A further correspondence between (bc, \bar{b})-parking functions and ($b c, \bar{b}$)-forests

Heesung Shin $\|$ and Jiang Zeng ${ }^{\|}$

Université de Lyon; Université Lyon 1; Institut Camille Jordan, CNRS UMR 5208; 43 boulevard du 11 novembre 11918, F-69622 Villeurbanne Cedex, France

Abstract

For a fixed sequence of n positive integers $(a, \bar{b}):=(a, b, b, \ldots, b)$, an (a, \bar{b})-parking function of length n is a sequence $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ of positive integers whose nondecreasing rearrangement $q_{1} \leq q_{2} \leq \cdots \leq q_{n}$ satisfies $q_{i} \leq a+(i-1) b$ for any $i=1, \ldots, n$. A (a, \bar{b})-forest on n-set is a rooted vertex-colored forests on n-set whose roots are colored with the colors $0,1, \ldots, a-1$ and the other vertices are colored with the colors $0,1, \ldots, b-1$. In this paper, we construct a bijection between ($b c, \bar{b}$)-parking functions of length n and $(b c, \bar{b})$-forests on n-set with some interesting properties. As applications, we obtain a generalization of Gessel and Seo's result about $(c, \overline{1})$ parking functions [Ira M. Gessel and Seunghyun Seo, Electron. J. Combin. 11(2)R27, 2004] and a refinement of Yan's identity [Catherine H. Yan, Adv. Appl. Math. 27(2-3):641-670, 2001] between an inversion enumerator for $(b c, \bar{b})$-forests and a complement enumerator for $(b c, \bar{b})$-parking functions. Résumé. Soit $(a, \bar{b}):=(a, b, b, \ldots, b)$ une suite d'entiers positifs. Une (a, \bar{b})-fonction de parking est une suite $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ d'entiers positives telle que son réarrangement non décroissant $q_{1} \leq q_{2} \leq \cdots \leq q_{n}$ satisfait $q_{i} \leq a+(i-1) b$ pour tout $i=1, \ldots, n$. Une (a, \bar{b})-forêt enracinée sur un n-ensemble est une forêt enracinée dont les racines sont colorées avec les couleurs $0,1, \ldots, a-1$ et les autres sommets sont colorés avec les couleurs $0,1, \ldots, b-1$. Dans cet article, on construit une bijection entre ($b c, \bar{b}$)-fonctions de parking et ($b c, \bar{b}$)-forêts avec des des propriétés intéressantes. Comme applications, on obtient une généralisation d'un résultat de Gessel-Seo sur $(c, \overline{1})$ fonctions de parking [Ira M. Gessel and Seunghyun Seo, Electron. J. Combin. 11(2)R27, 2004] et une extension de l'identité de Yan [Catherine H. Yan, Adv. Appl. Math. 27(2-3):641-670, 2001] entre l'énumérateur d'inversion de $(b c, \bar{b})$-forêts et l'énumérateur complémentaire de $(b c, \bar{b})$-fonctions de parking.

Keywords: Bijection, Forests, Parking functions

1 Introduction

It is well-known [Sta99] that parking functions and (rooted) forests on n-set are both counted by Cayley's formula $(n+1)^{n-1}$. Foata and Riordan [FR74] gave the first bijection between these two equinumerous sets. In the past years, many generalizations and refinements of this result were obtained (See [MR68,

[^0]Kre80, Yan01, SP02, KY03, GS06]). In particular, Stanley and Pitman SP02] introduced the notion of (a, \bar{b})-parking functions where a and b are two positive integers.

Recall that an (a, \bar{b})-parking function (of length n) (see [SP02]) is a sequence $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ of positive integers whose nondecreasing rearrangement $q_{1} \leq q_{2} \leq \cdots \leq q_{n}$ satisfies $q_{i} \leq a+(i-1) b$ for $1 \leq i \leq n$. It is shown [SP02] that the number of (a, \bar{b})-parking functions is

$$
a(a+b n)^{n-1}
$$

Looking for its forest counter parts, Yan [Yan01] defined a (rooted) (a, \bar{b})-forest (see section 2.2 to be a vertex-colored forest in which all roots are colored with the colors $0,1, \ldots, a-1$ and the other vertices are colored with the colors $0,1, \ldots, b-1$. She proved that the enumerator $\bar{P}_{n}^{(a, \bar{b})}(q)$ of complements of (a, \bar{b})-parking functions and the enumerator $I_{n}^{(a, \bar{b})}(q)$ of (a, \bar{b})-forests by the number of their inversions are identical, i.e.,

$$
\begin{equation*}
I_{n}^{(a, \bar{b})}(q)=\bar{P}_{n}^{(a, \bar{b})}(q) \tag{1}
\end{equation*}
$$

It is an open problem to give a bijective proof of the identity (1). Generalizing a bijection of Foata and Riordan [FR74], Yan Yan01] did give a bijection between (a, \bar{b})-forests and (a, \bar{b})-parking functions which is a bijective proof of (1) for $q=1$, but this bijection does not keep track of the statistics involved in (1) even in ordinary $a=b=1$ case. Note that Eu et al. [EFL05] were able to extend the bijection of Foata and Riordan to enumerate (a, \bar{b})-parking functions by their leading terms. Recently, Shin [Shi08] gave a bijective proof of (1) when $a=b=1$.

A different refinement of Cayley's formula was given by Gessel and Seo [GS06]. Using generating functions, they showed that the enumerator of forests with respect to proper vertices and the number of trees and the lucky enumerator of $(a, \overline{1})$-parking function are both equal to

$$
a u \prod_{i=1}^{n-1}(i+u(n-i+a))
$$

Bijective proof of above results for $a=1$ have been given by Seo and Shin [SS07] and Shin [Shi08].
In this paper, we prove three main results. First, in Theorem 1 , we establish a bijection between $(b c, \bar{b})$-parking functions and $(b c, \bar{b})$-forests, which is a generalization of the first author's recent bijection [Shi08]. Secondly, in Theorem 4 , we generalize the aforementioned formula of Gessel and Seo to $(b c, \bar{b})$ case. Finally, in Theorem 5, we extend Gessel and Seo's hook-length formula [GS06, Corollay 6.3] for forests to (a, \bar{b})-forests.

The rest of this paper is organized as follows: In Section 2, we introduce definitions of various statistics on general parking functions and forests. The main theorems of this paper are presented in Section 3 . The proofs of main theorems are given in Sections 4,5,6

2 Definitions

2.1 Statistics on (bc, $\bar{b})$-parking functions

From now on, we fix $a=b c$. We define a parking algorithm for $(b c, \bar{b})$-parking functions by generalizing algorithm in GS06] for $(c, \overline{1})$-parking functions. Suppose that there are $1,2, \ldots,(n+c-1) b$ parking lots with only $n+c-1$ available parking spaces at $b, 2 b, \ldots,(n+c-1) b$, that means the positions are multiples of b.


```
\[
\mathbf{J U M P}_{(6, \overline{3})}(P)=\left(\begin{array}{ccccccccccc}
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \cdots & 0
\end{array}\right)
\]
```

Fig. 1: A $(b c, \bar{b})$-parking function $P=(5,16,3,15,2)$ of length 5 and statistics of P for $b=3, c=2$ where circled numbers are available parking spaces

Given a $(b c, \bar{b})$-parking function $P=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ of length n, suppose that Cars $1,2, \ldots, n$ come to the parking lots in this order and car i prefers parking space p_{i}. We can park the n cars with $n+c-1$ parking spaces by the following parking algorithm: If p_{i} is occupied or non-available, then car i takes the next available space. If q_{i} be the actual parking space with i-th car for $i=1, \ldots, n$, we define

$$
\operatorname{park}\left(p_{1}, \ldots, p_{n}\right)=\left(q_{1}, \ldots, q_{n}\right)
$$

In Figure 1. we give an example of a $(b c, \bar{b})$-parking function $(5,16,3,15,2)$ for $b=3$ and $c=2$. By the Parking Algorithm, we get a sequence with length 5 ,

$$
\operatorname{park}(5,16,3,15,2)=(6,18,3,15,9)
$$

The difference between the favorite parking space p_{i} and the actual parking space q_{i} is called the jump of car i, and denoted by $\operatorname{jump}(P ; i)$, that is,

$$
\operatorname{jump}(P ; i)=q_{i}-p_{i} \quad \text { if } \quad \operatorname{park}\left(p_{1}, \ldots, p_{n}\right)=\left(q_{1}, \ldots, q_{n}\right)
$$

Let jump (P) denote the sum of the jumps of P, that is,

$$
\operatorname{jump}(P)=\sum_{i} \operatorname{jump}(P ; i) .
$$

Clearly jump $(P ; i) \geq 0$. We say that car i is lucky if $\operatorname{jump}(P ; i)=0$. Denote the number of lucky cars of P by lucky (P).

After parking all the n cars, there are $c-1$ non-occupied parking spaces which divide the parking lots into c blocks of parking lots. Let block $(P ; i)$ be the number of non-occupied parking spaces on the
right of car i after running parking algorithm. Let $\operatorname{block}(P)$ denote the sum of blocks of all cars, i.e., $\operatorname{block}(P)=\sum_{i} \operatorname{block}(P ; i)$. We define $(b c, \bar{b})$-jump of $(b c, \bar{b})$-parking function

$$
\begin{aligned}
\operatorname{jump}_{(b c, \bar{b})}(P ; i) & =\operatorname{jump}(P ; i)+b \cdot \operatorname{block}(P ; i) \\
\operatorname{jump}_{(b c, \bar{b})}(P) & =\operatorname{jump}(P)+b \cdot \operatorname{block}(P)=b c n+\binom{n}{2} b-|P|
\end{aligned}
$$

where $|P|=\sum p_{i}$. Note that $(b c, \bar{b})$-jump is identical to the complement of $|P|$ in Yan01].
Let lucky $j_{j, k}(P)$ denote the number of cars i such that $\operatorname{block}(P ; i)=j$ and $\operatorname{jump}(P ; i)=k$. We define the multi-statistic $\mathbf{J U M P}_{(b c, \bar{b})}$ by

$$
\mathbf{J U M P}_{(b c, \bar{b})}(P)=\left(\begin{array}{cccc}
\operatorname{lucky}_{0,0}(P) & \operatorname{lucky}_{0,1}(P) & \cdots & \operatorname{lucky}_{0, N}(P) \\
\operatorname{lucky}_{1,0}(P) & \operatorname{lucky}_{1,1}(P) & \cdots & \operatorname{lucky}_{1, N}(P) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{lucky}_{c-1,0}(P) & \operatorname{lucky}_{c-1,1}(P) & \cdots & \operatorname{lucky}_{c-1, N}(P)
\end{array}\right)
$$

where $N=\binom{n+1}{2} b-n$.
A car c is called critical if there are only former cars parked on the right of the block containing c after parking. If car c is critical in a $(b c, \bar{b})$-parking function $P, \operatorname{crit}(P ; c)=1$. Otherwise, $\operatorname{crit}(P ; c)=0$. Denote the number of critical cars in a $(b c, \bar{b})$-parking function P by $\operatorname{crit}(P)$.

As an example, a $(b c, \bar{b})$-parking function is given in Figure 1 for $b=3$ and $c=2$ in order to illustrate different statistics.

2.2 Statistics on (bc, $\bar{b})$-Forests

A (rooted) forest is a simple graph on $[n]=\{1, \ldots, n\}$ without cycles, whose every connected component has a distinguished vertex, called a root. A (rooted) (a, \bar{b})-forest on $[n]$ is a pair (F, κ) where F is a forest on $[n], \kappa$ is a mapping from the set of vertices in F to non-negative integers such that $\kappa(v)<a$ if v is a root and $\kappa(v)<b$, otherwise.

In a rooted forest F, a vertex j is called a descendant of a vertex i if the vertex i lies on the unique path from the root to the vertex j. In particular, every vertex is a descendant of itself. Denote the set of descendants of a vertex v by $D_{F}(v)$. The hook-length h_{v} of v is defined by the number of descendants of v in a forest. A vertex v is a parent of u if v and u are connected by one edge and u is a descendant of v.

As defined by Mallows and Riordan [MR68], an inversion in a rooted forest is an ordered pair (i, j) such that $i>j$ and j is a descendant of i. Let $\operatorname{Inv}(F ; v)$ denote the set of ordered pairs (v, x) such that $v>x$ and $x \in D_{F}(v)$. Denote the number of all inversions in a rooted forest F by inv (F). We need to generalize the notion of inversions to $(b c, \bar{b})$-forests as follows: Let $\bar{\kappa}(v)$ denote the remainder of $\kappa(v)$ modulo b, i.e.,

$$
\kappa(v) \equiv \bar{\kappa}(v) \quad \bmod b \quad \text { with } 0 \leq \bar{\kappa}(v) \leq b-1
$$

Define the inversion $\operatorname{inv}(F ; v)$ of a $(b c, \bar{b})$-forest F by

$$
\operatorname{inv}(F ; v)=|\operatorname{Inv}(F ; v)|+\bar{\kappa}(v) \cdot\left|D_{F}(v)\right|
$$

Fig. 2: A $(b c, \bar{b})$-forest F on $[5]$ and statistics of F for $b=3, c=2$ where $\kappa(v)$ is boxed
Let $\operatorname{inv}(F)$ denote the sum of $\operatorname{inv}(F ; v)$ over all vertices v of F, i.e.,

$$
\operatorname{inv}(F)=\sum_{v} \operatorname{inv}(F ; v)
$$

Given a $(b c, \bar{b})$-forest F, a vertex v is called a proper vertex if the vertex v is the smallest among all its descendants and its color is a multiple of b, that is, $\operatorname{inv}(F ; v)=0$. Let $\operatorname{prop}(F)$ denote the number of all proper vertices in a rooted forest F. By definition, every leaf v with $\bar{\kappa}(v)=0$ is a proper vertex.

Denote the root of the tree including a vertex v in an $(b c, \bar{b})$-forest F by $R(v)$. A tree-color $\operatorname{tcol}(F ; v)$ of a vertex v in a $(b c, \bar{b})$-forest F is defined $\operatorname{by} \operatorname{tcol}(F ; v)=\left\lfloor\frac{\kappa(R(v))}{b}\right\rfloor$. Let $\operatorname{tcol}(F)$ denotes the sum of root colors of all vertices, i.e., $\operatorname{tcol}(F)=\sum_{v} \operatorname{tcol}(F ; v)$. We define the $(b c, \bar{b})$-inversion of $(b c, \bar{b})$-forest F by

$$
\begin{aligned}
\operatorname{inv}_{(b c, \bar{b})}(F ; v) & =\operatorname{inv}(F ; v)+b \cdot \operatorname{tcol}(F ; v) \\
\operatorname{inv}_{(b c, \bar{b})}(F) & =\operatorname{inv}(F)+b \cdot \operatorname{tcol}(F)
\end{aligned}
$$

Note that $(b c, \bar{b})$-inversion is identical to the $(b c, b)$-inversion in [Yan01].
Let $\operatorname{prop}_{j, k}(F)$ denote the number of vertices such that $\operatorname{tcol}(F ; v)=j$ and $\operatorname{inv}(F ; v)=k$. We define the multi-statistic $\mathbf{I N V}_{(b c, \bar{b})}$ by

$$
\mathbf{I N V}_{(b c, \bar{b})}(F)=\left(\begin{array}{cccc}
\operatorname{prop}_{0,0}(F) & \operatorname{prop}_{0,1}(F) & \cdots & \operatorname{prop}_{0, N}(F) \\
\operatorname{prop}_{1,0}(F) & \operatorname{prop}_{1,1}(F) & \cdots & \operatorname{prop}_{1, N}(F) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{prop}_{c-1,0}(F) & \operatorname{prop}_{c-1,1}(F) & \cdots & \operatorname{prop}_{c-1, N}(F)
\end{array}\right)
$$

where $N=\binom{n+1}{2} b-n$.
If a vertex v is a root of a forest F, we define $\operatorname{tree}(f ; v)=1$. Otherwise, $\operatorname{tree}(f ; v)=0$. Denote the number of trees (or roots) in a $(b c, \bar{b})$-forest F by tree (F).

In Figure 2, an example of a $(b c, \bar{b})$-forest F on n-set is given for $b=3$ and $c=2$ in order to illustrate different statistics.

3 Main Results

Let $P F_{(b c, \bar{b})}$ be the set of $(b c, \bar{b})$-parking functions of length n and $F_{(b c, \bar{b})}$ be the set of $(b c, \bar{b})$-forests on $[n]$. First of all, we recall the mapping $\varphi: F_{(1, \overline{1})} \rightarrow P F_{(1, \overline{1})}$ between forests and ordinary parking functions in [Shi08]. Given a forest $F \in F_{(1, \overline{1})}$ and a vertex $v \in[n]$, let h_{v} be the number of descendants of v in F and $D_{F}(v)=\left\{d_{1}, d_{2}, \ldots, d_{h_{v}}\right\}$ is the set of descendants of v in F. We define a cyclic permutation θ_{v} on $D_{F}(v)$ by

$$
\theta_{v}=\left(d_{1} d_{2} \cdots d_{k-1} v\right)
$$

where $d_{1}>d_{2}>\ldots>d_{k-1}$ are all the descendants of $v \in V(F)$ greater than v and $\theta_{v}\left(d_{i}\right)=d_{i+1}$ for $1 \leq i \leq k-1$ and $\theta_{v}(v)=d_{1}$. Let $\theta_{F}=\theta_{1} \theta_{2} \cdots \theta_{n}$. We attach to each vertex v in F a triple of labels

$$
\left(\theta_{F}(v), \operatorname{inv}(F: v), \operatorname{post}\left(\theta_{F}(F): \theta_{F}(v)\right)\right)
$$

where $\theta_{F}(F)$ is a forest by relabeling v by $\theta_{F}(v)$ and $\operatorname{post}(F: v)$ is a postorder index of v in F. We define the mapping $f:[n] \rightarrow[n]$ by

$$
v \mapsto \operatorname{post}\left(\theta_{F}(F): \theta_{F}(v)\right)-\operatorname{inv}(F: v)
$$

for every vertex v. The bijection $\varphi: F_{(1, \overline{1})} \rightarrow P F_{(1, \overline{1})}$ is defined by

$$
\begin{equation*}
\varphi(F)=\left(f\left(\theta_{F}^{-1}(1)\right), f\left(\theta_{F}^{-1}(2)\right), \ldots, f\left(\theta_{F}^{-1}(n)\right)\right) \tag{2}
\end{equation*}
$$

Now we generalize the mapping φ to a bijection between $(b c, \bar{b})$-forests and $(b c, \bar{b})$-parking functions. We define the mapping $\varphi: F_{(b c, \bar{b})} \rightarrow P F_{(b c, \bar{b})}$ as follows: Given a $F \in F_{(b c, \bar{b})}$, the connected components of a forest F can be classified according to tree-colors. Let F_{k} be the sub-forests of F satisfying

$$
\operatorname{tcol}(F: v)=k
$$

for all $v \in F_{k}$. We define a cyclic permutation θ_{v} on $D_{F}(v)$ as above. When we define a postorder index $\operatorname{post}(F: v)$ of v in F, forests $F_{c-1}, F_{c-2}, \ldots, F_{0}$ are traversed in this order. We attach to each vertex v in F a quadruple of labels

$$
\left(\theta_{F}(v), \operatorname{inv}(F: v), \operatorname{post}\left(\theta_{F}(F): \theta_{F}(v)\right), \operatorname{tcol}(F: v)\right)
$$

where $\theta_{F}(F)$ is a forest by relabeling v by $\theta_{F}(v)$. After that, we define the mapping $f:[n] \rightarrow[n]$ by

$$
v \mapsto\left(\operatorname{post}\left(\theta_{F}(F): \theta_{F}(v)\right)+c-1-\operatorname{tcol}(F: v)\right) b-\operatorname{inv}(F: v)
$$

on every vertex v. The mapping $\varphi: F_{(b c, \bar{b})} \rightarrow P F_{(b c, \bar{b})}$ is also defined by (2). For example, the forest F in Figure 2 goes to the parking function P in Figure 1 by the mapping φ.

Theorem 1 (Main Theorem) The mapping φ is a bijection between ($b c, \bar{b}$)-forests and $(b c, \bar{b})$-parking functions satisfying

$$
\left(\mathbf{I N V}_{(b c, \bar{b})}, \text { tree }\right)(F)=\left(\mathbf{J U M P}_{(b c, \bar{b})}, \text { crit }\right) \varphi(F)
$$

for all $(b c, \bar{b})$-forests F.
By definitions, the statistics $\operatorname{inv}_{(b c, \bar{b})}$, inv, tcol, and prop can be written as follows:

$$
\begin{aligned}
\operatorname{inv}_{(b c, \bar{b})}(F) & =\operatorname{inv}(F)+b \cdot \operatorname{tcol}(F) \\
\operatorname{inv}(F) & =(1,1,1, \ldots, 1) \mathbf{I N V}_{(b c, \bar{b})}(F)(0,1,2, \ldots, N)^{T} \\
\operatorname{tcol}(F) & =(0,1,2, \ldots,(c-1)) \mathbf{I N V}_{(b c, \bar{b})}(F)(1,1,1, \ldots, 1)^{T} \\
\operatorname{prop}(F) & =(1,1,1, \ldots, 1) \mathbf{I N V}_{(b c, \bar{b})}(F)(1,0,0, \ldots, 0)^{T}
\end{aligned}
$$

Similarly, the statistics jump ${ }_{(b c, \bar{b})}$, jump, block, and lucky can also be written as follows:

$$
\begin{aligned}
& \operatorname{jump}_{(b c, \bar{b})}(P)=\operatorname{jump}(P)+b \cdot \operatorname{block}(P) \\
& \operatorname{jump}^{(P)}=(1,1,1, \ldots, 1) \mathbf{J U M P} \\
&(b c, \bar{b}) \\
& \operatorname{block}(P)=(0,1,2, \ldots,(c-1)) \mathbf{J U M P}_{(b c, \bar{b})}(P)(1,1,1, \ldots, 1)^{T}, \\
& \operatorname{lucky}(P)=(1,1,1, \ldots, 1) \mathbf{J U M P}_{(b c, \bar{b})}(P)(1,0,0, \ldots, 0)^{T}
\end{aligned}
$$

As a consequence, we derive the following corollary from Theorem 1 .
Corollary 2 The bijection $\varphi: F_{(b c, \bar{b})} \rightarrow P F_{(b c, \bar{b})}$ has the following property:

$$
\left(\operatorname{inv}_{(b c, \bar{b})}, \text { inv }, \text { tcol, prop, tree }\right)(F)=\left(\operatorname{jump}_{(b c, \bar{b})}, \text { jump, block, lucky, crit }\right) \varphi(F)
$$

for $F \in F_{(b c, \bar{b})}$.
Introduce the following enumerators of $(b c, \bar{b})$-forest and $(b c, \bar{b})$-parking functions:

$$
\begin{aligned}
I_{n}^{(b c, \bar{b})}(q, u, t) & =\sum_{F \in F_{(b c, \bar{b})}} q^{\operatorname{inv}_{(b c, \bar{b})}(F)} u^{\operatorname{prop}(F)} t^{\operatorname{tree}(F)} \\
\bar{P}_{n}^{(b c, \bar{b})}(q, u, t) & =\sum_{P \in P F_{(b c, \bar{b})}} q^{\mathrm{jump}}{ }_{(b c, \bar{b})}(P)
\end{aligned} u^{\operatorname{lucky}(P)} t^{\operatorname{crit}(P)} .
$$

Then we can derive a partial refinement of (1) from Corollary 2 .
Corollary 3 We have

$$
I_{n}^{(b c, \bar{b})}(q, u, t)=\bar{P}_{n}^{(b c, \bar{b})}(q, u, t)
$$

Define the homogeneous polynomial

$$
P_{n}(a, b, c)=c \prod_{i=1}^{n-1}(a i+b(n-i)+c)
$$

Theorem 4 We have

$$
\begin{equation*}
\sum_{P \in P F_{(b c, \bar{b})}} u^{\operatorname{lucky}(P)} t^{\operatorname{crit}(P)}=\sum_{F \in F_{(b c, \bar{b})}} u^{\operatorname{prop}(F)} t^{\operatorname{tree}(F)}=P_{n}(b, b-1+u, c t(b-1+u)) . \tag{3}
\end{equation*}
$$

Remark. For $b=c=1$ and $b=t=1$, we recover, respectively, two results of Gessel and Seo GS06, Theorem 6.1 and Corollay 10.2].

Theorem 5 We have the hook-length formula of (a, \bar{b})-forests

$$
\begin{equation*}
\sum_{F \in F_{(a, \bar{b})}} c^{\operatorname{tree}(F)} \prod_{v}\left(1+\frac{\alpha}{h_{v}}\right)=P_{n}(b, b(1+\alpha), a c(1+\alpha)) \tag{4}
\end{equation*}
$$

where the sum is over all (a, \bar{b})-forests on n-set.
Remark. For $a=b=1$ this is Gessel and Seo's hook-length formula [GS06, Corollay 6.3].

4 Proof of Theorem 1

The inverse map of the extended mapping φ can be defined like the method in the paper [Shi08]: Given a $(b c, \bar{b})$-parking function P, all cars are parked by the parking algorithm. At that time, we record the jump $(P ; c)$ for every car in next row. After finishing, we draw an edge between the car c and the closest car on its right which is larger than c in its same block. We get the forest-structure on the cars as vertices. That is a forest D. By defining

$$
|\operatorname{inv}(F ; v)| \equiv \operatorname{jump}(P ; c) \quad \bmod \left|D_{F}(v)\right|
$$

we can recover two forests I and F. By $\bar{\kappa}(v):=\left\lfloor\frac{\operatorname{jump}(P ; c)}{b}\right\rfloor$, we can recover the color of v in F where $\theta_{F}(v)=c$.

We can prove that φ is weight preserving by the following lemma.
Lemma 6 There is a bijection $\varphi: F_{(b c, \bar{b})} \rightarrow P F_{(b c, \bar{b})}$ between $(b c, \bar{b})$-forests and $(b c, \bar{b})$-parking functions such that

$$
(\text { inv }, \text { tcol, tree })(F ; v)=(\text { jump, block, crit })\left(\varphi(F) ; \theta_{F}(v)\right)
$$

for all $(b c, \bar{b})$-forests F and all vertices $v \in F$.
Proof: If we use the function $d \mapsto(g+c-1-k) b$ instead of $d \mapsto(g+c-1-k) b-i$, all cars are lucky since all images of f are different. So using the original function $d \mapsto((g+c-1-k) b-i)$, the value of jump $(P: c)$ increases by $\operatorname{inv}(T: v)$ where $\theta_{F}(v)=c$. Thus $\operatorname{inv}(F: v)=\operatorname{jump}\left(\varphi(F): \theta_{F}(v)\right)$.

Suppose that $\operatorname{tcol}(F ; v)=k$, which means that a vertex v is in F_{k}. So a label of $\theta_{F}(v)$ is also in D_{k}. Then $\operatorname{car} \theta_{F}(v)$ is parked actually in a k-th block. Then $\operatorname{block}\left(\varphi(F) ; \theta_{F}(v)\right)=k$.

If a vertex v is a root of a tree in F, a parent of $\theta_{F}(v)$ is the root of D. So there is no car larger than the $\operatorname{car} \theta_{F}(v)$ on its right in same block. Hence the $\operatorname{car} \theta_{F}(v)$ is critical.

5 Proof of Theorem 4

The first equality follows from Corollary 3 for $q=1$, i.e.,

$$
\sum_{F \in F_{(b c, \bar{b})}} u^{\operatorname{prop}(F)} t^{\operatorname{tree}(F)}=\sum_{P \in P F_{(b c, \bar{b})}} u^{\operatorname{lucky}(P)} t^{\operatorname{crit}(P)} .
$$

To prove the second equality in Theorem 4, we need to appear for two Prüfer-like algorithms: the colored Prüfer code [CKSS04] and reverse Prüfer algorithm in [SS07]. Given a ($b c, \bar{b}$)-forest F, deleting the largest leaves successively v_{n}, \ldots, v_{1} where σ_{i} is the parent of v_{i} or $\sigma_{i}=-\operatorname{tcol}\left(F: v_{i}\right)$ if v_{i} is a root and the color $c_{i}=\bar{\kappa}\left(v_{i}\right)$. Then the colored Prüfer code of F is defined by

$$
\sigma=\left(\begin{array}{cccc}
\sigma_{n} & \sigma_{n-1} & \cdots & \sigma_{1} \\
c_{n} & c_{n-1} & \cdots & c_{1}
\end{array}\right) \in\binom{\{-(c-1), \ldots, n\}}{\{0, \ldots, b-1\}}^{n-1} \times\binom{\{-(c-1), \ldots, 0\}}{\{0, \ldots, b-1\}}
$$

In order to count the number of proper vertices, we define the reverse colored Prüfer algorithm as follows: Starting from a colored Prüfer code $\sigma=\left(\begin{array}{cccc}\sigma_{n} & \sigma_{n-1} & \cdots & \sigma_{1} \\ c_{n} & c_{n-1} & \cdots & c_{1}\end{array}\right)$. Let F_{1} be the forest with unlabeled single vertex v_{1} by $\operatorname{tcol}\left(F: v_{1}\right)=-\sigma_{1}$. For each $i=2, \ldots, n$, we assume that F_{i-1} is the forest obtained from the subcode $\left(\begin{array}{cccc}\sigma_{i-1} & \sigma_{i-2} & \cdots & \sigma_{1} \\ & c_{i-2} & \cdots & c_{1}\end{array}\right)$. Let ℓ be the minimal element in $[n]$ which does not appear in F_{i-1}. To construct F_{i} from F_{i-1} and $\left(\sigma_{i}, c_{i-1}\right)$, we should consider the following two cases.

1. Suppose that σ_{i} appears in F_{i-1}. Then the unlabeled vertex v in F_{i-1} is labeled by ℓ with color c_{i-1} in T_{i}. Since the new label ℓ is minimal among the unused labels in T_{i-1}, the vertex v with the color c_{i-1} is a proper vertex in T if and only if $c_{i-1}=0$.
2. Suppose that σ_{i} does not appear in T_{i-1}. Then the unlabeled vertex v in F_{i-1} is labeled by σ_{i} in F_{i}.
(a) If $\sigma_{i} \leq 0$, then the vertex v is a proper vertex in F, as in case (1) and the unlabeled vertex in F_{i} becomes a root in F.
(b) If $\sigma_{i}=l$, then the vertex v is a proper vertex in F, as in case (1).
(c) If $\sigma_{i} \neq l$, then the vertex v will have a descendant labeled by ℓ. Thus, the vertex v is not proper vertex in F.

So there are exactly $i-1+c$ choices of σ_{i} and one choice of c_{i-1} in case (1), case 2a), and case 2b), such that the newly labeled vertex v is a proper vertex in F. Because the number of i 's such that $\sigma_{i} \leq 0$ in a colored Prüfer-code equals the number of the roots in F, tree (F) is enumerated by nonpositive number
in the colored Prüfer-code of a forest F. Thus we have the following formula:

$$
\begin{array}{rlr}
\sum_{F \in F_{(b c, \bar{b})}} u^{\operatorname{prop}(F)} t^{\text {tree }(F)}= & c t & \text { by } \sigma_{1} \in\{0,-1, \ldots,-(c-1)\} \\
& \times \prod_{i=2}^{n}(b(n-i+1)+(i-1+c t)(b-1+u)) & \text { by }\left(\sigma_{i}, c_{i-1}\right) \\
& \times(b-1+u) & \text { by } c_{n-1} \\
& =P_{n}(b, b-1+u, c t(b-1+u)) &
\end{array}
$$

This completes the bijective proof of equation (3).

6 Proof of Theorem 5

By Theorem 4 , the right side of (4) is

$$
\sum_{F \in F_{(b, \bar{b})}}(1+b \alpha)^{\operatorname{prop}(F)}\left(\frac{a c}{b}\right)^{\operatorname{tree}(F)}
$$

Replacing α by α / b in (4), it suffices to prove the identity:

$$
\begin{equation*}
\sum_{F \in F_{(a, \bar{b})}} c^{\operatorname{tree}(F)} \prod_{v}\left(1+\frac{\alpha}{b h_{v}}\right)=\sum_{F \in F_{(b, \bar{b})}}(1+\alpha)^{\operatorname{prop}(F)}\left(\frac{a c}{b}\right)^{\operatorname{tree}(F)} . \tag{5}
\end{equation*}
$$

We follow Gessel and Seo's proof [GS06] in the case of $a=b=1$. For each (unlabeled) forest \tilde{F} on n sets, a labeling of \tilde{F} is a bijection from $V(\tilde{F})$ to $[n]$ and (a, \bar{b})-coloring κ is a mapping from $V(\tilde{F})$ to nonnegative numbers such that $\kappa(v)<a$ if v is a root and $\kappa(v)<b$ otherwise. Define the set of (a, \bar{b})-forests

$$
L_{(a, \bar{b})}(\tilde{F})=\{(L, \kappa): L \text { is a labeling and } \kappa \text { is a }(a, \bar{b}) \text {-coloring of } \tilde{F}\}
$$

Lemma 7 Let \tilde{F} be a (unlabeled) forest with n vertices. If S is a subset of $V(\tilde{F})$, then the number of labelings $L \in L_{(b, \bar{b})}(\tilde{F})$ such that every vertex in S is a proper vertex is

$$
\begin{equation*}
\frac{n!b^{n}}{\prod_{v \in S}\left(b h_{v}\right)} \tag{6}
\end{equation*}
$$

Proof: Clearly the cardinality of $L_{(b, \bar{b})}(\tilde{F})$ is $n!b^{n}$. Among the elements of $L_{(b, \bar{b})}(\tilde{F})$, the probability that some vertex $v \in S$ is a proper vertex equals $\frac{1}{b h_{v}}$. In other words, the number of labelings $L \in L_{(b, \bar{b})}(\tilde{F})$ such that every vertex in S is a proper vertex is $\frac{1}{b h_{v}}$ times the number of labelings in which every vertex in $S \backslash\{v\}$ is a proper vertex. By induction on $|S|$, we are done.

Let us consider the formula

$$
\sum_{L \in L_{(b, \tilde{b})}(\tilde{F})}(1+\alpha)^{\operatorname{prop}(L)}\left(\frac{a c}{b}\right)^{\operatorname{tree}(L)}=\sum_{L \in L_{(b, \bar{b})}(\tilde{F})} \sum_{S} \alpha^{|S|}\left(\frac{a c}{b}\right)^{\operatorname{tree}(L)},
$$

where S runs over the subsets of the set of proper vertices of L. Reversing the order of two summations, it follows by Lemma 7 that

$$
\begin{aligned}
\sum_{S \subset V(\tilde{F})}\left(\frac{a c}{b}\right)^{\operatorname{tree}(\tilde{F})} \sum_{L} \alpha^{|S|} & =\sum_{S \subset V(\tilde{F})}\left(\frac{a c}{b}\right)^{\operatorname{tree}(\tilde{F})} \frac{n!b^{n}}{\prod_{v \in S}\left(b h_{v}\right)} \alpha^{|S|} \\
& =n!b^{n}\left(\frac{a c}{b}\right)^{\operatorname{tree}(\tilde{F})} \prod_{v \in V(\tilde{F})}\left(1+\frac{\alpha}{b h_{v}}\right)
\end{aligned}
$$

where $L \in L_{(b, \bar{b})}(\tilde{F})$ such that every vertex in S is a proper vertex. Therefore,

$$
\begin{equation*}
\sum_{L \in L_{(b, \bar{b})}(\tilde{F})}(1+\alpha)^{\operatorname{prop}(L)}\left(\frac{a c}{b}\right)^{\operatorname{tree}(L)}=n!b^{n}\left(\frac{a c}{b}\right)^{\operatorname{tree}(\tilde{F})} \prod_{v \in V(\tilde{F})}\left(1+\frac{\alpha}{b h_{v}}\right) \tag{7}
\end{equation*}
$$

Let us say that two labelings with colorings of a forest \tilde{F} are equivalent if there is an automorphism of \tilde{F} that takes one labeling with coloring to the other. Let \tilde{F} be a forest on n set with automorphism group G. Then the $n!b^{n-\operatorname{tree}(\tilde{F})} a^{\text {tree }(\tilde{F})}$ labelings with colorings of F fall into $n!b^{n-\operatorname{tree}(\tilde{F})} a^{\operatorname{tree}(\tilde{F})} /|G|$ equivalence classes. Define

$$
\tilde{L}_{(a, \bar{b})}(\tilde{F})=\left\{L \in F_{(a, \bar{b})}: \text { The underlying graph of } L \text { is } \tilde{F}\right\}
$$

Clearly $\left|\tilde{L}_{(a, \bar{b})}(\tilde{F})\right|=n!b^{n-\operatorname{tree}(\tilde{F})} a^{\operatorname{tree}(\tilde{F})} /|G|$ and equivalent labelings with coloring have the same number of proper vertices of trees, dividing (7) by $|G|$, so we obtain the following.

$$
\sum_{L \in \tilde{L}_{(b, \bar{b})}(\tilde{F})}(1+\alpha)^{\operatorname{prop}(L)}\left(\frac{a c}{b}\right)^{\operatorname{tree}(L)}=\left|\tilde{L}_{(a, \bar{b})}(\tilde{F})\right| c^{\operatorname{tree}(\tilde{F})} \prod_{v \in V(\tilde{F})}\left(1+\frac{\alpha}{b h_{v}}\right)
$$

Summing over all (unlabeled) forests \tilde{F} yields

$$
\sum_{\tilde{F}} \sum_{L \in \tilde{L}_{(b, \bar{b})}(\tilde{F})}(1+\alpha)^{\operatorname{prop}(L)}\left(\frac{a c}{b}\right)^{\operatorname{tree}(L)}=\sum_{\tilde{F}}\left|\tilde{L}_{(a, \bar{b})}(\tilde{F})\right| c^{\operatorname{tree}(\tilde{F})} \prod_{v \in V(\tilde{F})}\left(1+\frac{\alpha}{b h_{v}}\right)
$$

As $F_{(a, \bar{b})}=\bigcup_{\tilde{F}} \tilde{L}_{(a, \bar{b})}(\tilde{F})$, we obtain (5).

7 Concluding Remarks

In this paper, we give a bijective proof of (1) in the $(b c, \bar{b})$ case. The problem of giving a bijective proof of (1) in the general (a, \bar{b}) case is still open. It seems that the construct of such a bijection in the $(1, \bar{b})$ case is crucial.

Acknowledgement

This work is supported by la Région Rhône-Alpes through the program "MIRA Recherche 2008", project 0803414701.

References

[CKSS04] Manwon Cho, Dongsu Kim, Seunghyun Seo, and Heesung Shin, Colored Prüfer codes for k-edge colored trees, Electron. J. Combin. 11 (2004), no. 1, Note 10, 7 pp. (electronic).
[EFL05] Sen-Peng Eu, Tung-Shan Fu, and Chun-Ju Lai, On the enumeration of parking functions by leading terms, Adv. in Appl. Math. 35 (2005), no. 4, 392-406.
[FR74] Dominique Foata and John Riordan, Mappings of acyclic and parking functions, Aequationes Math. 10 (1974), 10-22.
[GS06] Ira M. Gessel and Seunghyun Seo, A refinement of Cayley's formula for trees, Electron. J. Combin. 11 (2004/06), no. 2, Research Paper 27, 23 pp. (electronic).
[Kre80] G. Kreweras, Une famille de polynômes ayant plusieurs propriétés énumeratives, Period. Math. Hungar. 11 (1980), no. 4, 309-320.
[KY03] Joseph P. S. Kung and Catherine Yan, Gončarov polynomials and parking functions, J. Combin. Theory Ser. A 102 (2003), no. 1, 16-37.
[MR68] C. L. Mallows and John Riordan, The inversion enumerator for labeled trees, Bull. Amer. Math. Soc. 74 (1968), 92-94.
[Shi08] Heesung Shin, A new bijection between forests and parking functions, arXiv:0810.0427.
[SP02] Richard P. Stanley and Jim Pitman, A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, Discrete Comput. Geom. 27 (2002), no. 4, 603-634.
[SS07] Seunghyun Seo and Heesung Shin, A generalized enumeration of labeled trees and reverse Prüfer algorithm, J. Combin. Theory Ser. A 114 (2007), no. 7, 1357-1361.
[Sta99] Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999, With a foreword by GianCarlo Rota and appendix 1 by Sergey Fomin.
[Yan01] Catherine H. Yan, Generalized parking functions, tree inversions, and multicolored graphs, Adv. in Appl. Math. 27 (2001), no. 2-3, 641-670, Special issue in honor of Dominique Foata's 65th birthday (Philadelphia, PA, 2000).

[^0]: ${ }^{\dagger}$ hshin@math.univ-lyon1.fr
 \ddagger zeng@math.univ-lyon1.fr

