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Enumeration of
the distinct shuffles
of permutations

Camillia Smith Barnes†

Department of Mathematics, Harvard University, One Oxford St, Cambridge, MA 02138, USA,
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A shuffle of two words is a word obtained by concatenating the two original words in either order and then sliding
any letters from the second word back past letters of the first word, in such a way that the letters of each original word
remain spelled out in their original relative order. Examples of shuffles of the words 1234 and 5678 are, for instance,
15236784 and 51236748. In this paper, we enumerate the distinct shuffles of two permutations of any two lengths,
where the permutations are written as words in the letters 1, 2, 3, . . . , m and 1, 2, 3, . . . , n, respectively.
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1 Introduction
Mathematicians have recently studied several notions of ‘shuffling’, including shuffling of a deck of cards
(see [Aldous & Diaconis (1986)][Bayer & Diaconis (1992)] [Diaconis (1988)] [Diaconis (2002)] [Di-
aconis et al. (1983)] [Trefethen & Trefethen (2002)] [van Zuylen & Schalekamp (2004)]), ‘shuffling’
algorithms, such as the Fisher-Yates shuffle (also known as the Knuth shuffle) that generate random per-
mutations of a finite set (see [Fisher & Yates (1948)] [Knuth (1973)] [Knuth (1998)]), and the perfect
shuffle permutation (see [Diaconis et al. (1983)] [Ellis et al. (2000)] [Mevedoff & Morrison (1987)]).

We shall be interested in shuffles of words, where a word is defined to be a finite string of elements
(known as letters) of a given set (known as an alphabet); in general repetitions of letters are allowed.
We define the length of a word u = a1 . . . am to be l(u) = m and the support of u to be supp(u) =
{a1, . . . , am}. A subword x of a word u is defined to be a word obtained by crossing out a (possibly
empty) subset of the letters of u.

For example, for the alphabet A = {1, 2, 3, 5, 7}, the words u = 25372 and v = 123 have supports
supp(u) = {2, 3, 5, 7} and supp(v) = {1, 2, 3}, and lengths l(u) = 5 and l(v) = 3. Two subwords of u
are 232 and 537.

†Supported by a National Science Foundation Graduate Research Fellowship and by the AT&T Labs Fellowship Program.

1365–8050 c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/proceedings/
http://www.dmtcs.org/proceedings/dmAKind.html


156 Camillia Smith Barnes

2 Shuffles of Words
Given two words u = a1a2 . . . am and v = b1b2 . . . bn in some alphabet A, we obtain a shuffle of u and v
by concatenating u and v to get

c1c2 . . . cm+n = a1a2 . . . amb1b2 . . . bn (1)

and then permuting letters in such a way to achieve

w = cρ(1)cρ(2) . . . cρ(m+n), (2)

for some permutation ρ ∈ Sm+n on m+ n letters satisfying the order-preserving conditions

ρ−1(1) < ρ−1(2) < · · · < ρ−1(m) (3)

and

ρ−1(m+ 1) < ρ−1(m+ 2) < · · · < ρ−1(m+ n). (4)

In other words, we intersperse the letters of u with those of v to get w in such a way that the subword
obtained by restricting w to the letters that came from u is simply u itself (and similarly for the subword
obtained by restriction to the letters of v). Two different shuffles of the words 1234 and 5678 are, for
instance, 15236784 and 51236748.

In the literature, the shuffle w is sometimes denoted by u ttv (see [Hersh (2002)]). Since tt depends
on a choice of ρ, however, and since u ttv sometimes denotes instead the shuffle product of u and v in
the shuffle algebra (see [Reutenauer (1993)], page 24), we will use the notation ttρ to avoid ambiguity.
We define

sh(u, v) = {u ttρv | ρ ∈ Sm+n satisfies (3) and (4)} (5)

to be the set of all shuffles of u with v. For ease of reference, we shall also set

Sm,n = {ρ ∈ Sm+n | ρ satisfies (3) and (4)}. (6)

The shuffle algebra A (see [Crossley (2006)] [Ehrenborg (1996)] [Reutenauer (1993)]), a commutative
Hopf algebra structure on the free Z-module generated by finite words in a given alphabet A, has as
multiplication the shuffle product 4, which is given by

4 (u⊗ v) =
∑

w∈sh(u,v)

µww (7)

for words u and v, where

µw = #{ρ ∈ Sl(u),l(v) | u ttρv = w} (8)

is the multiplicity of w. The shuffle algebra has applications, for instance, in number theory: the multipli-
cation of two multiple zeta values can be expressed as the sum of other multiple zeta values via a shuffle
relation or a quasi-shuffle (stuffle) relation (see [Guo & Xie (2008)] [Ihara et al. (2006)]).
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We can define, analogously, a shuffle of k words (or k-shuffle) to be a permutation of the concatenation
of k words (with lengths n1, n2, . . . , nk) in such a way that the inverse permutation preserves order when
restricted to the index subsets [n1], [n1 + 1, n1 +n2], . . . , [n1 +n2 + · · ·+nk−1 + 1, n1 +n2 + · · ·+nk],
where the interval notation [n1+1, n1+n2] denotes the set of integers from n1+1 to n1+n2. A k-shuffle
is also sometimes referred to as an α-shuffle, where α = (n1, n2, . . . , nk) ∈ Pk is any k-tuple of positive
integers. (But we reserve the notation ttρ for 2-shuffles, as they are the main focus of our research.)

Shuffles of words arise in several contexts. For instance, given a subset

T = {s1, s2, . . . , sk−1} ⊆ [n− 1], (9)

it can be seen that a permutation τ ∈ Sn is a k-shuffle of the sets [s1], [s1 + 1, s2], . . . , [sk−2 +
1, sk−1], [sk−1 + 1, n] if and only if the descent set D(τ−1) of the inverse permutation is a subset of
T (see [Stanley (1997)], page 70). Shuffles appear in the representation theory of finite groups; the left
cosets of the Young Subgroup Sα1×Sα2×· · ·×Sαk

in the Symmetric Group Sn (where n =
∑k
j=1 αj)

correspond exactly to the unique α-shuffles associated with α = (α1, α2, . . . , αk) (see [Stanley (1999)],
page 351).

Shuffles play a role in the multiplication of fundamental quasisymmetric functions Lγ ; in fact, if u ∈
Sm and v ∈ S[m+1,m+n], then

Lco(u)Lco(v) =
∑

w∈sh(u,v)

Lco(w), (10)

where co(u) denotes the composition associated with the descent set D(u) (see [Stanley (1999)], page
482, exercise 7.93). Moreover, shuffle posets on the words u and v can be defined by considering the set of
subwords of all possible shuffles of u with v, taking u as the minimal element, v as the maximal element,
and defining the cover relation to be x ≺ y if y can be obtained from x either by deleting one letter of u
or inserting one letter of v. Greene [Greene (1988)] introduced shuffle posets, and Doran [Doran (2002)]
and Hersh [Hersh (2002)] generalized them (see also [Ehrenborg (1996)] [Simion & Stanley (1999)]).

3 The Main Question
A natural question to ask is how to enumerate the distinct shuffles of words.

Question 1 Given words u and v, how many distinct shuffles are there of u with v?

Assuming m and n to be the lengths of u and v, respectively, note that if supp(u)∩ supp(v) = ∅, then
there are

(
m+n
m

)
distinct shuffles (all shuffles are distinct).

Observation 2 For any given words u and v, we can define an equivalence relation on Sl(u),l(v) by ρ ∼ τ
if u ttρv = u ttτv.

The equivalence relation is nontrivial only when supp(u) ∩ supp(v) 6= ∅. So one could reformulate
Question 1 to ask how many different equivalence classes are induced on Sl(u),l(v) by shuffling a given u
with a given v.

In various applications of shuffles, the supports of the words are usually assumed to be disjoint, but we
investigate the consequences of discarding this assumption while seeking an answer to Question 1.
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We resolve this question for the important case where the words u and v are assumed to be permutations
on the letters {1, 2, 3, . . . ,m} and {1, 2, 3, . . . , n}, respectively. Our answer is given by the following
theorem, for which we shall give details in Section 5 below.

Theorem 3 The number of distinct shuffles of a permutation α ∈ Sm with a permutation β ∈ Sn, with
m ≤ n, is given by the following formula:

#sh(α, β) =
bm

2 c∑
k=0

∑
a={0=a0<a1<···<a2k<a2k+1=m+1}

(−1)h(a)Fσ(a), (11)

where σ = α−1 ◦ β, α ∈ Sn is the natural extension of α, and Fσ(a) is a product of determinants which
enumerate the shuffles on a ‘local’ level.

For an explanation of the notation used and a description of the determinants involved, see Section 5
below.

4 Enumeration of the Distinct Shuffles of Permutations
We shall start by enumerating shuffles of the identity permutation with itself.

Proposition 4 The number of distinct shuffles of the identity permutation on n letters with itself is the nth

Catalan number Cn, that is

#sh(idn, idn) =
1

n+ 1

(
2n
n

)
. (12)

Proof: A straightforward proof entails showing that set of shuffles of idn with itself corresponds bijec-
tively with the set of ballot sequences of length 2n (which is known to have cardinality Cn). For a given
w ∈ sh(idn, idn), simply substitute a 1 for the first occurrence of each integer between 1 and n, and a −1
for the second occurrence to get a ballot sequence of length 2n (that is, a sequence of n ones and n minus
ones whose partial sums are all nonnegative). 2

It is possible to show the following formula for the number of distinct shuffles of the identity in two
different lengths.

Proposition 5 For m 6= n, the number of distinct shuffles of the identity permutation on m letters with
the identity permutation on n letters is given by

#sh(idm, idn) =
bn−m

2 c∑
r=0

(−1)r
(
n−m− r

r

)
Cn−r. (13)

We get Proposition 5 from the following recursion for shuffles of the identity in two different lengths.

Lemma 6 For m 6= n, the number of distinct shuffles of the identity permutation on m elements with the
identity permutation on n elements is determined by

#sh(idm, idn) = #sh(idm−1, idn) + #sh(idm, idn−1). (14)
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Proof: Lemma 6 is easily verified by considering the bijection

γ : sh(idm, idn)→ sh(idm−1, idn) ∪ sh(idm, idn−1)

given by dropping the last letter of each w ∈ sh(idm, idn) to get either γ(w) ∈ sh(idm−1, idn) or
γ(w) ∈ sh(idm, idn−1). As long as m 6= n, we have sh(idm−1, idn) ∩ sh(idm, idn−1) = ∅. 2

More generally, for m ≤ n and any α ∈ Sm and β ∈ Sn, it can be assumed without loss of generality
that α = idm, due to the following fact.

Fact 7 For any m ≤ n and any α ∈ Sm, β ∈ Sn, we have

#sh(α, β) = #sh(idm, (α)−1 ◦ β), (15)

where α ∈ Sn is the natural extension of α to a permutation on n letters.

Here we are simply reordering the alphabet A = [m] so that α now behaves like the identity permutation
idm on the reordered alphabet. It is also easy to note that #sh is symmetric: #sh(u, v) = #sh(v, u) is
true for any words u and v (they need not be permutations).

Now let the reverse permutation word n, n− 1, . . . , 2, 1 be denoted by revn. The following result can
be shown via a bijective proof.

Proposition 8

#sh(idm, revn) =
(
m+ n

m

)
−
(
m+ n− 2
m− 1

)
. (16)

Proof: To verify Proposition 8, simply note that for each w ∈ sh(idm, revn), we have either µw = 2 or
µw = 1. (Either w has a pair of double elements, or it doesn’t.)

Consider the map κ : {w ∈ sh(idm, revn) | µw = 2} → sh(+m−1,−n−1) that sends each duplicated
shuffle w to a sequence κ(w) ∈ sh(+m−1,−n−1) obtained by excising the double elements and then
sending each letter from idm to a + and each letter from revn to a −. For example, for 1243321 ∈
sh(123, 4321), obtain κ(1243321) by excising 33 to get 12421. Then replace elements with pluses and
minuses to get + +−−−.

Noting that #sh(+m−1,−n−1) =
(
(m−1)+(n−1)

m−1

)
, we subtract this number of duplicates from

(
m+n
m

)
,

the total number of shuffles, counted with multiplicity, of words of lengths m and n. 2

5 The Main Theorem
Let us now enumerate the number of shuffles of the identity on m letters with any permutation σ ∈
Sn (throughout, we shall assume without loss of generality that m ≤ n). We shall first provide some
terminology and motivation and then state the main theorem.

Let us call a subword x obtained from any word u consecutive if the letters of x appear consecutively
in u. For instance, 364 is a consecutive subword of 136425. We call a shuffle w ∈ sh(idn, idn) indecom-
posable if there is no consecutive subword w′ of w such that w′ ∈ sh(idk, idk) for some 1 ≤ k < n. For
ease of notation, let

indc(x) = {indecomposable shuffles of x with itself}. (17)
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Observe that, when a shuffle w has multiplicity µw > 1, this occurs because some consecutive subword
x of σ is in fact a string of consecutive elements in the alphabet of w; we call such a subword of σ an
embedded identity subword. On the local level we then have, embedded in w, a shuffle of the identity
permutation on a consecutive subset of the intersection of the given alphabets with itself. That is,

w = · · · ∗ (x ttηx) ∗ . . . (18)

for some η ∈ Sl(x),l(x), where ∗ denotes concatenation. We shall denote the set of embedded identity
subwords of σ as

idsub(σ) = {embedded identity subwords of σ}. (19)

If id4 is shuffled with 52341, for example, we can obtain the shuffle

512342341 ∈ {51 ∗ (234 ttη234) ∗ 1 | η ∈ S3,3}, (20)

which has multiplicity 2 because the local shuffle 234234 ∈ sh(234, 234) is indecomposable and can
be obtained in exactly two ways, whereas there are no additional ways of obtaining the global shuffle
512342341 ∈ sh(id4, 52341).

We say that a set X = {x1, . . . , xr} of embedded identity subwords of a permutation is compatible if
the xi have pairwise disjoint supports and if there exists some shuffle w ∈ sh(idm, σ) in which each of the
xi is locally shuffled with itself. For instance, {23, 45} is a set of compatible embedded identity subwords
of 23145 because in the shuffle 1232314455 ∈ sh(id5, 23145) both 23 and 45 are locally shuffled with
themselves.

Given a permutation word u and a compatible set X = {x1, . . . , xj} of embedded identity subwords
of u, note that u is the concatenation u = g0 ∗ x1 ∗ g1 ∗ · · · ∗ xj ∗ gj for some consecutive subwords
g0, g1, . . . , gj of u whose supports are pairwise disjoint. We say that the gi are the subwords of u cut out
by the set X .

For instance, in the permutation 23145, the set {23, 45} cuts out the subwords [], 1, and [] (where []
denotes the empty word). Likewise, for the permutation word 52341, the set {23, 4} cuts out the subwords
5, [], and 1.

Proposition 9 For σ ∈ Sn and any w ∈ sh(idm, σ), we have µw = 2t for some integer t ≥ 0, where t is
the maximal number of compatible embedded identity permutation subwords in σ that are locally shuffled
with themselves in w.

To illustrate this statement, we can see that for 311223 ∈ sh(id3, 312), we have µ(311223) = 4 and
t = 2. The embedded identity subwords that are locally shuffled with themselves in 311223 are 1, 2,
and 12; but {1, 2} is the largest set of such subwords that is compatible. In general, we shall call the
integer t = dup(w) the number of sites of duplication in w. Moreover, we shall set Nσ

t = #{w ∈
sh(idm, σ) | dup(w) = t}.

We can actually enumerate #sh(idm, σ) by applying the Inclusion-Exclusion principle. First we take
the total number of shuffles counted with multiplicity, and then alternately subtract and add the cardinal-
ities of certain subsets counted with multiplicity until we arrive at a count of the total number of shuffles
without multiplicity.
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Indeed,

#sh(idm, σ) =
(
m+ n

m

)
+

m∑
j=1

(−1)jTσj , (21)

where Tσj =
∑m
t=j

(
t
j

)
2t−jNσ

t .

Observation 10 Tσj is the number of (not necessarily distinct shuffles) in sh(idm, σ) with j or more sites
of duplication, enumerated by choosing a j-element subset X = {x1, . . . , xj} of compatible embedded
identity permutation subwords of σ and assuming, in turn, that each element xi ∈ X is shuffled locally
and indecomposably with itself, then counting with multiplicity all local shuffles of each subword of idm
cut out by X with the corresponding subword of σ also cut out by X .

That is, Tσj can be computed as

Tσj =
∑

compatible {x1,...,xj}⊆idsub(σ)

(
l(f0) + l(g0)

l(f0)

)
·#indc(x1) ·

(
l(f1) + l(g1)

l(f1)

)
· · ·

·#indc(xj) ·
(

l(fj) + l(gj)
l(fj)

)
, (22)

where the fi and gi are the subwords of idm and of σ, respectively, that are cut out by the set {x1, . . . , xj}.
Recall that the number of local shuffles of fi with gi counted with multiplicity is

(
l(fi)+l(gi)

l(fi)

)
.

In the example of sh(id3, 312), we can compute

T 312
1 =

(
1
0

)
· C0 ·

(
3
2

)
+
(

3
1

)
· C0 ·

(
1
1

)
+
(

2
2

)
· C0 ·

(
2
0

)
+
(

1
0

)
· C1 ·

(
1
1

)
= 8 (23)

because we can fix first double 1’s to count shuffles of the form ([] ttρ13) ∗ 11 ∗ (23 ttρ22), then fix
double 2’s to count those of the form (1ttρ331) ∗ 22 ∗ (3ttρ4 []), next, fix double 3’s to count shuffles of
the form (12ttρ5 []) ∗ 33 ∗ ([]ttρ612), and lastly, fix the unique indecomposable shuffle of 12 with itself
to count those of the form ([] ttρ73) ∗ 1212 ∗ (3 ttρ8 []). Note that in each case the local identity shuffle
we fix (such as 11 or 1212) is indecomposable, and so the factor Ck−1 counts the distinct indecomposable
shuffles of a local identity subword of length k with itself. Similarly,

T 312
2 =

(
1
0

)
· C0 ·

(
0
0

)
· C0 ·

(
1
1

)
= 1, (24)

as we can see by counting shuffles of the form ([] ttρ93) ∗ 11 ∗ ([] ttρ10 []) ∗ 22 ∗ (3 ttρ11 []), whereas
T 312

3 = 0 because there is no compatible 3-subset of embedded identity permutation subwords, and so

#sh(id3, 312) =
(

3 + 3
3

)
− 8 + 1− 0 = 13. (25)

We will use the notation zσi,j to denote the number of local shuffles counted with multiplicity of the
subword a occurring between (and not including) the letters i < j in idm with the subword b occurring
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between the letters i < j in σ. That is, if such words a and b exist, then we have zσi,j =
(
l(a)+l(b)

l(a)

)
;

otherwise, zσi,j = 0. For example, z312
0,2 =

(
3
1

)
= 3, z312

1,2 =
(
0
0

)
= 1, and z312

1,3 = 0.
We use zσi,j to construct a square matrix with all ones on the subdiagonal and all zeros below the

subdiagonal. For entries on or above the diagonal, zσi,j keeps track of whether or not i and j are inverted
in σ, and if they are not inverted, zσi,j takes on the value of the total number of possible ways of shuffling
the letters between paired occurrences of i and j, including any repeated shuffles.

By defining a matrix Zσc,d = [zσi,j ]c≤i≤d−1, c+1≤j≤d below and taking its determinant, we are taking an
alternating sum that systematically looks for compatible sets of letters (that is, compatible length 1 em-
bedded identity subwords of σ) that occur between the letters c and d (not including c and d themselves).
When the set of letters, say {b1, b2, . . . , bq}, is compatible, then we get a nonzero term of absolute value
zσc,b1 · z

σ
b1,b2
· · · zσbq,m+1.

For example,

Z312
0,4 =


1 3 1 20
1 1 0 3
0 1 0 1
0 0 1 1

 . (26)

For 1 ≤ e < f ≤ m, if the word e, e+ 1, . . . , f is a simultaneous consecutive subword for idm and σ,
we will say that θσ(e, f) denotes the number of indecomposable local shuffles of the word e, e+ 1, . . . , f
with itself; otherwise we will set θσ(e, f) = 0. The purpose of the yσi,j below is to construct this function
θσ(e, f) by defining a matrix Y σe,f = [yσi,j ]e≤i,j≤f−1 in such a way that θσ(e, f) = detY σe,f .

For example,

Y 312
1,3 =

(
C0 C1

0 0

)
, (27)

whereas

Y 312
1,2 =

(
C0

)
(28)

and

Y 312
2,3 =

(
0
)
. (29)

The subsets a = {0 = a0 < a1 < · · · < a2k < a2k+1 = m + 1} ⊆ [0,m + 1] below determine
the endpoints of the subwords a1 . . . a2, a3 . . . a4, through a2k−1 . . . a2k of idm, each of which has length
greater than one and may possibly be an embedded identity subword for σ. The exponent h(a) ensures
the correct sign for purposes of applying the principle of Inclusion-Exclusion.

We are now ready for the main theorem.

Theorem 11 (Theorem 3, restated in detail)

#sh(idm, σ) =
bm

2 c∑
k=0

∑
a={0=a0<a1<···<a2k<a2k+1=m+1}

(−1)h(a)
k∏
r=0

detZσa2r,a2r+1

k∏
s=1

detY σa2s−1,a2s
, (30)
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where

h(a) = m−
k∑
t=1

(a2t − a2t−1), (31)

and we define the matrices

Zσc,d = [zσi,j ]c≤i≤d−1, c+1≤j≤d, (32)

with

zσi,j =



0, i > j

1, i = j

0, 0 < i < j < m+ 1 and σ−1(i) > σ−1(j)(
j−i−1+σ−1(j)−σ−1(i)−1

j−i−1

)
, 0 < i < j < m+ 1 and σ−1(i) < σ−1(j)(

j−1+σ−1(j)−1
j−1

)
, i = 0, j < m+ 1(

m−i+n−σ−1(i)
m−i

)
, j = m+ 1, i > 0(

m+n
m

)
, i = 0, j = m+ 1,

(33)

and the matrices

Y σe,f = [yσi,j ]e≤i,j≤f−1, (34)

with

yσi,j =


0, i− j > 1 or σ−1(i+ 1) 6= σ−1(i) + 1
−1, i− j = 1 and σ−1(i+ 1) = σ−1(i) + 1
Cj−i, i ≤ j and σ−1(i+ 1) = σ−1(i) + 1

(35)

where

Cj−i =
1

j − i+ 1

(
2(j − i)
j − i

)
, the (j − i)th Catalan number. (36)

While equation (30) may look unwieldy, it is relatively easy to write a computer algorithm for Maple
that will calculate the number of distinct shuffles of any two permutations. If at least one of the per-
mutations has length bounded by 13, the processor on a laptop can easily handle the calculation. Ex-
amples of calculations include #sh(id3, 321) = 14, #sh(id2, 3421) = 11, #sh(2431, 1432) = 44,
#sh(id6, 126354) = 374, and if σ = 7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6 ∈ S13, then #sh(id13, σ) =
10104590.

6 Future Directions
Open problems related to the work in this paper include the following projects:
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6.1 Enumerating Distinct Shuffles of Multiset Permutations
Compute the number of distinct shuffles of any two multiset permutations; for example, #sh(12322, 33214).
This is a significant generalization of the current problem, because the possible ways that duplications in
such shuffles can occur are much more complicated than with ordinary permutations, and multiplicities
of shuffles no longer need to be powers of 2. We believe, however, that once we can classify the types of
multiplicities that can occur the problem will become tractable, and that the intuitions gained in solving
the current problem will help me to reach that point.

6.2 Enumerating Distinct k-Shuffles of Permutations
Compute the number of distinct k-shuffles of k permutations of any k lengths, where k is any positive
integer; for example, #sh(132, 231, 1324). This is another important generalization. Again, multiplic-
ities need not be powers of 2; rather, they appear to be related to products of factorials, but it is not
yet clear how exactly to compute them. It seems that making progress on counting shuffles of multiset
permutations should give insight into what occurs with k-shuffles of ordinary permuations; observe that
#sh(132, 231, 1324) is equal to

∑
w∈sh(132,231) #sh(w, 1324) minus a certain number of shuffles y such

that y ∈ sh(w, 1324)∩sh(w′, 1324) for some w′ 6= w ∈ sh(132, 231). Note that w and w′ can be thought
of as multiset permutations.

6.3 Deducing Monotonicity Results
Deduce monotonicity results for the number of distinct shuffles on permutation groups. Such results would
help to clarify the meaning of the formula given in Theorem 11. For 1 ≤ n ≤ 6, the minimal number
of distinct shuffles of a permutation with the identity permutation of the same length is Cn, achieved by
identity permutation (see Proposition 4). We conjecture that this is the case for all n.

For n = 1, 2, 3, the maximal number of shuffles of a permutation with the identity is achieved by
the reverse permutation. For n = 4, 5, 6, however, the maximal number of distinct shuffles with the
identity is achieved by the halfway-shifted permutations 3412, 34512, and 456123, respectively. Together,
these cases give the first six terms of the sequence of maximal shuffle counts: 1, 4, 14, 54, 197, 792 (now
catalogued as sequence A145211 in the On-Line Encyclopedia of Integer Sequences; see also sequence
A145208). We would like to extend this sequence and to determine whether, as we conjecture, maximality
is actually achieved by the halfway-shifted permutations for all n ≥ 4.

Indeed, we would like more generally to find a poset structure on Sn for which the function σ 7→
#sh(idn, σ) is always monotone increasing. The Bruhat order fails to provide such a structure for n =
4, 5, 6, but perhaps a modification of the Bruhat order would provide the desired poset structure.

6.4 Enumerating Distinct Shuffles according to Permutation Statistics
Enumerate distinct shuffles according to various permutation statistics, such as descent sets, number of
inversions, or major index. Enumeration by statistics could yield insights into the above problems and
refine our current results.
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