = α1 α2 . . . αr+2 . . . αn ∼ (−α1) α2 . . . αr+2 . . . αn

Now we are ready to state our results.
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Theorem 1.2 α and β in Bn are equivalent through a series of Dr
1, Dr

2 or Dr
3 relations if and only if they

have the same insertion r-domino tableaux.

Remark 1.3 A set of relations for r-domino tableaux is defined in (3), but as it is already discussed there
it is far from being sufficient for the characterization. In fact the plactic relation in (3, Section 3.8) can
be shown to be equivalent to the one given with Dr

1 and Dr
2 here. Recently T. Pietraho has independently

found another set of generators (17). Finally depending on his result and earlier version (20) of this paper,
Bonnafé proved that r-plactic and r-cycle equivalence are sufficient for Conjecture A and B respectively,
see (2).

Remark 1.4 Recall that for a signed permutation α = α1 . . . αn in Bn, its palindrome representation is
given by αn . . . α10α1 . . . αn where αi = −αi. Then Dr

1 is just the usual Knuth (plactic) relation on the
palindrome representation of α for any non negative integer r. On the other hand it is easy to see that
when r = 1, Dr

2 and Dr
3 are also usual Knuth relation on the palindrome representation of α.

In this paper, the descriptions of Barbash-Vogan and Garfinkle’s algorithms can be found in Section 2
together with some lemmas which are essential in the proofs of our results. Section 3 is devoted to the
proof of Theorem 1.2.

2 Related background
A sequence λ = (λ1, . . . , λk) is a partition of n, denoted by λ ` n, if

∑k
i=1 λi = n and λi ≥ λi+1 > 0

where its Ferrers diagram consists of left justified arrows of boxes such that the i-th row has λi boxes.
A partition λ = (λ1, . . . , λk) can be also seen as a set of integer pairs (i, j) such that 1 ≤ i ≤ k and

1 ≤ j ≤ λi. Therefore for two partitions λ and µ, we can define usual set operations such as λ∪µ, λ∩µ,
λ ⊂ µ, λ− µ, but the resulting sets do not necessarily correspond to some partitions.

Definition 2.1 For two partitions λ and µ satisfying µ ⊂ λ we define λ/µ = λ−µ to be the skew partition
determined by λ and µ.

Definition 2.2 Let γ and γ′ be two skew shapes.

1. If γ ∩ γ′ = ∅ and γ ∪ γ′ also corresponds a skew shape then we define γ ⊕ γ′ = γ ∪ γ′.

2. If γ′ ⊂ γ and γ − γ′ also corresponds a skew shape then we define γ 	 γ′ = γ − γ′.

Definition 2.3 Let λ be a partition and (i, j) ∈ λ.

1. If (i, j) ∈ λ and λ	 (i, j) is also a partition then (i, j) is called a corner of λ.

2. If (i, j) 6∈ λ and λ⊕ (i, j) is also a partition then (i, j) is called an empty corner of λ.

Definition 2.4 A skew tableau T of shape λ/µ is obtained by labeling the cells of λ/µ with non repeating
positive integers such that the numbers increase from left to right and from top to bottom. If µ = ∅ then
T is called a Young tableau. We denote by label(T ) the set of numbers labeling each box of T and by
shape(T ) the partition underlying T . If the size of shape(T ) = n and label(T ) = {1, 2, . . . , n} then T
is called a standard skew or standard Young tableau according to the shape of T . We denote by SY Tn
the set of all standard Young tableaux of n cells.
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There is an important connection, between standard Young tableaux SY Tn and the symmetric group
Sn, known as the Robinson-Schensted correspondence (RSK), which was realized by Robinson and Schen-
sted independently. In this correspondence, every permutation w ∈ Sn is assigned bijectively to a pair
of same shape tableaux (P (w), Q(w)) in SY Tn × SY Tn through insertion and recording algorithms.
There are two equivalence relations introduced by Knuth which have very important applications in the
combinatorics of tableaux.

Definition 2.5 For u ∈ Sn consider the following relation: If ui < ui+2 < ui+1 or ui < ui−1 < ui+1

for some i then u = u1 . . . ui−1(ui ui+1) ui+2 . . . un
K∼ u1 . . . ui−1(ui+1 ui) ui+2 . . . un = u′.

We say u,w ∈ Sn are Knuth equivalent, u K∼ w, ifw can be obtained from u by applying a sequence of
K∼ relations. On the other hand if u−1 K∼ w−1 then u and w are called dual Knuth equivalent, u K∗∼ w.

The following theorem given by Knuth (12) is fundamental.

Theorem 2.6 Let u,w ∈ Sn. Then u K∼ w ⇐⇒ P (u) = P (w) and u K∗∼ w ⇐⇒ Q(u) = Q(w).

Definition 2.7 The set of two adjacent cells A = {(i, j), (i, j + 1)} (or A = {(i, j), (i+ 1, j)}) is called
a horizontal (or respectively vertical) domino cell. By a labeling of domino cell A we mean a pair of
positive numbers (a, a′) which label the boxes of A such that a ≤ a′ and a labels the cell of A which is
smaller in the lexicographic order. When we want to indicate the domino cell A with its labeling, we use
the notation

[A, (a, a′)]

so that shape([A, (a, a′)]) = A and label([A, (a, a′)]) = (a, a′).

Let λ be a partition and A be a domino cell. If λ ⊕ A is a partition then A is called an empty domino
corner of λwhereas if λ	A is also a partition thenA is called a domino corner of λ. Clearly, if a partition
has no domino corner then it must be a r-staircase shape (r, . . . , 2, 1) for some r > 0. On the other hand
it is easy to see that any partition λ can be reduced uniquely to a r-staircase shape (r, . . . , 2, 1) for some
r ≥ 0, by subsequent removal of existing domino corners one at a time. In this case we say λ has a 2-core
equivalent to (r, . . . , 2, 1) and we denote by P (2n, r) the set of all such partitions of size 2n+r(r+1)/2.

Definition 2.8 A r-domino tableau T of shape λ ∈ P (2n, r) is obtained by tiling the skew partition
λ/(r, . . . , 2, 1) with labeled horizontal or vertical dominos {[A1, (a1, a1)], . . . [An, (an, an)]} such that
ai 6= aj for i 6= j and the labels increase from left to right and from top to bottom. In this case we have

label(T ) = {a1, a2, . . . , an}.

A standard r-domino tableau T is a r-domino tableau which has label(T ) = {1, . . . , n}. We denote by
SDT r(n) the set of all standard r-domino tableaux of n dominos.

Definition 2.9 Let T be a r-domino tableau and λ = shape(T ). For a ∈ label(T ) and A is a domino
cell in λ we define,

1. Dom(T, a) to be the domino cell of T whose both cells are labeled with a in T .

2. dom(T, a) = shape(Dom(T, a)).

3. label(T,A) to be the pair of integers (a, a′) which label the domino cell A in T , where a ≤ a′.
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Example 2.10 For example the following is a 2-domino tableau in SD2(5).

T = 1 1 5

3 4 4 5

2 3

2

T has two domino corners: A1 = {(1, 5), (2, 5)} and A2 = {(2, 4), (2, 5)}. label(T,A1) = (5, 5) and
label(T,A2) = (4, 5). On the other hand dom(T, 5) = A1 and dom(T, 4) = {(2, 3), (2, 4)} 6= A2.

Definition 2.11 For two r-domino tableau S and T satisfying S ⊂ T we define T/S = T − S to be the
skew r-domino tableau determined by S and T .

Definition 2.12 Let R and R′ be two skew r-domino tableaux with shape(R) = γ and shape(R′) = γ′.

1. If γ ⊕ γ′ is defined and R ∪R′ corresponds to some skew r-domino tableau as a set then we define
R⊕R′ = R ∪R′

2. If γ 	 γ′ is defined and if R − R′ corresponds to some skew r-domino tableau as a set then we
define R	R′ = R−R′

Definition 2.13 Let T be a (skew) r-domino tableau and a ∈ label(T ). Then we define

1. T<a (T≤a) to be the r-domino tableau obtained by restricting T to its dominos which are labeled
with integers less than (and equal to) a.

2. T>a (T≥a) to be the skew r-domino tableau obtained by restricting T to its dominos which are
labeled with integers greater than (and equal to) a.

2.1 Garfinkle’s algorithm and reverse insertion
Recall that a signed permutation α ∈ Bn is a bijection of [−n,+n] such that α(−i) = −α(i). The
usual presentation of α ∈ Bn is denoted as α = α1α2 . . . αn where αi = α(i) for 1 ≤ i ≤ n and
{|α1|, |α2| . . . , |αn|} = {1, 2, . . . , n}.

In (4) Garfinkle provide an algorithm for r = 0, 1 by which any signed permutation α ∈ Bn is assigned
bijectively to a pair of same shape standard r-domino tableau (P r(α), Qr(α)), where P r(α) is called
insertion and Qr(α) is called recording tableau of α. Detailed explanations of this algorithm can be
found in (13) and (21). Based on Garfinkle’s algorithm we now describe the reverse-insertion of domino
corners through the Corollary below. Then we will state several lemmas which are the main tool in the
proof of Theorem 1.2.

Let T be a r-domino tableau and A be a domino corner in shape(T ). We denote by T ↑A and η(T ↑A)
respectively the tableau which is obtained by the reverse-insertion of A, and the number which is bumped
out of T as a result of this operation.

Corollary 2.14 Let T be an r-domino tableau and A is a domino corner. Furthermore let A′ be the
domino cell which is pushed back by A in reverse insertion T ↑A. Then,
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i) If A = {(i, j), (i, j + 1)} and label(T,A) = (a, a) then A′ ⊂ {(i− 1, k) | k ≥ j}.

ii) If A = {(i, j), (i, j + 1)} and label(T,A) = (a′, a) for some a′ < a then A′ = {(i− 1, j), (i, j)}.

iii) If A = {(i, j), (i+ 1, j)} and label(T,A) = (a, a) then A′ ⊂ {(k, j − 1) | k ≥ i}.

iv) If A = {(i, j), (i+ 1, j)} and label(T,A) = (a′, a) for some a′ < a then A′ = {(i, j − 1), (i, j)}.

Example 2.15 Let S ∈ SD3(5) as given below. We will show that η(S↑A) = 1 whereA = {(3, 3), (4, 3)}.
In the following the barred letters indicate the domino cell which is pushed back during the reverse inser-
tion algorithm.

1 1

3 3

2 4 4
2 5 5

7→ 1 1

3 3

2 4/5 4
2 5

7→ 1 1

3/43/4

2 5

2 5

7→ 1/31/3

4 4

2 5

2 5

7→ 3 3

4 4

2 5

2 5

= S↑A

Lemma 2.16 Let T be a r-domino tableau and A be a domino corner of shape(T ). Then T ↑A and
η(T ↑A) are unique.

Definition 2.17 Let T be a r-domino tableau and A be a domino corner of shape(T ) such that A =
{(i, j), (i, j + 1)} or A = {(i, j), (i + 1, j)}. We denote by (T,A,ne) and (T,A,ne) the regions of T
such that

(T,A,ne) := {(k, l) | k < i and l ≥ j}
(T,A, sw) := {(k, l) | k ≥ i and l < j}

as illustrated in Figure 1.

T= A
T=

A

(T, A, ne) 

(T, A, sw) (T, A, sw)

(T, A, ne) 

Fig. 1:

Lemma 2.18 Let A and B be a domino corners of shape(T ) and shape(T ↑A) respectively.

i) If B lies in the portion (T,A, sw) then η(T ↑A↑B) < η(T ↑A).

ii) If B lies in the portion (T,A,ne) then η(T ↑A↑B) > η(T ↑A).

Proof: The proof is omitted for the sake of place. 2
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2.2 Barbash and Vogan algorithm and descents of r-domino tableaux.
We will now explain the algorithm which is provided by Barbash and Vogan in (1) to establish the bijection
between signed permutations and standard r-domino tableaux for r = 0, 1 whereas its extension for larger
cores is provided in (3). We also remark that the equivalence of Barbash-Vogan algorithm to Garfinkle’s
algorithm for r = 0, 1, is due to Van Leeuwen (14).

Recall that for α = α1 α2 . . . αn a signed permutation the palindrome representation of α is given by
α0 = αn . . . α2 α1 α1 α2 . . . αn if α lies in Cn, or α1 = αn . . . α2 α1 0 α1 α2 . . . αn if α lies in Bn,
where αi = −αi. We will call α0 and α1 as 0-core and 1-core representation of α respectively. By
following the approach of (3) let us describe how to extend this representation for larger cores. We first
identify {1, 2, . . . , r(r + 1)/2} with {01, 02, . . . , 0r(r+1)/2} together with the total ordering −n < . . . <
−2 < −1 < 01 < 02 < . . . < 0r(r+1)/2 < 1 < 2 . . . < n. Let w ∈ Sr(r+1)/2 be a permutation under
this identification, whose RSK insertion tableau is of shape (r, r − 1, . . . , 1). Now for α ∈ Bn let r-core
representation of α to be αr = αn . . . α2 α1 w α1 α2 . . . αn. The algorithm first applies RSK algorithm
on αr. Then starting from the lowest number n̄, it vacates the negative integer ī in the tableaux by jeu
de taquin slides until it becomes adjacent to i, where the vacation is repeated for i− 1 until i = 1. The
following example illustrates this algorithm for r = 1.

Example 2.19 For α = 3 1̄ 2 ∈ Bn, we have α1 = 2̄ 1 3̄ 0 3 1̄ 2 be its 1-core representation. Then

P (α1) = 3̄ 1̄ 2

2̄ 0 3

1

7→ 2̄ 1̄ 2

0 3̄ 3

1

7→ 1̄ 2̄ 2

0 3̄ 3

1

7→ 0 2̄ 2

1̄ 3̄ 3

1

7→ 2 2

1 3 3

1

= P 1(α).

Theorem 2.20 ((3), Theorem 3.3) Signed permutationsα and β have the same insertion r-domino tableau
if and only if αr and βr have the same RSK insertion tableau.

The following proposition is a consequence of Theorem 2.20 and Theorem 2.6.

Proposition 2.21 Let α and β be two signed permutations which differ by a single Dr
1 relation. Then

P r(α) = P r(β), in other words α and β have the same insertion r-domino tableau.

Recall that Bn carries a Coxeter group structure with the generator set S = {s0, s1, . . . , sn−1} where
{si = (i, i+ 1)|1 ≤ i ≤ n− 1} is the set of transpositions which also generates the symmetric group Sn
and s0 corresponds to the transposition (−1, 1). Let l(α) denote the length of α, which is the minimum
number of generators of α and let

DesL(α) := {i | l(siα) < l(α) and 0 ≤ i ≤ n− 1}
= {i | if 1 ≤ i ≤ n− 1 and i+ 1 comes before i in α0} ∪ {0 | if 1 comes before − 1 in α0}

denote respectively the sets of left and right descents of α. On the other hand the descent set of a r-domino
tableau T is defined in the following way:

Des(T ) := {i | if the domino labeled with (i+ 1, i+ 1) lies below the one labeled with (i, i)}
∪{0 | if the domino labeled with (1, 1) is vertical}

It is a well known property of RSK algorithm that DesL(w) = Des(P (w)) for any w ∈ Sn whereas the
descent set of a (skew or Young) tableau T is defined by Des(T ) = {i | i + 1 lies below i in T}. On the
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other hand it is easy to see that jeu de taquin slides do not change the descent sets of tableaux, therefore
the following result is a consequence of Theorem 2.20.

Corollary 2.22 For α ∈ Bn we have DesL(α) = Des(P r(α)).

Observe that if α and β differ by a single Dr
1 relations in Bn then P r(α) = P r(β) and we have either

β−1 = si ·α−1 or β−1 = si+1 ·α−1 and moreover we have either i ∈ DesL(α−1) but i+1 6∈ DesL(α−1)
or i 6∈ DesL(α−1) but i + 1 ∈ DesL(α−1) for some 1 ≤ i ≤ n − 2. In the following we will follow
Garfinkle’s approach in (4) to study the effect of a single Dr

1 relation on the recording tableaux.
For i, j two adjacent integers satisfying 1 ≤ i, j ≤ n− 1, consider the following sets:

Di,j(Bn) := {α ∈ Bn | i ∈ DesL(α) but j 6∈ DesL(α)}
Di,j(SDT r(n)) := {T ∈ SDT r(n) | i ∈ Des(T ) but j 6∈ Des(T )}

together with the map Vi,j : Di,j(Bn) 7→ Dj,i(Bn) where Vi,j(α) = {si · α, sj · α} ∩ Dj,i(Bn). We
also define a map Vi,j : Di,j(SDT r(n)) 7→ Dj,i(SDT r(n)) in the following manner: Without loss of
generality we assume that j > i, i.e., j = i + 1. Observe that if i ∈ Des(T ) but i + 1 6∈ Des(T ) then
i + 1 lies strictly below i in T whereas i + 2 lies strictly right to i + 1 in T . On the other hand we have
two cases according to the positions of dominos labeled with (i, i) and (i+ 2, i+ 2) with respect to each
other.
Case 1. We first assume that i + 2 lies strictly below i in T . Since the i + 2 lies strictly to the right
of i + 1 and i + 1 lies below i we have two cases to consider: If the boundaries Dom(T, i + 1) and
Dom(T, i) intersect at most on a point then Vi,i+1(T ) is obtained by interchanging the labels i and i+ 1
in T . Otherwise there is only one possibility which satisfies i + 2 lies below i and it lies to the right of
i + 1, in which T has the subtableau U as illustrated below and Vi,i+1(T ) is obtained by substituting U
with U ′ in T .

U =
i i

i + 1 i + 2

i + 1 i + 2

U ′ =
i i + 1

i i + 1

i + 2 i + 2

Case 2. Now we assume i+ 2 lies strictly right to i in T . Again if the boundaries of Dom(T, i+ 1) and
Dom(T, i + 2) intersect at most on a point then Vi,i+1(T ) is obtained by interchanging the labels i + 1
and i+ 2 in T . Otherwise there is only one possible case where T has the subtableau U given below and
Vi,i+1(T ) is obtained by substituting U with U ′ in T .

U =
i i i + 2

i + 1 i + 1 i + 2

U ′ =
i i + 1 i + 1

i i + 2 i + 2

Example 2.23 We have T2 = V5,6(T1), T3 = V3,4(T2), and T4 = V4,5(T3) = V6,5(T3) for the following
tableaux.

T1 = 1 2 5

1 2 5

3 3 7

4 6 7

4 6

T2 = 1 2 6

1 2 6

3 3 7

4 5 7

4 5

T3 = 1 2 6

1 2 6

3 4 7

3 4 7

5 5

T4 = 1 2 5

1 2 5

3 4 7

3 4 7

6 6
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Remark 2.24 The map Vi,j is first introduced on the symmetric group by Vogan (22), with the aim of
classifying the primitive ideals in the universal enveloping algebra of complex semi simple Lie algebras.
In fact when it is considered on the symmetric group the map Vi,j produces nothing but the dual Knuth
relation on the permutations and their insertion tableaux.

Lemma 2.25 Let i and j be two consecutive integers such that 1 ≤ i, j ≤ n− 1. Suppose α ∈ Di,j(Bn).
Then P r(α) ∈ Di,j(SDT r(n)) and P r(Vi,j(α)) = Vi,j(P r(α)).

Proof: This result is first proven by Garfinkle (5, Theorem 2.1.19.) for r = 0, 1. On the other hand one
can check that her proof does not depend on the specific value of r and it can easily be extended for any
value of r. We omit the proof for the sake of space. 2

The following result follows directly from Lemma 2.25 and it has an important role in the proof of
Theorem 1.2.

Corollary 2.26 Suppose α = α1 . . . αi−1(αiαi+1)αi+2 . . . αn and β = α1 . . . αi−1(αi+1αi)αi+2 . . . αn
differ by a single Dr

1 relation. Then one of the following is satisfied:

i) αi < αi+2 < αi+1 for some i ≤ n− 2 and β−1 = Vi+1,i(α−1) and Qr(β) = Vi+1,i(Qr(α)).

ii) αi > αi+2 > αi+1 for some i ≤ n− 2 and β−1 = Vi,i+1(α−1) and Qr(β) = Vi,i+1(Qr(α)).

iii) αi < αi−1 < αi+1 for some i ≤ n− 1 and β−1 = Vi−1,i(α−1) and Qr(β) = Vi−1,i(Qr(α)).

iv) αi > αi−1 > αi+1 for some i ≤ n− 1 and β−1 = Vi,i−1(α−1) and Qr(β) = Vi,i−1(Qr(α)).

3 Plactic relations for r-domino tableaux

3.1 Proof of Theorem 1.2
In this section we will prove the main Theorem 1.2, i.e., we will show that the relations Dr

1,Dr
2 and

Dr
3 from Definition 1.1 are sufficient and necessary to characterize plactic classes of standard r-domino

tableaux.

Proof: ( Proof of Theorem 1.2) Let α and β be two signed permutations which differ by a sequence of Dr
1,

Dr
2 or Dr

3 relations. By using Garfinkle’s insertion algorithm for r-domino tableau and Proposition 2.21 it
is easy to check that P r(α) = P r(α′) if α and α′ differs by a single Dr

i relation for i = 1, 2, 3. Therefore
P r(α) must be equal to P r(β).

Now we let α = α1 . . . αn−1αn and β = β1 . . . βn−1βn such that T = P r(α) = P r(β). We will show
by induction that α

pr∼ β. Let r ≥ 0 be arbitrary. If n = 1 there is nothing to prove. Therefore we assume
that the statement holds for all signed permutations of size n− 1.

If P r(α1 . . . αn−1) = P r(β1 . . . βn−1) = T ↑A for some domino corner A of shape(T ) then αn = βn
by Lemma 2.16. By induction we can assume that α1 . . . αn−1

pr∼ β1 . . . βn−1. Therefore α
pr∼ β.

If P r(α1 . . . αn−1) 6= P r(β1 . . . βn−1) then there exist two different domino corners say A and B of
T such that

T ↑A = P r(α1 . . . αn−1) and η(T ↑A) = αn
T ↑B = P r(β1 . . . βn−1) and η(T ↑B) = βn.

(1)
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In the following we proceed according to the orientation of A and B as illustrated in Figure 2 where in
the first four pictures (T,A,ne) ∩ (T,B, sw) is represented with the shaded areas.
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Fig. 2:

Cases (1),(2) and (3): We will first show that α
pr∼ β for the first three cases of Figure 2. Consider the

domino corner B of T ↑A and let b = η(T ↑A↑B). It is easy to see that there exists a domino corner, say C
of T ↑A↑B which lies in (T,A,ne) ∩ (T,B, sw). Let c = η(T ↑A↑B↑C) and ũ be a signed word such that
P r(ũ) = T ↑A↑B↑C . Therefore by Lemma 2.16 we have

P r(ũcbαn) = P r(ũ)↓c↓b↓αn = (T ↑A↑B↑C)↓c↓b↓αn = (T ↑A↑B)↓b↓αn = (T ↑A)↓αn = T

and by induction hypothesis ũcb
pr∼ α1 . . . αn−1 since P r(ũcb) = T ↑A = P r(α1 . . . αn−1). Therefore

letting u denote the signed permutation ũcbαn, we have α
pr∼ u.

Observe that since P r(ũ) = T ↑A↑B↑C , the recording tableauQr(ũcbαn) has its domino cellsA, B and
C labeled with (n, n), (n− 1, n− 1) and (n− 2, n− 2) respectively.

On the other hand having B in (T,A,ne) and C in (T,B, sw) yields by Lemma 2.18 that

b = η(T ↑A↑B) > η(T ↑A) = αn and b = η(T ↑A↑B) > η(T ↑A↑B↑C) = c.

Therefore we have by Corallary 2.26

either b > αn > c, and hence u = ũcbαn
Dr

1∼ ũbcαn = w and Vn−1,n−2(Qr(u)) = Qr(w)

or b > c > αn, and hence u = ũcbαn
Dr

1∼ ũcαnb = w and Vn−1,n−2(Qr(u)) = Qr(w)

The last argument implies that in both cases the signed permutation w has its recording tableau Qr(w)
obtained by interchanging the labels (n, n) of A and (n − 1, n − 1) of B in Qr(u) i.e., Qr(w) had the
domino corner B labeled with (n, n). Then by Lemma 2.16 we have

P r(w1 . . . wn−1) = T ↑B = P r(β1 . . . βn−1) and wn = βn

and by induction w1 . . . wn−1
pr∼ β1 . . . βn−1. Therefore w

pr∼ β. and α
pr∼ u

pr∼ w
pr∼ β.

Case (4): For the fourth case of Figure 2, let α, β ∈ Bn as in 1. If there exist a domino corner in
(T,A,ne) ∩ (T,B, sw) then one can follow the same argument which is used for Cases (1),(2),(3). On
the other hand it may happen that (T,A,ne) ∩ (T,B, sw) is a staircase shape and in the following we
consider several subcases as illustrated in Figure 3.
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A

 B

A

 B

A

 B

C

C

C

A

 B

(a) (b) (c) (d)

C'

C'
C'

Fig. 3:

Observe that, in case T has the configuration of Figure 3(a), we have n ≤ r + 1, αn < 0, βn > 0 and

η(T ↑A↑B) = βn
η(T ↑B↑A) = αn

P r(α1 . . . αn−2) = T ↑A↑B = T ↑B↑A = P r(β1 . . . βn−2).

Let ũ be a signed word such that P r(ũ) = T ↑A↑B = T ↑B↑A. Clearly ũ must be a shuffle of pos-
itive decreasing and negative increasing sequences and P r(ũαnβn) = T = P r(ũβnαn). Therefore

ũαnβn
Dr

2∼ ũβnαn. On the other hand P r(ũβn) = T ↑A and P r(ũαn) = T ↑B and by induction hypothe-
sis we have α1 . . . αn−1

pr∼ ũβn and β1 . . . βn−1
pr∼ ũαn. Hence

α = α1 . . . αn−1αn
pr∼ ũβnαn

Dr
2∼ ũαnβn

pr∼ β1 . . . βn−1βn = β.

Now we assume that T has the configuration of Figure 3(d) i.e. the corner C and A (or C ′ and B)
intersect. Again we let σ1 . . . σn ∈ Bn such that P r(σ1 . . . σn−1) = T ↑C . Observe that there is a domino
corner in (T,C,ne) ∩ (T,B, sw) therefore β

pr∼ σ follows. We only need to show α
pr∼ σ.

Observe that since T has the configuration of Figure 3(d) we have a domino corner A′ of T ↑A and A′′

of T ↑A↑A
′

as it is illustrated in Figure 4 below.

AA'

A''

n-1

nn-1

n

n-2n-2 n-1

n

n-1

n

n-2

n-2

C

C'' C'

P (u) Q (u) P (w)Q (w)
r r r r 

Fig. 4:

Let a′ = η(T ↑A↑A
′
) and a′′ = η(T ↑A↑A

′↑A′′). Suppose ũ be a signed word such that P r(ũ) =
T ↑A↑A

′↑A′′ . Then the signed permutation u = ũa′′a′αn has P r(u) = T whereas its recording tableau
Qr(u) must have the form as it is shown in Figure 4.

On the other hand sinceP r(ũa′′a) = T ↑A = P r(α1 . . . αn−1) we have by induction ũa′′a′
pr∼ α1 . . . αn−1

and therefore u = ũa′′a′αn
pr∼ α1 . . . αn−1αn = α.
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Furthermore having A′ in (T,A, sw) and A′′ in (T,A′,ne) yields a′ = η(T ↑A↑A
′
) < η(T ↑A) =

αn and a′ = η(T ↑A↑A
′
) < η(T ↑A↑A

′↑A′′) = a′′ by Lemma 2.18. Therefore we have

either a′′ > αn > a′, and hence u = ũa′′a′αn
Dr

1∼ ũa′a′′αn = w and Qr(w) = Vn−2,n−1(Qr(u))

or αn > a′′ > a′, and hence u = ũa′′a′αn
Dr

1∼ ũa′′αna
′ = w and Qr(w) = Vn−2,n−1(Qr(u)).

In both cases Corollary 2.26 yields that the recording tableau Qr(w) of w has the form illustrated in
Figure 4 and by Lemma 2.16 we have

P r(w1 . . . wn−1) = T ↑C = P r(σ1 . . . σn−1) and wn = βn.

Then by induction w1 . . . wn−1
pr∼ σ1 . . . σn−1 and hence w

pr∼ σ. Hence as desired α
pr∼ u

Dr
1∼ w

pr∼ β.

If T has the configuration of Figure 3(b) or Figure 3(c), T may have a domino corner, say C lying
in (T,A,ne). Let σ = σ1 . . . σn ∈ Bn such that = P r(σ1 . . . σn−1) = T ↑C . Observe that there exist a
domino corner in (T,C,ne)∩(T,A, sw) and (T,C,ne)∩(T,B, sw) therefore we can apply the argument
which is used for Cases (1),(2) and (3) in order to get α

pr∼ σ and β
pr∼ σ and hence α

pr∼ β. On the other
hand if T has domino corner C ′ lying in (T,B, sw) the same argument applied on T t gives the desired
result.

Case (5): Again let α, β ∈ Bn as in 1 and suppose that T has the configuration of Figure 2(5) . We
consider Figure 5 for several cases.
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If T has a corner, say C, lying in (T,A, sw), as it is illustrated in Figure 5(a), let σ1 . . . σn ∈ Bn such
that

P r(σ1 . . . σn−1) = T ↑C .

Since there is a domino corner in (T,C,ne) ∩ (T,B, sw) we have β
pr∼ σ as in the Cases (1),(2) and (3).

If C is a vertical domino corner, the argument of the Case (4) applied on the domino corners A and C
gives that α

pr∼ σ. On the other hand if C is a horizontal domino corner then the argument of the Cases
(1),(2) and (3) applied on A and C gives α

pr∼ σ. Therefore α
pr∼ β. On the other hand T has a corner,

say C ′, lying in (T,B, ne) one can use the same argument in the transpose of T .
If there no domino corner in T other then A and B there are two possibility as illustrated in Figure 5(b)

and Figure 5(c). Observe that the case given in Figure 5(b) is just the transpose of the Case (4) illustrated
in Figure 4(d), therefore it follows directly that α

pr∼ β.
For the latter case shown in Figure 5(c), observe that the shaded area is a r-staircase shape and we must

have either the domino cornerA orB of T labeled by (n, n). Here we assumeA is labeled by (n, n) since
for the other case one can use the same argument on the transpose tableau T t. So as Figure 5(c) illustrates,
let x1 . . . xk be the labels of horizontal domino cells and y1 . . . yl be the vertical domino cells which are
both positive decreasing sequence such that r + 1 = k + l. Observe that η(T ↑A) = η(T ↑B) = xk > 0
therefore αn = βn = xk. Let ũ be a signed word which is a shuffle of x1 . . . xk−1 and −y1 . . . −
yl. It is easy to see that P r(nũxk) = T = P r(−nũxk), and nũxk

Dr
3∼ (−n)ũxk. On the other hand

P r(nũ) = T ↑A and P r(−nũ) = T ↑B and by induction hypothesis we have nũ
pr∼ α1 . . . αn−1 and

(−n)ũ
pr∼ β1 . . . βn−1. Hence α = α1 . . . αn−1xk

pr∼ nũxk
Dr

3∼ (−n)ũxk
pr∼ β1 . . . βn−1xk = β. 2
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