P_{4}-Free Colorings and P_{4}-Bipartite Graphs

Chính T. Hoàng ${ }^{1 \dagger}$ and Van Bang Le ${ }^{2 \ddagger}$
${ }^{1}$ Department of Physics and Computing, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario N2L 3C5, Canada
${ }^{2}$ Fachbereich Informatik, Universität Rostock, Albert-Einstein-Straße 21, D-18051 Rostock, Germany

received May 19, 1999, revised November 25, 2000, accepted December 15, 2000.

Abstract

A vertex partition of a graph into disjoint subsets $V_{i} \mathrm{~s}$ is said to be a P_{4}-free coloring if each color class V_{i} induces a subgraph without a chordless path on four vertices (denoted by P_{4}). Examples of P_{4}-free 2-colorable graphs (also called P_{4}-bipartite graphs) include parity graphs and graphs with "few" P_{4} s like P_{4}-reducible and P_{4}-sparse graphs. We prove that, given $k \geq 2, P_{4}$-Free k-Colorability is NP-complete even for comparability graphs, and for P_{5}-free graphs. We then discuss the recognition, perfection and the Strong Perfect Graph Conjecture (SPGC) for P_{4}-bipartite graphs with special P_{4}-structure. In particular, we show that the SPGC is true for P_{4}-bipartite graphs with one P_{3}-free color class meeting every P_{4} at a midpoint.

Keywords: Perfect graph, the Strong Perfect Graph Conjectrue, graph partition, cograph, NP-completeness

1 Introduction

A graph G is perfect if, for each induced subgraph H of G, the chromatic number of H is equal to the clique number of H. Claude Berge introdued perfect graphs and conjectured around 1960's that a graph is perfect if and only if it has no induced cycle of odd length at least five or the complement of such a cycle. Nowadays this conjecture is known as the Strong Perfect Graph Conjecture (SPGC) and is still open. We refer to [4] for more information on perfect graphs.

A measure of a graph's imperfection has been considered by Brown and Corneil [8] as follows. Given a graph G and a positive integer k, a map $\pi: V(G) \rightarrow\{1, \ldots, k\}$ is a perfect k-coloring of G if the subgraphs induced by each color class $\pi^{-1}(i)$ is perfect. Thus, a graph is perfect if and only if it is perfect $1-$ colorable. Note also that, by the Perfect Graph Theorem [33], a graph G is perfect k-colorable if and only if its complement \bar{G} is perfect k-colorable. In this paper we consider a particular example of perfect colorings. Our discussion is motivated by the fact that the perfection of a graph depends only on the structure of its induced paths on four vertices (denoted by P_{4}); see [36]. In this sense, graphs with empty P_{4}-structure (P_{4}-free graphs) form a somewhat based graph class in discussing graph's perfection; they are indeed perfect by a result due to Seinsche [38] (see also Jung [31]).

[^0]Now, we call a perfect k-coloring of a graph P_{4}-free k-coloring if the subgraphs of that graph induced by the color classes are P_{4}-free. Note that the P_{4} is self-complementary, hence G is P_{4}-free k-colorable if and only if \bar{G} is P_{4}-free k-colorable. For general graphs, Brown [6] proved that P_{4}-Free k-Colorability is NP-complete for $k \geq 3$, and in [[]], Achlioptas proved a more general result implying the NP-completeness of P_{4}-Free k-Colorability for $k \geq 2$. In the next section we shall prove that, for any integer $k \geq 2$, P_{4}-Free k-Colorability is NP-complete even for (particular) perfect graphs, and for P_{5}-free graphs. In Section 3 we shall give some examples of P_{4}-free 2 -colorable graphs, which we also call P_{4}-bipartite graphs. Many well understood classes of perfect graphs consists of P_{4}-bipartite graphs only. In Sections 4 and 5, perfect P_{4}-bipartite graphs and the SPGC for P_{4}-bipartite graphs with special P_{4}-structure will be discussed.

The complement of a graph G is denoted by \bar{G}. Graphs having no induced subgraphs isomorphic to a given graph H are called H-free. If X is a set of vertices in $G, G[X]$ is the subgraph of G induced by X, and $N_{G}(X)$ is the neighborhood of X in G; that is, the set of all vertices outside X adjacent to some vertex in X. If the context is clear, we simply write $N(X)$. The path on m vertices $v_{1}, v_{2}, \ldots, v_{m}$ with edges $v_{i} v_{i+1}(1 \leq i<m)$ is denoted by $P_{m}=v_{1} v_{2} \cdots v_{m}$. The vertices v_{1} and v_{m} are the endpoints of that path, the other vertices are the midpoints. The cycle on m vertices $v_{1}, v_{2}, \ldots, v_{m}$ with edges $v_{i} v_{i+1}(1 \leq i<m)$ and $v_{1} v_{m}$ is denoted by $C_{m}=v_{1} v_{2} \cdots v_{m} . C_{2 k+1}$ and $\overline{C_{2 k+1}}, k \geq 2$, are also called odd holes, respectively, odd antiholes. Graphs without odd holes and odd antiholes are called Berge graphs.

2 NP-completeness results

We now consider the following problem for fixed positive integer k.
P_{4}-FREE k-COLORABILITY Is a given graph P_{4}-free k-colorable?
We show in this section that, for fixed $k \geq 2, P_{4}$-Free k-Colorability is NP-complete for perfect graphs. Notice that P_{4}-free 1-colorability (that is, recognizing P_{4}-free graphs) is solvable in linear time [14]. We shall reduce the following NP-complete problem ([37], see also [16]) to P_{4}-Free k-ColorabiLITY.
Not-All-EQUAL 3Sat Given a collection Cof clauses over set V of Boolean variables such that each clause has exactly three literals. Is there a truth assigment for V such that each clause in C has at least one true literal and at least one false literal?
A comparability graph G is one which admits a transitive orientation \vec{G} : If (x, y) and (y, z) are arcs of \vec{G}, then (x, z) is also an arc of \vec{G}. It is well known that comparability graphs are perfect. A typical example of comparability graphs are P_{4}-free graphs, as proved by Jung [31].
Lemma 1 Given a comparability graph G, it is NP-complete to decide whether G is P_{4}-bipartite.
Proof. The problem is clearly in NP. We shall reduce Not-All-EQUAL 3Sat to our problem. Let $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be any set of clauses $C_{i}=\left(c_{i 1}, c_{i 2}, c_{i 3}\right)$ given as input for Not-ALL-EQUAL 3SAT, where the literals $c_{i k}(1 \leq i \leq m, 1 \leq k \leq 3)$ are taken from the set of variables V. We shall construct a comparability graph G which has a partition into two P_{4}-free graphs if and only if C is satisfiable. For convenience, we call a vertex partition of a graph into two P_{4}-free graphs a good partition of that graph. For each variable $v \in V$ let $G(v, \bar{v})$ be the graph shown in Figure 11(left).
Observation $1 G(v, \bar{v})$ has a good partition. Every good partition of $G(v, \bar{v})$ must contain the labelled vertex v in one part and the labelled vertex \bar{v} in the other part. \diamond

For each clause C_{i}, let $G\left(C_{i}\right)$ be the graph shown in Figure [1] (right).
Observation $2 G\left(C_{i}\right)$ has a good partition. Every good partition of $G\left(C_{i}\right)$ must contain two of the labelled vertices $c_{i 1}, c_{i 2}, c_{i 3}$ in one part and the other labelled vertex in the other part. Moreover, every partition of $\left\{c_{i 1}, c_{i 2}, c_{i 3}\right\}$ into two non-empty subsets can be extended to a good partition of $G\left(C_{i}\right)$.

Fig. 1: The graphs $G(v, \bar{v})$ (left) and $G\left(C_{i}\right)$ (right)

The proofs of the observations will follow by inspection, hence are omitted. We now create the graph $G=G(C)$ from the graphs $G(v, \bar{v})(v \in V)$ and the graphs $G\left(C_{i}\right)(1 \leq i \leq m)$ as follows: For each $v \in V$ and each $1 \leq i \leq m$, connect the vertex $x \in\{v, \bar{v}\}$ in $G(v, \bar{v})$ with the vertex $c_{i k}$ in $G\left(C_{i}\right)$ by an edge if, and only if, x is the literal $c_{i k}$ in the clause C_{i}. Thus, in G, every $c_{i k}(1 \leq k \leq 3)$ has exactly one neighbor outside $G\left(C_{i}\right)$ which is one of the labelled vertices v, \bar{v} in a graph $G(v, \bar{v})$ (with $c_{i k} \in\{v, \bar{v}\}$ in the given Not-All-EQUAL 3SAT instance).

Suppose that G has a good partition into two P_{4}-free graphs A and B. Then it is easy to see that, for all $v \in V$, if $x \in\{v, \bar{v}\}$ is adjacent to $c_{i k}$, then x and $c_{i k}$ are in different parts A, B. We define a truth assigment for Not-All-EQUAL 3SAT as follows:
v is true if and only if the labelled vertex v in $G(v, \bar{v})$ belongs to A.
By Observation [1, this assignment is well-defined. By Observation 2, it is clear that each clause C_{i} has at least one but not all true literals.

Conversely, suppose that there is a truth assigment satisfying Not-All-EQUAL 3Sat. Then let $A(v, \bar{v})$, $B(v, \bar{v})$ be a good partition of $G(v, \bar{v})$ such that $A(v, \bar{v})$ contains the true vertex in $\{v, \bar{v}\}$ and $B(v, \bar{v})$ contains the false vertex of them. Such a good partition exists by Observation I. Let A_{i}, B_{i} be a good partition of $G\left(C_{i}\right)$ such that A_{i} contains the false literals vertices in $\left\{c_{i 1}, c_{i 2}, c_{i 3}\right\}$ and B_{i} contains the true vertices of them. Such a good partition exists by Observation \mathbb{Z}, and the fact that every C_{i} has at least one but not all true literals. Set

$$
A=\bigcup_{v \in V} A(v, \bar{v}) \cup \bigcup_{1 \leq i \leq m} A_{i}, \quad B=\bigcup_{v \in V} B(v, \bar{v}) \cup \bigcup_{1 \leq i \leq m} B_{i} .
$$

Clearly, $V(G)=A \cup B$. Now, each $A(v, \bar{v})$ and each A_{i} is a P_{4}-free graph, and no edge exists between two parts of the $A(v, \bar{v})$'s and A_{i} 's, hence A is a P_{4}-free subgraph of G. similarly, B is P_{4}-free. Thus, G is P_{4}-bipartite.

To complete the proof, note that each $G(v, \bar{v})$ and each $G\left(C_{i}\right)$ admits a transitive orientation such that the labelled vertices v, \bar{v} are sinks and the labelled vertices $c_{i 1}, c_{i 2}, c_{i 3}$ are sources. To obtain a transitive orientation of G, direct the edges $x y, x \in\{v, \bar{v}\}$ and $y \in\left\{c_{i 1}, c_{i 2}, c_{i 3}\right\}$ with $x=y$ in the given instance of Not-All-EQUAL 3SAT, from y to x.

Theorem 1 Given a comparability graph G and an integer $k \geq 2$, it is NP-complete to decide whether G is P_{4}-free k-colorable.

Proof. The case $k=2$ is settled by Lemma 1]. We shall make use of a construction for vertex-critical P_{4}-free k-colorable graphs in [7] to reduce the case $k=2$ to the case $k \geq 3$. Let H be a comparability graph, and let G be the graph obtained from an induced P_{4} by substituting three (arbitrary) vertices by the graph H. Then G is clearly a comparability graph, and it can easily be seen that G is P_{4}-free k-colorable if and only if H is P_{4}-free $(k-1)$-colorable.

We shall remark that Brown [6] and Achlioptas [i]] showed the NP-completeness of P_{4}-Free k-COLORABILITY for fixed $k \geq 3$ by reducing k-COLORABILITY to P_{4}-FREE k-COLORABILITY. Since k-COLORABILITY can be decided in polynomial time when considering perfect graphs (see [17]), Brown's and Achlioptas's reduction cannot be used in proving NP-completeness of P_{4}-Free k-Colorability for perfect graphs.

Since a graph is P_{4}-free k-colorable if and only if its complement is, P_{4}-Free k-Colorability is NP-complete for cocomparability graphs as well. Graphs which are both comparability graphs and cocomparability graphs are called permutation graphs. We do not know the complexity of P_{4}-Free CoLORABILITY on permutation graphs.

Problem 1 Find a polynomial time algorithm for solving P_{4}-FREE k-COLORABILITY on permutation graphs, or prove that the problem is NP-complete for the class of permutation graphs.
Notice that, using the construction mentioned in the proof of Theorem [1, one can show that for every fixed $k \geq 1$ there are P_{4}-free k-colorable permutation graphs which are not P_{4}-free $(k-1)$-colorable.

We now are going to show that P_{4}-Free k-COLORABILITY is NP-complete for $\left(C_{4}, C_{5}\right)$-free graphs. As a consequence, P_{4}-Free k-Colorability is also NP-complete for P_{5}-free graphs. This is best possible in the sense that the problem is trivial for P_{4}-free graphs.

Lemma 2 Given a $\left(C_{4}, C_{5}\right)$-free graph G, it is $N P$-complete to decide whether G is P_{4}-bipartite.
Proof. We shall reduce Not-All-EQUAL 4Sat to our problem (the NP-completeness of Not-AllEqual 4Sat follows easily from that of Not-All-EQUAL 3SAt). Let $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be any set of clauses $C_{i}=\left(c_{i 1}, c_{i 2}, c_{i 3}, c_{i 4}\right)$ given as input for Not-AlL-EQUAL 4 SAT, where the literals $c_{i k}$ $(1 \leq i \leq m, 1 \leq k \leq 4)$ are taken from the set of variables V. We may assume that,

$$
\begin{equation*}
\text { for every } v \in V \text {, no clause } C_{i} \text { contains both } v \text { and } \bar{v} \text {. } \tag{1}
\end{equation*}
$$

We now construct a $\left(C_{4}, C_{5}\right)$-free graph G which has a partition into two P_{4}-free graphs if and only if C is satisfiable. For each variable $v \in V$ let $G(v, \bar{v})$ be the graph shown in Figure 2 (left). For each clause C_{i}, let $G\left(C_{i}\right)$ be the P_{4} shown in Figure \downarrow (right). We create the graph $G=G(C)$ from the graphs $G(v, \bar{v})$ $(v \in V)$ and the graphs $G\left(C_{i}\right)(1 \leq i \leq m)$ as follows: For each $v \in V$ and each $1 \leq i \leq m$, connect the vertex $x \in\{v, \bar{v}\}$ in $G(v, \bar{v})$ with the vertex $c_{i k}$ in $G\left(C_{i}\right)$ by an edge if, and only if, x is the literal $c_{i k}$ in the clause C_{i}. Clearly, the construction and assumption (II) guarantee that G cannot contain an induced C_{4} or C_{5}.

Now, we can show, similar to Lemma 1 , that G is P_{4}-bipartite if and only if \mathcal{C} is satisfiable.
Theorem 2 Given a $\left(C_{4}, C_{5}\right)$-free graph G and an integer $k \geq 2$, it is $N P$-complete to decide whether G is P_{4}-free k-colorable.

Fig. 2: The graphs $G(v, \bar{v})$ (left) and $G\left(C_{i}\right)$ (right)

Proof. The case $k=2$ is settled by Lemma 2. Let $k \geq 3$. Let H be a (C_{4}, C_{5})-free graph. Construct a graph G as follows: Take $k+2$ disjoint copies G_{1}, \ldots, G_{k+2} of H and $k+2$ new vertices v_{1}, \ldots, v_{k+2}, and connect every pair $v_{i}, v_{j}(1 \leq i \neq j \leq k+2)$ by an edge and connect every vertex in G_{i} with $v_{i}(1 \leq i \leq k+2)$ by an edge. Clearly, G is also $\left(C_{4}, C_{5}\right)$-free.

Suppose that H is P_{4}-free k-colorable. Then G is P_{4}-free $(k+1)$-colorable by coloring the vertices v_{i} 's with one new color.

Suppose, conversely, that G is P_{4}-free $(k+1)$-colorable. Then H is P_{4}-free k-colorable. If not, consider two distinct vertices $v_{i}, v_{j} \in\left\{v_{1}, \ldots, v_{k+2}\right\}$ with the same color c in a P_{4}-free $(k+1)$-coloring of G. Since H is not P_{4}-free k-colorable, the color c must appear in every copy of H. Say, for some $i \neq j, x \in G_{i}$ and $y \in G_{j}$ are colored by c. But then $x v_{i} v_{j} y$ is a monochromatic P_{4} in G, a contradiction. Thus, H must be P_{4}-free k-colorable, as claimed.

Since C_{4}-free graphs are $\overline{P_{5}}$-free, Theorem 2 implies that P_{4}-Free k-Colorability is NP-complete for $\overline{P_{5}}$-free graphs, and, by considering complementation, for P_{5}-free graphs as well. This is best possible in the sense that P_{4}-FREE k-COLORABILITY is trivial for P_{4}-free graphs.

Also, Theorem 2 implies that P_{4}-Free k-Colorability is NP-complete for $\left(C_{5}, \overline{C_{4}}\right)$-free graphs as well. Notice that graphs which are both $\left(C_{5}, C_{4}\right)$-free and $\left(C_{5}, \overline{C_{4}}\right)$-free, i.e., split graphs, are P_{4}-free 2-colorable.

3 Examples of P_{4}-bipartite graphs

P_{4}-bipartite graphs generalize in a very natural way the well understood bipartite graphs, split graphs and cographs. Below we are going to list other well structured (perfect) graph classes that contain P_{4}-bipartite graphs only. See [5] for a survey on these and related graph classes.

PROPER INTERVAL GRAPHS. Interval graphs without induced $K_{1,3}$ are called proper interval graphs. In [2], it was shown that every proper interval graph can be partitioned into two P_{3}-free subgraphs. In particular, proper interval graphs are P_{4}-bipartite. Notice that, for every k, there exists an interval graph that is P_{4}-free k-colorable, but not P_{4}-free $(k-1)$-colorable.
DISTANCE-HEREDITARY AND PARITY GRAPHS. Distance-hereditary graphs are those graphs in which for all vertices u, v, all induced paths connecting u and v have equal length [24]. In [9], Burlet and Uhry introduced the bigger class of parity graphs; these graphs are defined by the condition that all induced paths connecting u and v have equal parity. Let G be a parity graph, and let v be a vertex in G. In [9, Lemma 4] (see also [35]) it was shown that, for each i, the set $N^{i}(v)$ of vertices at distance exactly i from v induces a P_{4}-free subgraph in G. Thus, $\bigcup N^{2 i}(v)$ and $\bigcup N^{2 i+1}(v)$ is a P_{4}-free bipartition of G. We thank Stephan Olariu and Luitpold Babel for their hint to this fact on parity graphs.

In order to give other well known classes that consist of P_{4}-bipartite graphs only we need the term of p-connectedness introduced by Jamison and Olariu [30]. A graph is called p-connected if, for every partition of its vertex set into two nonempty, disjoint subsets, there is an induced P_{4} with vertices in both parts. A p-component of a graph is a maximal p-connected subgraph of that graph. Clearly, a graph is a P_{4}-bipartite graph if and only if each of its p-components is a P_{4}-bipartite graph.
P_{4}-REDUCIBLE AND P_{4}-SPARSE GRAPHS. $\quad P_{4}$-reducible graphs are those graphs in which each vertex belongs to at most one induced P_{4} [26]. In [20], Hoàng introduced the bigger class of P_{4}-sparse graphs; these are defined by the condition that each set of at most five vertices induces at most one P_{4}. It was shown in [29] that every p-component of a P_{4}-sparse graph is a split graph. Since split graphs are P_{4} bipartite, all P_{4}-sparse graphs are P_{4}-bipartite.
P_{4}-EXtendible and P_{4}-LIte GRaphs. $\quad P_{4}$-extendible graphs [28] are those graphs in which each p component has at most five vertices. P_{4}-lite graphs [27] are those graphs in which every induced subgraph with at most six vertices either has at most two P_{4} s or is a (special) split graph. It was shown in [3] that every p-component of a P_{4}-lite graph is a split graph or has at most six vertices. Notice that all graphs with at most six vertices are P_{4}-bipartite, hence P_{4}-lite and P_{4}-extendible graphs are P_{4}-bipartite.

Cograph contractions. In [25] Hujter and Tuza introduced the graphs called cograph contractions. These are graphs obtained from a cograph by contracting some pairwise disjoint stable sets and then making the 'contracted vertices' pairwise adjacent. It was shown in [32] that a graph is a cograph contraction if and only if it admits a clique meeting each P_{4} in a midpint and each $\overline{P_{5}}$ in both endpoints of the P_{5}. In particular, cograph contractions are P_{4}-bipartite graphs.
Notice that the complements of the graphs mentioned above are also P_{4}-bipartite graphs.

4 Which P_{4}-bipartite graphs are perfect?

Let G be a graph whose vertices are colored red and white (each vertex receives only one color). A P_{4} abcd of G is said to be of type

1 (or RRRR) if a, b, c, d are red,
2 (or WRRR) if a is white and b, c, d are red,
3 (or RWRR) if a, c, d are red and b is white,
4 (or RRWW) if a, b are red and c, d are white,
5 (or RWRW) if a, c are red and b, d are white,
6 (or RWWR) if a, d are red and b, c are white,
7 (or WRRW) if a, d are white and b, c are red,
8 (or RWWW) if a is red and b, c, d are white,
9 (or WRWW) if a, c, d are white and b is red,
10 (or WWWW) if a, b, c, d are white.

Clearly, G is P_{4}-bipartite if and only if its vertices can be colored red and white in such a way that no P_{4} is of type 1 or 10 . We also write $G=(R, W, E)$ for P_{4}-bipartite graph $G=(V, E)$ with partition $V=R \cup W$ such that $G[R]$ and $G[W]$ are P_{4}-free subgraphs in G.

For non-empty subset $S \subseteq\{2,3, \ldots, 9\}$, we call a graph G a S-graph if the vertices of G can be colored red and white such that every P_{4} of G is of type $t \in S$. Thus S-graphs are P_{4}-bipartite. Bipartite graphs (respectively, complements of bipartite graphs) are, for instance, $\{5\}$-graphs (respectively, $\{4\}$-graphs).

Many classes of perfect P_{4}-bipartite graphs have been described in terms of types of $P_{4} \mathrm{~s}$. In [21], Hoàng proved that "odd P_{4}-bipartite graphs" are perfect; here the P_{4}-bipartite graph $G=(R, W, E)$ is odd if every P_{4} of G has odd number of vertices in R (hence in W). Thus, odd P_{4}-bipartite graphs are exactly the $\{2,3,8,9\}$-graphs. Chvátal, Lenhart and Sbihi [13], Theorem 2], and independently Gurvich [19] extended odd P_{4}-bipartite graphs to a larger class of perfect P_{4}-bipartite graphs; they proved that all $\{2,3,4,5,8,9\}$-graphs are perfect. These results and more related results in [IL2, 113] motivate the following question:

What are the maximal subsets $S \subset\{2,3, \ldots, 9\}$ with the property that all S-graphs are perfect?

We shall point out that the complete answer to this question already follows by the results in [IL2, [13].
Theorem 3 Let S be a maximal subset of $\{2,3, \ldots, 9\}$ such that all S-graphs are perfect. Then S is exactly one of the follwing sets: $S_{1}=\{4,5,6,7\}, S_{2}=\{2,3,4,5,8,9\}, S_{3}=\{3,4,5,6,8\}$, and $S_{4}=\{2,4,5,7,9\}$.
Proof. First, color the odd hole C_{9} in the way RRWRRWRRW. Then every P_{4} of this C_{9} is of type 3 or 7, and every P_{4} of the complement of this C_{9} is of type 2 or 6 . Second, color the odd hole C_{9} in the way WWRWWRWWR. Then every P_{4} of this C_{9} is of type 6 or 9 , and every P_{4} of the complement of this C_{9} is of type 7 or 8 . Therefore, as odd holes and odd antiholes are imperfect,

$$
\text { none of }\{3,7\},\{2,6\},\{6,9\} \text { and }\{7,8\} \text { is a subset of } S \text {. }
$$

Now, it is straightforward to show that S must be contained in one of the sets S_{1}, S_{2}, S_{3}, or S_{4}.
Finally, all S_{1}-graphs are perfect [12], all S_{2}-graphs are perfect [13], Theorem 2] (see also [19]), all S_{3}-graphs and all S_{4}-graphs are perfect [13], Theorem 6].

We now turn to the recognition problem for P_{4}-bipartite graphs addressed in Theorem 3]. Given a graph G, we consider the system of linear equations

$$
w+x+y+z=2 \quad\left(w, x, y, z \text { induce a } P_{4} \text { in } G\right) .
$$

It is easy to see the G is a S_{1}-graph if and only if this system of linear equations has a $0 / 1$-solution. Thus, S_{1}-graphs can be recognized in polynomial time. Also, S_{3}-graphs can be recognized in polynomial time; the task reduces to the 2 Sat problem as follows.

For each $P_{4} w x y z$ in G, let $(x \vee y) \wedge(\bar{w} \vee \bar{z})$ be a Boolean formula.
The 2SAT formula for G is the product of such all formulas corresponding to the $P_{4} \mathrm{~s}$ in G. Now, if G is a S_{3}-graph with a P_{4}-free coloring $V(G)=R \cup W$, then the truth assigment $v:=$ true $\Leftrightarrow v \in W$ satisfies our 2Sat formula. If, conversely, our 2Sat formula is satisfied, then $W:=\{v: v$ is true $\}, R:=\{v: v$ is false $\}$ is a P_{4}-free 2-coloring of G such that every P_{4} of G is of type $t \in S_{3}$. Since a graph is a S_{4}-graph if and only if its complement is a S_{3}-graph, S_{4}-graphs can be recognized in polynomial time, too.

The recognition problem of S_{2}-graphs remains open; see also [10].

Problem 2 Given a graph G. Can you find in polynomial time a P_{4}-free 2 -coloring of G such that every P_{4} of G is of type $t \in S_{2}$, or prove that such a coloring does not exist?
We remark that it can be shown that Problem 2 is NP-complete if S_{2} is replaced by $S_{2} \cup\{6\}$, or replaced by $S_{2} \cup\{7\}$.

$5 \quad P_{4}$-bipartite graphs and the SPGC

The results in [21, [13, [19] mentioned in previous section will be implied by the truth of the following
Conjecture 1 The SPGC is true for P_{4}-bipatite graphs.
Conjecture \mathbb{T} has been proved for some particular cases. The following theorem is a consequence of previously known results (see also [23]). It proves Conjecture \square for P_{4}-free graphs with one color class being a stable set or a clique.
Theorem 4 Let G have a stable set (or a clique) T such that T meets every P_{4} of G. If G has no odd hole (respectively, no odd antihole), then G is perfect.
Also, in [23], Conjecture 11 is proved for P_{4}-bipartite graphs with one color class inducing a $\left(P_{4}, C_{4}, \overline{C_{4}}\right)$ free graph and meeting every P_{4} in certain way as follows:
Theorem 5 Let G have a subset $T \subseteq V(G)$ such that
(i) T induces a threshold graph,
(ii) T meets every P_{4} in an endpoint, or meets every P_{4} in a midpoint.

If G is Berge, then G is perfect.
Therorem 4 suggests the following weaker conjecture for P_{4}-bipartite graphs with one color class consisting of vertex-disjoint cliques.
Conjecture 2 The SPGC is true for P_{4}-bipatite graphs with one P_{3}-free color class.
The main result of this section is the following theorem which is related to Therorem 5 and proves Conjecture \rrbracket for the case when the P_{3}-free color class meets the P_{4} s in a certain way.
Theorem 6 Let G have a subset $T \subseteq V(G)$ such that
(i) T induces a P_{3}-free graph,
(ii) T meets every P_{4} in an endpoint, or meets every P_{4} in a midpoint.

If G is Berge, then G is perfect.
The proof of Theorem 6 relies on several known results on P_{4}-free graphs and minimal imperfect graphs. First, Seinsche [38] proved that
a P_{4}-free graph or its complement is disconnected.
Two vertices x, y are twins if, for all other vertices z, z is adjacent to x if and only if z is adjacent to y. The next property of P_{4}-free graphs is well known and can be derived from (2).

Every P_{4}-free graph with at least two vertices has a pair of twins.

A graph is minimal imperfect if it is not perfect but each of its proper induced subgraphs is. The well known Perfect Graph Theorem due to Lovász implies that
the complement of a minimal imperfect graph is also minimal imperfect.
Two (nonadjacent) vertices x and y form an even-pair if every induced path connecting x to y has even length. Meyniel [34] showed that

> no minimal imperfect graph has an even-pair.

In particular, no minimal imperfect graph has a two-pair which is a pair of vertices x, y such that every induced path connecting x to y has exactly two edges.
A cutset S of G is called a star-cutset, respectively, a stable-cutset, respectively, a complete multipartitecutset if $G[S]$ has a universal vertex, respectively, has no edge, respectively, is a complete multipartite graph (a complete multipartite graph is one whose vertex set can be partitioned into stable sets S_{1}, \ldots, S_{m} such that, for $i \neq j$, every vertex in S_{i} is adjacent to every vertex in S_{j}). Chvátal [IT] showed that
no minimal imperfect graph has a star-cutset.
In particular,
no minimal imperfect graph has a clique-cutset,
and
in a minimal imperfect graph, no vertex dominates another vertex.
Here, the vertex x dominates the vertex y if $N(y) \subseteq N(x) \cup x$. The next property of minimal imperfect graphs was found by Tucker [39] saying that
no minimal imperfect graph has a stable-cutset, unless it is is an odd hole.
Finally, Cornuéjols and Reed [15] showed that
no minimal imperfect graph has a complete multipartite-cutset.
Proof of Theorem 6. Suppose that T meets every P_{4} in an endpoint. Color the verices in T with color red and vertices outside T with color white. Then G has only P_{4} s of types $3,4,5,6$, or 8 . In particular, G is an S_{3}-graph, hence perfect (see Theorem (3).

Let us consider the case when T meets every P_{4} in a midpoint, and assume that G is a minimal imperfect Berge graph. Further, we may assume that
$G-T$ is disconnected.
Otherwise, by (2), $\bar{G}-T$ is disconnected and so T would be a stable-cutset or a complete multipartitecutset of \bar{G}, contradicting (4) and (9) or (10). In particular, by (7),
T consists of $m \geq 2$ vertex-disjoint cliques.

For convenience, we call a P_{4} bad if its both midpoints are outside T. By our hypothesis, no P_{4} in G is bad.

CASE 1. $\quad G-T$ has two adjacent twins x, y.
In this case, we claim that

$$
x, y \text { form an even-pair in } \bar{G} .
$$

To see this, consider an induced path $P=x x_{1} \cdots x_{k} y, k \geq 2$, in \bar{G} connecting x and y. As x, y are twins in $\bar{G}-T, x_{1}$ must belong to T. Furthermore,
P has no edge in $\bar{G}[T]$.
For if P has an edge in $\bar{G}[T]$, then, since $\bar{G}[T]$ is a complete multipartite graph and $x_{1} \in T$, this edge must be $x_{1} x_{2}$, and P is the $P_{4} x x_{1} x_{2} y$. But then $x_{1} y x x_{2}$ is a bad P_{4} in G, a contradiction.
P has no edge in $\bar{G}-T$.
Otherwise, let i be minimal such that $x_{i} x_{i+1}$ is an edge in $\bar{G}-T$. Note that $i>1$. Set $x_{0}:=x$. Then $x_{i-1} \in T$ and $x_{i-2} \in \bar{G}-T$. But then $x_{i-1} x_{i+1} x_{i-2} x_{i}$ is a bad P_{4} in G, a contradiction.

Thus, P has even number of edges, as claimed. This contradicts (4) and (5), and Case 1 is settled.
CASE 2. $G-T$ has no adjacent twins.
Write $G[T]=C_{1} \cup C_{2} \cup \cdots \cup C_{m}$ with vertex-disjoint cliques $C_{1}, C_{2}, \ldots, C_{m}$. Recall that $m \geq 2$.
Observation 3 For all cliques $C=C_{i}, 1 \leq i \leq m$, and all component H of $G-T$, if $N(C) \cap H \neq \emptyset$, then $H \subseteq N(C)$.
Proof of Observation 3 Assume the contrary, and let H be a component of $G-T$ and let C be a clique of T such that $N(C) \cap H \neq \emptyset$ and $H-N(C) \neq \emptyset$. Let $x \in N(C) \cap H$ having a neighbor y in $H-N(C)$, and let $v \in C$ be a neighbor of x.

By (8), there exists a vertex z adjacent to y but not to $x . z \in N(C) \cap H$, otherwise $z y x v$ would be a bad P_{4}. The same argument shows that x and z have the same neighbors in C. Moereover,

$$
\begin{equation*}
\text { for all } u \in T-C \text {, if } u \text { is adjacent to } y \text {, then } u \text { is adjacent to both } x \text { and } z \text {. } \tag{11}
\end{equation*}
$$

(Else uyxv or uyzv would be a bad P_{4}), and

$$
\begin{equation*}
\text { for all } u \in T, u \text { is adjacent to } x \text { if and only if } u \text { is adjacent to } z \text {. } \tag{12}
\end{equation*}
$$

This is clear for $u \in C$. Suppose $u \in T-C$ is adjacent to x but not to z, then (II) implies that u is nonadjacent to y and so $u x y z$ is a bad P_{4}, a contradiction. The case when u is adjacent to z but not x can be settled in a similar manner. Thus, (12) holds.

We now show that x, z form a two-pair. Let $P=x x_{1} x_{2} \cdots x_{k} z$ be a chordless path connecting x and z, and assume that $k \geq 2$. By (I2), $x_{1} \in H$, hence x_{1} is adjacent to y (because H is P_{4}-free). x_{2} also belongs to H, otherwise, by (II), x_{2} and y are nonadjacent and, by (I2), x_{2} and z are nonadjacent. But then $x_{2} x_{1} y z$ is a bad P_{4}.
Thus, $x_{1}, x_{2} \in H$. But then $x_{3} x_{2} x_{1} x$ (or $z x_{2} x_{1} x$ if $k=2$) is a bad P_{4}. This contradiction proves Observation [3]. \diamond

By (Y) and $m \geq 2, G-T$ has a nontrivial component H. By (3), H has twins x, y which are nonadjacent by the hypothesis in this case. Write

$$
N=N_{H}(x)=N_{H}(y), R=H-N-\{x, y\} .
$$

Since H is connected, N is nonempty.
Observation 4 For all vertices $v \in T$, if v is adjacent to x or y but not both, then v is adjacent to all vertices in N.
Proof of Observation 4 Otherwise, there would be a bad $P_{4} . \diamond$
By (8), there exists a vertex x^{\prime} adjacent to x but nonadjacent to y, and a vertex y^{\prime} adjacent to y but nonadjacent to x. As x, y are twins in $G-T, x^{\prime}$ and y^{\prime} belong to T.
Observation 5 Such vertices x^{\prime} and y^{\prime} can be chosen in different cliques C_{i}, C_{j}.
Proof of Observation 5 Assume that there are vertices a, b in a clique C of T such that a is adjacent to x but not to y, and b is adjacent to y but not to x. As C is not a clique-cutset of G (see (7)), some vertex of H has a neighbor in another clique $C^{\prime} \neq C$ of T. By Observation 3, x has a neighbor $c \in C^{\prime} . c$ cannot be adjacent to y, otherwise $c x a b y c$ would be a C_{5}, contradicting the minimality of G. Now, Observation 5 follows by setting $C_{i}=C^{\prime}, C_{j}=C, x^{\prime}=c$, and $y^{\prime}=b . \diamond$

From now on, let $x^{\prime} \in C_{i}, y^{\prime} \in C_{j}$ with $i \neq j$. By Observation \ddagger, x^{\prime} and y^{\prime} are adjacent to all vertices in N.
Observation 6 For all $C \in\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}, C \neq C_{i}$ or $C \neq C_{j}$, and for all $z \in N, N_{C}(x) \subseteq N_{C}(z)$ and $N_{C}(y) \subseteq N_{C}(z)$.
Proof of Observation 6 If there is a vertex $v \in N_{C}(x)-N_{C}(z)$, then, by Observation $\sqrt{6}, v$ must be adjacent to y. But then $v y z x^{\prime}$ (if $C \neq C_{i}$) or $v x z y^{\prime}$ (if $C \neq C_{j}$) is a bad P_{4}. Thus, $N_{C}(x) \subseteq N_{C}(z)$. By symmetry, $N_{C}(y) \subseteq N_{C}(z) . \diamond$
Observation $7 N$ cannot have a vertex z^{*} that is adjacent to all vertices in $N-z^{*}$.
Proof of Observation \square Such a vertex z^{*} would dominate x (contradicting (8)): If v is a neighbor of x in T, and $v \in C$ for a clique $C \in\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$, then, as C_{i} and C_{j} are different cliques, $C \neq C_{i}$ or $C \neq C_{j}$, hence, by Observation 6, v must be adjacent to z^{*}. \diamond

By Observation ∇, there exist two nonadjacent vertices z_{1}, z_{2} in N. We are going to show that z_{1}, z_{2} form a two-pair. This contradiction to (5) settles Case 2.

Consider an induced path $P=z_{1} t_{1} t_{2} \cdots t_{k} z_{2}$ in G, and assume that $k \geq 2$. Then t_{1} must belong to N.

For, if $t_{1} \in R$, then $t_{1} z_{1} x z_{2}$ would be a bad P_{4}; if $t_{1} \in C$, say $C \neq C_{j}$, then $t_{1} z_{1} x z_{2}$ (if t_{1} is not adjacent to x) or $t_{1} x z_{2} y^{\prime}$ (if t_{1} is adjacent to x) is a bad P_{4}, a contradiction. The case $t_{1} \in C_{j}$ is similar. Now,
t_{2} must belong to T,
otherwise, $z_{1} t_{1} t_{2} t_{3}$ would be a bad P_{4} (set $t_{k+1}:=z_{2}$). Thus, $t_{2} \in C$ for a clique C of T, say $C \neq C_{j}$. Moreover,

$$
t_{2} \text { is adjacent to } x \text { and } y
$$

otherwise, $t_{2} z_{2} x z_{1}$ or $t_{2} z_{2} y z_{1}$ (if t_{2} and z_{2} are adjacent), or $t_{2} t_{1} x z_{2}$ or $t_{2} t_{1} y z_{2}$ (if t_{2} and z_{2} are nonadjacent) would be a bad P_{4}, a contradiction.

But then $t_{2} x z_{1} y^{\prime}$ is a bad P_{4}. The case $t_{2} \in C_{j}$ is similar. Thus, there is no induced path of length >2 connecting x and y, and so x, y form a two-pair. The proof of Theorem 6 is complete.

The class of perfect graphs described in Theorem 6 contains all P_{4}-free graphs, split graphs, cograph contractions, complements of cograph contractions, strongly P_{4}-stable graphs, complements of strongly P_{4}-stable graphs ([23]), bipartite graphs, and complements of bipartite graphs. In particular, this new class is not contained in BIP* ([II]), not in the class of strict-quasi parity graphs ([34]). We do not know whether there is a perfect graph described in Theorem 6 that is not quasi-parity ([34]). Also, we shall remark that these new perfect P_{4}-bipartite graphs do not belong to any class of the classes of S_{i}-graphs, $i=1, \ldots, 4$, described in Theorem 33. This can be seen as follows. Let G be the graph obtained from the $\overline{C_{6}}$ by subdividing the three edges not belonging to a triangle (thus G has nine vertices). Then G satisfies the conditions of Theorem 6 with T consisting of the two disjoint triangles, but G is not an S_{i}-graph, for any $i=1, \ldots, 4$.

To conclude the paper, we remark that Fonlupt (see [22]) conjectures that no minimal imperfect Berge graph contains a cutset that induces a P_{3}-free graph. Clearly, Conjecture \square is implied by Fonlupt's conjecture together with (21) and (10).

References

[1] D. Achlioptas, The complexity of G-free graph colourability, Discrete Math. 165/166 (1997) 31-38
[2] M.O. Albertson, R.E. Jamison, S.T. Hedetniemi, and S.C. Locke, The subchromatic number of a graph, Discrete Math. 74 (1989) 33-49
[3] L. Babel, On the P_{4}-structure of graphs, Habilitationschrift, Zentrum Mathematik, Technische Universität München, (1997),
[4] C. Berge, V. Chvátal, Topics on Perfect Graphs, North-Holland, Amsterdam, 1984
[5] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graphs Classes: A Survey, SIAM Monographs on Discrete Mathematics and Applications, Vol. 3, Philadelphia, 1999
[6] J.I. Brown, The complexity of generalized graph colorings, Discrete Applied Math. 69 (1996) 257270
[7] J.I. Brown, D.G. Corneil, On generalized graph colourings, J. Graph Theory 11 (1987) 87-99
[8] J.I. Brown, D.G. Corneil, Perfect colorings, Arc Combin. 30 (1990) 141-159
[9] M. Burlet, J.P. Uhry, Parity graphs, Ann. Discrete Math. 21 (1984) 253-277
[10] V. Chvátal, Problems concerning perfect graphs,
Collection distributed at the DIMACS workshop on perfect graphs, Princeton University, NJ (1993)
[11] V. Chvátal, Star-cutsets and perfect graphs, J. Combin. Theory (B) 39 (1985) 189-199
[12] V. Chvátal and C.T. Hoàng, On the P_{4}-structure of perfect graphs I. Even decompositions, J. Combin. Theory (B) 39 (1985) 209-219
[13] V. Chvátal, W. Lenhart, and N. Sbihi, Two-colourings that decompose perfect graphs, J. Combin. Theory (B) 49 (1990) 1-9
[14] D.G. Corneil, Y. Perl, and L.K. Stewart, A linear recognition algorithm for cograph, SIAM J. Comput. 14 (1985) 926-934
[15] G. Cornuéjols, B. Reed, Complete multi-partite cutsets in minimal imperfect graphs, J. Combin. Theory (B) 59 (1993) 191-198
[16] M. Garey, D.S. Johnson, Computers and Intractability : A Guide to the Theory of NP-completeness, W.H. Freeman, San Fransisco, 1979
[17] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981) 169-197
[18] M. Grötschel, L. Lovász, and A. Schrijver, Polynomial algorithms for perfect graphs, Ann. Discrete Math. 21 (1984) 325-356
[19] V.A. Gurvich, Biseparated graphs are perfect, Russ. Acad. Sci. Dokl. Math. 48 (1994) 134-141
[20] C.T. Hoàng, Perfect graphs, Ph.D. Thesis, McGill University, Montreal, 1985
[21] C.T. Hoàng, On the P_{4}-structure of perfect graphs II. Odd decompositions, J. Combin. Theory (B) 39 (1985) 220-232
[22] C.T. Hoàng, C.M.H. de Figueiredo, Problems on perfect graphs, Workshop on Perfect Graphs, University of Toronto, July 1998
[23] C.T. Hoàng, V.B. Le, On P_{4}-transversals of perfect graphs, Discrete Math. 216 (2000) 195-210
[24] E. Howorka, A characterization of distance-hereditary graphs, Quart. J. Math. Oxford ser. 2, 28 (1977) 417-420
[25] M. Hujter, Zs. Tuza, Precoloring extensions III: Classes of perfect graphs, Combinatorics, Probability \& Computing 5 (1996) 35-56
[26] B. Jamison, S. Olariu, P_{4}-reducible graphs, a class of uniquely tree representable graphs, Studies in Appl. Math. 81 (1989) 79-87
[27] B. Jamison, S. Olariu, A new class of brittle graphs, Studies in Appl. Math. 81 (1989) 89-92
[28] B. Jamison and S. Olariu, On a unique tree representation for P_{4}-extendible graphs, Discrete Applied Math. 34 (1991) 151-164
[29] B. Jamison, S. Olariu, A uniquely tree representation for P_{4}-sparse graphs, Discrete Applied Math. 35 (1992) 115-129
[30] B. Jamison and S. Olariu, P-components and the homogeneous decomposition of graphs, SIAM J. Discr. Math. 8 (1995) 448-463
[31] H.A. Jung, On a class of posets and the corresponding comparability graphs, J.Combin. Theory (B) 24 (1978) 125-13
[32] V.B. Le, A good characterization of cograph contractions, J. Graph Theory 30 (1999) 309-318
[33] L. Lovász Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972) 253-267
[34] H. Meyniel, A new property of critical imperfect graphs and some consequences, European J. Combin. 8 (1987) 313-316
[35] T. Przytycka, D.G. Corneil, Parallel algorithms for parity graphs, J. Algorithms 12 (1991) 96-109
[36] B. Reed, A semi-strong perfect graph theorem, J. Combin. Theory (B) 43 (1987) 223-240
[37] T.J. Schaefer, The complexity of the satisfiability problem, In: Proc. 10th Ann. ACM Symp. on Theory of Computing, 1978, 216-226
[38] D. Seinsche, On a property of the class of n-colorable graphs, J. Combin. Theory (B) 16 (1974) 191-193
[39] A. Tucker, Coloring graphs with stable cutsets, J. Combin. Theory (B) 34 (1983) 258-267

[^0]: ${ }^{\dagger}$ Research supported by NSERC. E-mail: choang@ wlu.ca
 ${ }^{\ddagger}$ E-mail: le@informatik.uni-rostock.de

