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Application of graph combinatorics to rational
identities of type A*
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Abstract. To a wordw, we associate the rational functi@n, = [](zw, —2w,.,)”'. The main object, introduced by
C. Greene to generalize identities linked to Murnaghandyakna rule, is a sum of its images by certain permutations
of the variables. The sets of permutations that we consideth& linear extensions of oriented graphs. We explain
how to compute this rational function, using the combinatof the graphG. We also establish a link between an
algebraic property of the rational function (the factotiaa of the numerator) and a combinatorial property of the
graph (the existence of a disconnecting chain).

Résume. A un motw, nous associons la fonction rationnelle, = [](zw, — Tw,,,) . Lobjet principal, introduit

par C. Greene pour généraliser des identités ratioeméé#es a la regle de Murnaghan-Nakayama, est une somme d
ses images par certaines permutations des variables. kembles de permutations considérés sont les extensions
linéaires des graphes orientés. Nous expliquons comecaéler cette fonction rationnelle a partir de la comiire

du graphe?. Nous établissons ensuite un lien entre une proprigtbaique de la fonction rationnelle (la factorisation
du numeérateur) et une propriété combinatoire du grapdeagtence d’'une chaine le déconnectant).
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1 Introduction

A partially ordered set (posetp is a finite setl” endowed with a partial order. By definition, a word
w containing exactly once each elementlofis called alinear extensiorif the order of the letters is
compatible withP (if a <p b, thena must be beforé in w). To a linear extensiow = vyvs . .. v,, We
associate a rational function:

1

(Toy — Twy) * (Toy — Twg) o (T, — T, )

’l/)w:

We can now introduce the main object of the paper. If we debpté(P) the set of linear extensions
of P, then we define/p by:
Up= > tu.

weL(P)

* This paper is an extended abstract of the paper on arXiv 2862, which contains all detailed proofs.
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1.1 Background

The linear extensions of posets contain very interestibgets of the symmetric group: for example, the
linear extensions of the poset considered in the articlar@}he permutations smaller than a permutation
m for the weak Bruhat order. In this case, our constructiodsecto that of Demazure characters (4). S.
Butler and M. Bousquet-Mélou characterize the permutatiocorresponding to acyclic posets, which
are exactly the cases where the function we consider is tiyglest.

Moreover, linear extensions are hidden in a recent formadarfeducible character values of the sym-
metric group: if we use the notations of (7), the quanfity(G) can be seen as a sum over the linear
extensions of the bipartite gragh (bipartite graphs are a particular case of oriented graphis)s ex-
plains the similarity of the combinatorics in article (6)din this one.

The function¥» was considered by C. Greene (8), who wanted to generaliz@aahidentity linked
to Murnaghan-Nakayama rule for character values of the sytmegroup. He has given in his article a
closed formula for planar posetg# is the Mobius function ofP):

[T (zy, —z,)**®2) if Pis connected,

0 if P is not connected,
Up =
y,2z€P

However, there is no such formula for general posets, oyl#mominator of the reduced form o> is
known (see article (2)). In this paper, the first author hasstigated the effects of elementary transfor-
mations of the Hasse diagram of a poset on the numerator asuiated rational function. He has also
noticed, that in some case, the numerator is a Schur fun@igraragraph 4.2) (we can also find Schubert
polynomials or sums of multiSchur functions).

In this paper, we obtain some new results on this numeraiankis to a simple local transformation in
the graph algebra, preserving linear extensions.

1.2 Main results

An inductive algorithm The first main result of this paper is an induction relatiorlinear extensions
(Theorem 3.1). When one appligson it, it gives an efficient algorithm to compute the numerato
of the reduced fraction o » (the denominator is already known).

A combinatorial formula If we iterate our first main result in a clever way, we can diégccombinato-
rially the final result. The consequence is our second mainlt:ef we give to the graph of a poset
P arooted map structure, we have a combinatorial non-indeitirmula for the numerator off »
(Theorem 3.7).

A condition for Uy to factorize Green formula’s for the function associated to a planar fisse quo-
tient of products of polynomials of degrde In the non-planar case, the denominator is still a
product of degree 1 terms, but not the numerator. So we mageromhen the numeratdy (P)
can be factorized.

Our third main result is a partial answer (a sufficient butmedtessary condition) to this question:
the numeratoV (P) factorizes if there is a chain disconnecting the Hasse dragfP (see The-
orem 3.8 for a precise statement). An example is drawn ondiduithe disconnecting chain is
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(2,5)). Note that we use here and in the whole paper a unusual cionemwe draw the posets
from left (minimal elements) to right (maximal elements).

4 6

Fig. 1: Example of chain factorization

1.3 Open problems

Necessary condition for factorization The conclusion of the factorization Theorem 3.8 is sometime
true, even when the separating path is not a chain: see fon@zaFigure 2 (the patlis, 6, 3)
disconnects the Hasse diagram, but is not a chain).

This equality, and many more, can be easily proved usingdimesnethod as Theorem 3.8. Can we
give a necessary (and sufficient) condition for the numerafta poset to factorize into a product
of numerators of subposets? Are all factorizations of tiislR

Characterization of the numerator Let us consider a pos&, which has only minimal and maximal
elements (respectively;,...,a; andby,...,b,.). The numeratotV(P) of Up is a polynomial
in b1,...,b. which degree in each variable can be easily bounded (2, Bitapo3.1). Thanks
to Proposition 3.4, we see immediately tHa{?) = 0 on some affine subspaces of the space of
variables. Unfortunately, these vanishing relations & dégree do not characteriz&gP) up to a
multiplicative factor. Is there a bigger family of vanisirelations, linked to the combinatorics of
the Hasse diagram of the poset, which charactezgB)?
This question comes from the following observation: for soparticular posets, the numerator
is a Schubert polynomial and Schubert polynomials are kntmnre easily defined by vanishing
conditions (9).

2 Graphs, posets and rational functions

Oriented graphs are a natural way to encode information séfso To avoid confusions, we recall all
necessary definitions in paragraph 2.1. The definition afdinextensions and hence of our rational

7

Fig. 2: An example of factorization, not contained in Theorem 3.8.
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function can be easily formulated directly in terms of grefjparagraphs 2.2 and 2.3).

We will also define some elementary removal operations optgrparagraph 2.4), which will be used in
the next section. Due to transitivity relations, it is notigglent to perform these operation on the Hasse
diagram or on the complete graph of a poset, that's why weeptefformulate everything in terms of
graphs.

2.1 Definitions and notations on graphs

In this paper, we deal with finitdirected graphsSo we will use the following definition of a grayh:
e A finite set of verticed/;.
e Asetof edged defined byEs C Vg x Vg.

If e € E¢, we will note bya(e) € Vi the first component of (calledorigin of e) andw(e) € Vg its
second component (callehdof €). This means that each edge has an orientation.
Lete = (v1,v2) be an element of; x V. Then we denote by the pair(vs, v1).

With this definition of graphs, we have four definitions ofdafive walks on the graph.

can not go backwards| can go backwards
closed circuit cycle
non-closed chain path

More precisely,
Definition 2.1 LetG be a graph and its set of edges.

chain A chain is a sequence of edges= (eq,...,e;) of G such thatw(e1) = a(ez), w(ez) = ales),
.candw(er—1) = alek).

circuit A circuitis a chain(ey, ..., ex) of G such thatv(ey) = a(ey).

path A path is a sequende;, ..., e;) of elements off U E such thatu(e;) = a(ez), w(es) = a(es),
...andw(ex—1) = aler).

cycle A cycleC is a path with the additional property that(ex) = «(e1). If C'is a cycle, then we denote
by E(C) the setC' N E.

In all these definitions, we add the condition that all edged @ertices are different (except of course, the
equalities in the definition).

Remark 1 The difference between a cycle and a circuit (respectivghath and a chain) is that, in a
cycle (respectively in a path), an edge can appear in botkations (not only in the direction given by the
graph structure). The edges, which appear in a cycleith the same orientation than their orientation
in the graph, are exactly the elementsi(C).

To make the figures easier to readg) is always the left-most extremity efandw(e) its right-most
one. Such drawing construction is not possible if the graptiains a circuit. But its case will not be very
interesting for our purpose.
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Fig. 3: Example of a chain and a cyafe (we recall that orientations are from left to right).

Example 1 An example of graph is drawn on figure 3. In the left-hand side,non-dotted edges form
a chain c, whereas, in the right-hand side, they form a cy¢lesuch thatFE(C) contains 3 edges:
(1,6), (6,8) and(5,7).

The cyclomatic numbenf a graphG is |Eq| — |Veo| + cg, wherecg is the number of connected
components ofs. A graph contains a cycle if and only if its cyclomatic numizenot0 (see (5)). If it
is not the case, the graph is calliedest A connected forest is, by definition, a tree. Beware thathiis

context, there are no rules for the orientation of the ed§agree (often, in the literature, an oriented tree
is a tree which edges are oriented from tbet to theleaves but we do not consider such objects here).

2.2 Posets, graphs, Hasse diagrams and linear extensions
In this paragraph, we recall the link between graphs andtpose

Given a grapitz, we can consider the binary relation on thelgetof vertices ofG:

def _ ale) =x
<y (zyorEeEEGsuchthat{ wie) =y >

This binary relation can be completed by transitivity. I&thraph has no circuit, the resulting relation
<is antisymmetric and, hence, endows thégetvith a poset structure, which will be denotegket(G).

The applicatiorposet is not injective. Among the pre-images of a given pd8ethere is a minimum
one (for the inclusion of edge set), which is called Hassgrdia of P.

The definition of linear extensions given in the introdunt@@an be formulated in terms of graphs:

Definition 2.2 A linear extension of a grapfy’ is a total order<,, on the set of verticeg such that, for
each edge of G, one hasx(e) <,, w(e).

The set of linear extensions@fis denoted’(G). Let us also define the formal syG) = >~ w.
weL(G)

We will often see a total ordet,, defined byv;, <., vi, <u ... <y Vi, @S AWOrdw = v;, Vi, ... Vi, .

n

Remark 2 If G contains a circuit, then it has no linear extensions. El$glinear extensions are the
linear extensions oposet(G). Thus considering graphs instead of posets does not give geeral
results.
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2.3 Rational functions on graphs

Given a graplG with n verticesuy, . . ., v,, we are interested in the following rational functidg; in the

1
variables(z,. )i=1..n: Vo = .
S(:E 1) b ¢ Z (.wal - xwz) e (m'wn—l - m’wn)
weL(G)
We also consider the renormalizatioi(G) := ¥ - H (Ta(e) = Tu(e))-
ecEqg

The following properties ofV (G) have been proved in (2): the value§fon forests is essential in the

next section because we will computeby induction on the cyclomatic number.

Lemma 2.1 (Pruning-invariance) Let G be a graph with a vertex of valencel and e the edge of
extremity (origin or end). Then one hasV(G) = N (G\{v}).

Proposition 2.2 If T'is atree,N(T') = 1. If F' is a disconnected fores\ (F') = 0.

2.4 Removing edges and vertices in graphs
The main tool of this paper consists in removing some edgagyoaphG.

Definition 2.3 Let G be a graph andE’ a subset of its set of edgé%;. We will denote by7\E’ the
graphG’ with

e the same set of vertices é5;
e the setEs := E¢\E' as set of edges.

Definition 2.4 If G'is a graph and/’ a subset of its set of vertic&5 V'’ has an induced graph structure:
its edges are exactly the edgegffwhich have both their extremities IrY.

If VAV’ = {v1,..., v}, this graph will be denoted b\ {v1, ..., v }. The symbol is the same than in
definition 2.3, but it should not be confusing.

3 Computation and properties of the numerator

In the previous section, we have defined a simple operatiographs consisting in removing edges.
Thanks to this operation, we will be able to construct an aterwhich lets invariant the formal sum
of linear extensions (paragraph 3.1). Due to the definitibd pthis implies immediately an inductive
relation on the rational functionB (paragraph 3.2).

In paragraph 3.3, we solve the induction and obtain an agditrmula forN (G). But this formula has
never a factorized form (even in the planar case), so we gitteei last paragraph (3.4) a simple graphical
condition which implies the partial factorization 8f(G).

3.1 Equality on linear extensions

In this paragraph, we prove an induction relation on the frsnms of linear extensions of graphs. More
exactly, we write, for any grap&' with at least one cycley(G) as a linear combination @f(G’), where

G’ runs over graphs with a strictly lower cyclomatic numbertHa next paragraphs, we will iterate this
relation and apply’ to both sides of the equality to study;.
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Fig. 4: Example of application of theorem 3.1

If G is afinite graph and” a cycle ofG, let us denote b (G) the following formal alternate sum of
subgraphs of:

Te(G) = > (-)FITe\E.
E'CE(C)
E'#0

The functionp(G) = > w can be extended by linearity to the free abelian group spghbye
weL(G)
graphs. One has the following theorem:
Theorem 3.1 LetG be a graph and” a cycle ofG then,p(G) = ¢(Tc(G)).

An example is drawn on figure 4 (to make it easier to read, wendidvrite the operatop in front of
each graph).

Remark 3 In the case wherd?(C') = ), this theorem says that a graph with a circuit has no linear
extensions (see remark 2).

If it is a singleton, it says that we do not change the set @dirextensions by erasing an edge if there
is a chain going from its origin to its end (thanks to tranity).

To prove Theorem 3.1, we will need the two following lemma:

Lemma 3.2 Letw € L(G\E(C)). There existdy’(w) C E(C) such that

VE" C E(C), we L(G\E") <+ E'(w) C E" C E(C).
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Proof: Left to the conscientious reader. O
Lemma 3.3 Letw € L(G\E(C)), there exist®” C E(C) such thatw € L(G\E").

Proof: Suppose that we can find a wordfor which the lemma is false. Sinee € L£L(G\E(C)), the
word w fulfills the relations given by the edges @f which are not inE(C').

But, if e € E(C), one hasv ¢ L(G\(E(C)\{e})). That means that does not fulfill the relation corre-
sponding to the edge As w is a total order, it fulfills the opposite relation: € £ [(G\E(C)) U {e}] .

With the same argument applied for eacle E(C), one hasw € L [(G\E(C)) u (C)} . But this
graph contains a circuit, so its set of linear extension iptgm O

Let us come back to the proof of Theorem 3.1. Lelbe a word containing exactly once each element
of Viz. We will compute its coefficient ip(G) — o(Tc(G)) = ZE/cE(c)(*l)‘El‘sﬁ(G\E'Y
o If w¢ L(G\E(C)), its coefficient is zero in each summand.
o If we L(G\E(C)), thanks Lemma 3.2, we know that there exiBt$w) C E(C') such that
VE" C E(C),w € L(G\E") <= E'(w) C E" C E(C).

So the coefficient ofv in p(G) — p(Tc(G)) is > (—1)!7"l = 0 becauseE’ (w) #
E'(w)CE”CE(C)
E(C) (Lemma 3.3).
3.2 Consequences on rational functions

In the previous paragraph, we have established an induftramula for the formal sum of linear exten-
sions (Theorem 3.1). One can ap@hto both sides of this equality to compud&G):

Proposition 3.4 Let G be a graph containing a cycl€. Then,

NG = > |[E)FIINGE) [] @ae) = Tuie) | -
E'CE(C) ecE’
E'#0

By Proposition 2.2, one haS(7T") = 1 if T'is atree andV(F') = 0 if F'is a disconnected forest. So
this Proposition gives us an algorithm to compé’): we just have to iterate it with any cycles until
all the graphs in the right hand side are forests. More pegig after iterating transformations of type
Tc onG, we obtain the formal linear combinatidn ¢y F' of subforests of7, then:

N(G) = Z cr H (l’a(e) — l’w(e)).

T subtree oG e€cEc\Er

In this formula,N (G) appears as a sum of polynomials. So the computatidn(f), using this formula,
is easier than a direct application of the definition

N(G) = Z <\ij : H (za(e) - zw(e))) )

weL(G) e€cEg
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where the summands may have poles.

Corollary 3.5 For any graphG, the rational functionV(G) is a polynomial. Moreover, if7 is discon-
nected,N(G) = 0.
N(G)

I[[ (Zate)—Twie))
eEEG

In fact, if a connected grap@i is the Hasse diagram of poset, the fractibn = is

irreducible (see (2) for a proof of this fact).

Example 2 (explicit computation) Let G2 4 be the graph with a set of verticd$ partitioned in two
subsetsV; = {ai1,a2} andVy = {b1,bs,b3,b4} and E = V; x V, as set of edges. After iterating
Theorem 3.1, we obtain the equality of Figure 5 (the operatbas been once again omitted).

bl b1 b1 bl bl
aq ay ay aq
by - '<:f by
oo\ T T e T by T s
as a as az
b4 b4 b4 .\b.4

Fig. 5: Decomposition ofp(Gz2,4).

Thus,N (G2,4) = Zf:l (Hj<i(bj —a1) [l (bx — a2)) .

3.3 A combinatorial formula for N

To compute the polynomiaV of a graphG, we only have to find the coefficient of trees in a formal
linear combination of forests obtained by iterating transfations/- on G. But there are many possible
choices of cycle at each step and these coefficients depetheésa choices.

A way to avoid this problem is to give t&' a rooted map structur®/ and to look at the particular
decompositionD (M) introduced in the paper (6, section 3). We will not describeetthis particular
choice of cycles (see the complete version), but we have dic@atorial description of the trees with
coefficient+1 in D(M), all other trees having as coefficient.

Definition 3.1 A (combinatorial oriented) map is a connected graph with, dach vertexv, a cyclic
order on the edges whose origin or endvisThis definition is natural when the graph is drawn on a two
dimensional surface (see for example (10)).

Itis more convenient when we deal with maps, to considerseageouples of two darté;, h»), the first
one of extremityx(e) and the second one of extremitye). A rooted map is a map with an external dart
ho, that is to say a dart which do not belong to any edge, but hasxaemity and a place in the cyclic
order given by this extremity.

We will need the following definition:

Definition 3.2 If T is a spanning subtree of a rooted map, the tour of the tre€l” beginning athg
defines an order on the darts which do not belon@'torhe definition is easy to understand on a figure:
for example, on Figure 6, the touris , hi, h2, h2, h3, hi, h3, hi (see (1) for a precise definition).
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sillip

Fig. 6: Tour of a spanning tree of a rooted map.

We are now able to describe the coefficients of tree3(i/):
Proposition 3.6 Let M be a rooted map and@ a spanning tree oM.

e If there is an edge = (hi, ha) € M\T such thath, appears beforé, in the tour ofT’, then the
coefficientofl" in D(M) is 0.

e Else, the coefficient @ in D(M) is +1 (in this case] is said to begood.

For example, the spanning tree of Figure 6 is good. Note kiegptoperty of being a good spanning tree
does not depend on the orientations of the edges of the tueenty on the orientations of those which
do not belong to it.

This Proposition is not very hard to prove, once we have thlegtefinition of D(M), but the latter
is quite technical and requires a non-easy proof of confleerks an immediate consequence of the
proposition, we have the following formula fo¥ (G):

Theorem 3.7 The polynomialV associated to the underlying graghof a rooted map\/ is given by the
following combinatorial formula:

NG = ) [T o —2e@) |- 1)

T good spanning| ec Eg \ BT
tree of M

3.4 Chain factorization

In the previous paragraph, we have given an additive forffarléhe numerator of the reduced fraction
of p. Green formula for planar posets (see subsection 1.1) andxtample of Figure 1 show that, in
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some cases, it can also be written as a product. In this pgrhgve give a simple graphical condition on
a graphG, which implies the factorization oV (G).

Remark 4 In this section, we assume th@thas no circuit and no transitivity relation (an edge going
from the beginning to the end of a chain). This is always truéhe case of Hasse diagrams of posets
so we do not lose in generality. With this assumption, if wesier a chaine, there is no extra edges
between the vertices of the chain.

Let G be a connected graph,a chain ofG, V. the set of vertices of (including the origin and the
end of the chain) and'y, ..., Gj, be all the connected components®f\, V.. The complete subgraphs
G; = G; UV, (for 1 < i < k) will be called regions ofy. An example (withk = 4) is drawn on Figure
7 (we consider the chain with, = {1,2,13,3,4,5,6, 14}).

9 10 11 12 15

1 2 13 3 14 15

o 4 5 6
Ga = 18! 19

Fig. 7: A graphG with a chainc, the connected componers of G \ V. and the corresponding regio6s.

We can now state our third main result:

Theorem 3.8 Let G’ be a connected graple, a chain ofG and Gy, Go, ..., G}, be the corresponding
regions ofG. Then one has:

k
N(G) = [[N@.

In the example 7, the numeratdi(G) can be factorized into four non-trivial factors. This thewris
proved in the complete version of the paper. It relies on aeclapplication of Proposition 3.4 and is a
little technical.

In the case of planar posets considered by Greene (8), #osdim explains the fact that the numerator
of the associated rational function is a product of polyredeof degred. We can even give a new proof
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= (.I'l — 1'4).(1'2 — $5).($3 — 136)
Fig. 8: A non-planar (with Greene’s definition) poset for which Gre's formula is true.

of Greene’s formula (stated in subsection 1.1), which wamkes context a little more general than planar
posets (see Figure 8).
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