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Growth function for a class of monoids
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Abstract. In this article we study a class of monoids that includes Garside monoids, and give a simple combinatorial
proof of a formula for the formal sum of all elements of the monoid. This leads to a formula for the growth function
of the monoid in the homogeneous case, and can also be lifted to a resolution of the monoid algebra. These results are
then applied to known monoids related to Coxeter systems: we give the growth function of the Artin-Tits monoids,
and do the same for the dual braid monoids. In this last case we show that the monoid algebras of the dual braid
monoids of type A and B are Koszul algebras.

Résumé. Nous étudions une classe de monoïdes incluant les monoïdes de Garside, et donnons une preuve combina-
toire simple d’une formule pour la somme formelle de leurs éléments. Cela mène à une formule pour la fonction de
croissance du monoïde dans le cas homogène, et peut être aussi relevé en une résolution de l’algèbre de monoïdes.
Ces résultats sont ensuite appliqués aux monoïdes liés aux systèmes de Coxeter: nous donnons la fonction de crois-
sance des monoïdes d’Artin-Tits ainsi que des monoïdes duaux ; pour ces derniers nous montrons que leur algèbre de
monoïde en types A et B est une algèbre de Koszul.
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Introduction
We consider left cancellative monoids M that are generated by their atoms S, and such that if a subset of
S admits a common right multiple, then it actually admits a least common multiple.

These monoids include trace monoids, for which there exists a nice combinatorial theory due to Viennot
[23]. Our first result (Theorem 2) generalizes one of the proofs of Viennot for the formal sum of elements
a monoid. When the monoid is homogeneous with respect to its set of atoms S, then we have immediately
that the growth function of the monoid (i.e. the generating function according to the length of elements as
words in S) is the inverse of a polynomial. We will apply this formula to Artin-Tits monoids, and more
generally it applies to all Garside monoids [9].

The combinatorial proof, which is a actually a sign reversing involution, has an interpretation as a
resolution of Z as a ZM -module, where ZM stands for the monoid algebra of M . Another resolution can
be deduced from this one, and in turn this new resolution gives another formula for the growth generating
function of the monoid. We use this reduced resolution in the case of the dual braid monoids defined by
Bessis in the types A and B; for a particular choice of the reduced resolution in these cases, we will show
that the monoid algebras ZM are Koszul algebras [19, 11].
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We now give an outline of the paper. In Section 1 we define the class of monoids we study, give
formulas for the formal sum of their elements (Theorem 2) and the growth functions of such monoids,
and give interpretations of these results as resolutions of the corresponding monoid algebras. In Section
2, we explain how these results apply to both trace monoids and Garside monoids. The following two
sections apply the results of Section 1 to two families of Garside monoids related to irreducible finite
Coxeter groups. In Section 3 we give the growth functions of the corresponding Artin-Tits monoids. In
Section 4, we also give the corresponding growth functions for the dual braid monoids, and show that in
type A and B the corresponding monoid algebras are Koszul algebras.

1 Growth function and exact resolution
1.1 Monoids
A monoid (M, ·) is a set M together with an internal law · that is associative and such that there exists an
identity element 1. A subset S ⊂M is a generating set if every element of M can be written as a product
of elements of S.

Let S be a set, and R a collection of pairs (w,w′) (called relations), where w and w′ are words in S.
We say that 〈S |R 〉 is a presentation of the monoid M if M is isomorphic to S∗/�R�, where�R�
is the congruence generated by R. The presentation is said to be homogeneous if all relations of R are
composed of two words of equal length. Given a generating set S of M , the length of an element m ∈M
is the smallest number of generators needed to write it. We will write |m|S for this length, and we note
that this length is additive if M admits an homogeneous presentation.

An element a is an atom of M if a 6= 1, and if a = bc implies b = 1 or c = 1; a monoid is atomic if it
is generated by its set of atoms, and if in addition every element m possesses a finite number of different
decompositions as a product of atoms. It is easy to see that an atomic monoid has the property that a 6= 1
and b 6= 1 imply that ab 6= 1.

We note ZM the monoid algebra of M , whose elements are formal linear combinations of elements of
M with coefficients in Z; we note also Z〈〈M 〉〉 the algebra of formal infinite such linear combinations.
The product of

∑
m cmm and

∑
m dmm is in both cases given by

∑
m emm where em =

∑
ab=m cadb:

the product is well defined if the sum is finite, which is the case when M is atomic.

1.2 Main result
In all this work, we consider monoids M with a finite generating set S satisfying the following properties:
M is atomic, left-cancellative (if a, u, v ∈ M are such that au = av, then u = v) and verifies that if a
subset of S has a right common multiple, then it has a least right common multiple.

Lemma 1. For such a monoid, if J ⊂ S is such that J has a common multiple, then a least common
multiple (lcm) exists and is unique.

We will call cliques the subsets of S having a common multiple, and let J be the set of all cliques; if
J is a clique, we note MJ its unique least common multiple, and let mJ be the length of MJ . Then we
have our first result:

Theorem 2. Let M,S be as above. Then the following identity holds in Z〈〈M 〉〉:(∑
J∈J

(−1)|J|MJ

)
·

( ∑
m′∈M

m′

)
= 1M (1.1)
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As an important corollary, we get the following:

Corollary 3 (Bronfman ’01). Given M,S as in the above theorem, suppose also that M admits a homo-
geneous presentation 〈 S |R 〉. Then its growth function is equal to :

GM (t) =
∑
m∈M

t|m|S =

[∑
J∈J

(−1)|J|tmJ

]−1

(1.2)

of Corollary 3. Admitting a homogeneous presentation is equivalent to the fact that the length according
to S is additive, which means that the application

∑
m cmm 7→

∑
m cmt

|m|S is a homomorphism from
Z〈〈M 〉〉 to Z[[t]], the ring of power series with integer coefficients. It is indeed well defined because
there is a finite number of elements of M of a given length. We can apply this homomorphism to both
sides of the above theorem, which finishes the proof.

of Theorem 2. For every element m ∈ M , let us define J (m) ⊆ J to be the subsets J of S such that
every element s of J divides m; by the lcm property of M , we have that there exists a subset Jm ⊆ S ,
such that J (m) consists exactly of the subsets of Jm.

From now on we fix a total order < on the set of generators S. Let us fix any m 6= 1. Clearly Jm is not
empty in this case, and so we can define s(m) as the maximal (for the order <) element of Jm. Define the
involution Φm on J (m) as follows: Φm(J) = J4{s(m)} where 4 denotes the symmetric difference
A4B = (A∪B) \ (A∩B). The application Φm is simply the classical involution on the subsets of Jm;
since Φm changes the parity of |J |, we have obviously∑

J⊆Jm

(−1)|J| = 0. (1.3)

Note that this sum is 1 if we take m = 1, since there is only one term corresponding to the empty set.
Now J ∈ J (m) means precisely that MJ divides m, that is there exists m′ such that MJm

′ = m: such
an element m′ is uniquely determined by the cancellability property. Therefore Equation (1.3) can be
rewritten equivalently as ∑

(J,m′)∈J×M
MJm

′=m

(−1)|J| =

{
0 if m 6= 1;
1 if m = 1.

(1.4)

But this quantity is precisely the coefficient cm of m in the left term of Equation (1.1) written in the
form

∑
m cmm, and so this proves Theorem 2.

1.3 Posets
We refer to [22, ch. 3] for standard notions about posets. Given a locally finite poset (P,≤) (i.e all
intervals have a finite number of elements), the Möbius function can be defined inductively on all pairs
x ≤ z by

µ(x, x) = 1, µ(x, z) =
∑

x≤y<z

µ(x, y) for x < z (1.5)

Now consider a monoid M (as in Paragraph 1.2 with the divisibility relation �. It forms a locally finite
poset PM as is readily checked, so it has a Möbius function; it has also a smallest element 1, and we write
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µ(m) = µ(1,m). In this poset, atoms of the monoids become atoms of the poset (i.e. elements that cover
1), and lcms become joins. We will use this in Section 4 to compute the growth functions of dual braid
monoids of type A and B in particular, since the interval [1,MS ] in PM for these monoids are noncrossing
partitions.

Note that one can identify the algebra Z〈〈M 〉〉 with the incidence algebra I(PM ). From this we know
that ζM =

∑
m∈M m ∈ Z〈〈M 〉〉 has for inverse in Z〈〈M 〉〉 the function

∑
m µ(m)m, so that Theorem

2 is actually a manner of computing the Möbius function of this poset, related to the crosscut theorem of
Rota [21].

1.4 An exact resolution
In this paragraph we give resolutions that generalize the one in [14] which concerned trace monoids: let
M,S be as at the beginning of Paragraph 1.2, A = ZM be the monoid algebra of M . Let B = ZJ be
the free module with basis J , and Bn be the submodule with basis Jn the cliques of cardinal n. Consider
then Cn = Bn ⊗Z A the free (right) A-module with basis Jn. Now we fix a total order < on S, and we
write cliques as words s1 . . . sn where si < si+1 for all i. For two cliques J ⊂ J ′, we also let δJ

′\J
J be

the element of M such that MJδ
J′\J
J = MJ′ ; it is well defined thanks to the cancellability property. We

define an A-module homomorphism dn : Cn → Cn−1 by

dn(s1 . . . sn ⊗ 1) =
n∑
i=1

(−1)n−is1 . . . ŝi . . . sn ⊗ δsi

s1...ŝi...sn
(1.6)

We define also ε : A→ Z by ε(m) = 0 if m 6= 1 and ε(1) = 1, so that we have the following sequence
of A-modules and A-homomorphism (where we let k = |S|):

0 −→ Ck
dk−→ Ck−1

dk−1−→ · · · · · · d2−→ C1
d1−→ C0 = A

ε−→ Z (1.7)

Theorem 4. The complex (1.7) is a resolution of Z as an A-module.

We recall that this means that the sequence is exact, i.e. we have to check that Im(dn) = Ker(dn−1)
for all n.

Proof. Let J = s1 . . . sn be a clique, then one checks first that dn−1 ◦ dn = 0 for any n. Indeed
the computation gives dn−1 ◦ dn(J ⊗ 1) =

∑
i<j(−1)i+j−1Ji,j ⊗

(
δ
sj

Ji,j
δsi

Ji
− δsi

Jj,i
δ
sj

Jj

)
, where we let

Ji1,...,it be the clique obtained by removing the generators si1 , . . . , sit from J . Now the difference in the
second term is 0 since both terms are equal to δsi,sj

Ji,j
.

So we have Im(dn) ⊆ Ker(dn−1), and to check the reverse inclusion, we define a Z-homomorphism
in+1 : Cn → Cn+1 in the following way: let J ⊗m ∈ Cn, with J = s1 . . . sn, and consider the subset
of S consisting of divisors of MJm that are greater than sn; call this set E(J,m). If E(J,m) is empty, set
in+1(J ⊗m) := 0; otherwise, let sn+1 be the maximum element of E(J,m) for the order <, and define
m1 by δsn+1

J m1 = m; then set in+1(s1 . . . sn ⊗ m) := s1 . . . snsn+1 ⊗ m1. One can then check that
in−1 ◦ dn−1 + dn ◦ in = 1 for all n in a similar manner to [14], where 1 is the identity on Cn−1. This
shows that Ker(dn−1) ⊆ Im(dn) and concludes the proof.

Now we show how this resolution gives a proof of Theorem 2:
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of Theorem 2. Define the Z-module C(m) = ⊕nCn,m by letting the basis of Cn,m be the elements
J ⊗m1 such that |J | = n and MJm1 = m in M . Then the functions dn and in+1 map C(m) to itself as
is immediately checked, so we obtain for every m ∈M an exact sequence of free Z-modules:

0 −→ Ck,m
dk−→ Ck−1,m

dk−1−→ · · · · · · d2−→ C1,m
d1−→ C0,m

ε−→ Zm (1.8)

We have that dimZCn,m is the number of pairs (J,m1) ∈ J ×M such that |J | = n and MJm1 = m;
furthermore, dimZZm is equal to 1 if m = 1 and 0 otherwise. Taking the Euler-Poincaré characteristic
of the resolution (1.8) gives us then Equation (1.4), which has been shown to be equivalent to Theorem
2.

Reduced resolution: Given a total order on S as above, introduce now the set J< ⊆ J of order com-
patible cliques: these are the cliques s1 . . . sn such that for all i we have that si is the largest divisor of
Ms1,...,si for the order <. We will write OC for order compatible.

Lemma 5. A clique J = s1 . . . sn is OC if and only if for all t ≤ n and all sequences of indices
1 ≤ i1 < · · · < it ≤ n we have that sit is the maximal divisor of Msi1 ,...,sit

.

Proof. The condition is clearly sufficient; now if J = s1 . . . sn is OC and 1 ≤ i1 < · · · < it ≤ n, we
have the inequalities sit ≤ maxdiv(Msi1 ,...,sit

) ≤ maxdiv(Ms1,s2,...,sit
) = sit . So all inequalities are

in fact equalities and the lemma is proved.

Corollary 6. If J is an OC clique then every subset of J is also an OC clique.

Now let C̃i be the A-submodule of Ci with basis the OC cliques of size i. By the last corollary, the
derivations di are well defined when restricted to these submodules, so we have a complex:

0 −→ C̃k
dk−→ C̃k−1

dk−1−→ · · · · · · d2−→ C̃1
d1−→ C̃0 = A

ε−→ Z (1.9)

Proposition 7. The complex (1.9) is an exact resolution of Z by A-modules.

Proof. We check that the homotopy in+1 is still well defined when restricted to the Z-module C̃n, which
will prove the proposition. Suppose J = s1 . . . sn is an OC clique, m ∈M , and that the maximal element
sn+1 among the divisors of MJm is greater than sn. Then, if s divides Ms1,...,sn+1 , it divides also MJm,
and thus the greatest of these divisors is sn+1; this shows that s1 . . . sn+1 is an OC clique, and thus that
the function in+1 is well defined. So now the same proof as the one of Theorem 4 can be applied, and the
result follows.

These modules were already considered in [8][Section 4], but with a different resolution.

Proposition 8. Theorem 2 and its corollary hold if the sum is restricted to J< (for any given total order
< on S.)

The proof mimics the alternative proof of Theorem 2 above. We will use this proposition and the
resolution in Section 4.

2 Application to some classes of monoids
We give in this section some examples of monoids that satisfy the conditions of Theorem 2.
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2.1 Trace monoids
Trace monoids (also called heaps of pieces monoids, Cartier-Foata monoids or free partially commutative
monoids) are defined by the presentation M = 〈S | ab = ba if (a, b) ∈ I〉, where S is a finite set of
generators and I is a symmetric and antireflexive relation on S × S called the commutation relation.
In [23], elements of M are interpreted as heaps of pieces

At the very beginning, the aim of the work presented here was to generalize the results of [23]. It is
indeed a special case of our Theorem 2: in trace monoids, for a subset J of S, only two disjoint cases can
occur: either all elements of J commute, and their product is clearly their least common multiple; or there
exist two elements of J which do not commute, and J does not admit a common multiple.

The first case corresponds to what is called cliques in the trace monoid literature, from which we
borrowed our terminology in our more general setting. It is then straightforward that the set of all least
common multiples of cliques corresponds exactly to the set of heaps of pieces of height at most one.

This work applies too to divisibility monoids which are a natural generalization of trace monoids,
studied in [10, 16].

2.2 Artin-Tits monoids
The Artin-Tits monoids are a generalization of both trace monoids and braid monoids (which are exten-
sively studied in Section 3). Given a finite set S and a symmetric matrix M = (ms,t)s,t∈S such that
ms,t ∈ N ∪ {∞} and ms,s = 1, the Artin-Tits monoid M associated to S and M has the following
presentation:

M = 〈s ∈ S| sts . . .︸ ︷︷ ︸
ms,t terms

= tst . . .︸ ︷︷ ︸
ms,t terms

if ms,t 6=∞〉 (2.1)

An Artin-Tits monoid is clearly homogeneous, has the left and right cancellation property (see Michel,
Proposition 2.4 of [17]) and has the least common multiple property (see Brieskorn and Saito, Proposition
4.1 of [7]). So in this case also our main Theorem and its corollary apply.

The Coxeter group associated to an Artin-Tits monoid is defined as the quotient of the latter by the
relations s2 = 1 for any s ∈ S. In other words, the Coxeter Group W is defined by the following
presentation :

W = 〈s ∈ S | s2 = 1 and sts . . .︸ ︷︷ ︸
ms,t termes

= tst . . .︸ ︷︷ ︸
ms,t terms

if ms,t 6=∞〉.

An Artin-Tits monoids is called spherical if and only if its Coxeter group is finite. For example, the
only trace monoids that are spherical are the ones whose every elements commute. More generally, every
subset of generators of a spherical Artin-Tits monoid admit a lcm. In this case the set J of Theorem 2
and of Corollary 3 is naturally the set of all subsets of S.

2.3 Garside monoids
In [9], Dehornoy and Paris generalize spherical Artin-Tits groups as follows:

Definition 9. A Garside monoid is an atomic left cancellative monoid M , such that any two elements
have left and right lcm. We require besides that M admits a Garside element ∆: this means an element
whose sets of left and right divisors coincide, and such that this set is finite and generates M .
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A Garside monoid fitted with the set S of its atoms satisfies the conditions of the main theorem. Fur-
thermore, as for spherical Artin-Tits monoids, all subsets of atoms of a Garside monoids have a lcm and
so the set J is the set of every subsets of S.

3 Spherical Artin-Tits monoids
We study in this section the combinatorics of the classical braid monoid introduced by Artin and of some
of its generalizations, namely the classical braid monoids of types B and D. All these monoids are
spherical Artin-Tits monoids and hence some Garside monoids.

3.1 Coxeter groups
Before going further, let us just mention some points about finite Coxeter groups. A Coxeter group is said
to be irreducible if there does not exist two disjoint subsets S1 and S2 of S such that S = S1 ∪ S2 and
such that any s1 ∈ S1 commutes with any s2 ∈ S2. The irreducible finite Coxeter groups are completely
classified (see [13]). This section is devoted to the three infinite families An, Bn and Dn and more
precisely to the corresponding Artin monoids. We compute their growth functions by applying Theorem
2; this boils down to describing how to compute lcms in such monoids.

For X = An, Bn, Dn, we write the corresponding growth function of the Artin-Tits monoid GX(t) =
1

HX(t) , where HX is the polynomial
∑
J(−1)|J|tmJ , in which the sum is over all subsets J of generators

and mJ is the length of the lcm MJ of J . We describe in the following such lcms.

3.2 Type A
The Artin monoid A(An) is in fact the classical braid monoid on n + 1 strands. Hence, it admits the
following presentation:

A(An) = 〈σ1, . . . , σn |σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi if |i− j| ≤ 2〉.

We denote Σn = {σ1, . . . , σn} the set of Artin generators. To compute the lcm of a subset J of Σn, let
us consider a partition J = J1 ∪ · · · ∪ Jp such that any σi and σj in J belong to the same block of this
partition if and only if j = i± 1.

We set ∆{σj ,σj+1,...,σj+i} = (σj)(σj+1σj) . . . (σj+i . . . σj+1σj), then MJ is equal to ∆J1 . . .∆Jp and
mJ =

∑p
i=1(|Ji|(|Ji|+ 1)/2).

In this case, no explicit formula is known forHAn
but the form of the lcms leads easily to the following

recurrence relation:

HAn
(t) =

n∑
i=1

(−1)i+1ti(i−1)/2HAn−i
(t) + (−1)ntn(n+1)/2.

3.3 Type B
The Artin monoid A(Bn) of type B is the monoid whose set of generators is Σn = {σ1, . . . , σn} and
which is submitted to the following relations:

σ1σ2σ1σ2 = σ2σ1σ2σ1, σiσi+1σi = σi+1σiσi+1, for i ≥ 2 and σiσj = σjσi if |i− j| ≤ 2.
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The elements of this monoid are classically represented as positive braids whose second strand is not
braided.

Similarly to Paragraph 3.2, for J ⊂ {σ1, . . . , σn}, we write J = J1 ∪ . . . ∪ Jp, where the properties
satisfied by this partition are the same as those given above. Because of the particular role of σ1, three
different cases have to be considered to compute the lcm of J . Either σ1 /∈ J or σ1 ∈ J and σ2 /∈ J
and in these cases MJ = ∆J1 . . .∆Jp

just as before. Now if σ1, σ2 ∈ J , without loss of generality we
assume that σ1 ∈ J1, thenMJ = ∆̃J1∆J2 . . .∆Jp

, where ∆̃J1 = (σ1σ2 . . . σm)|J1| with σm the maximal
element of J1 for the classical ordering σ1 < σ2 < . . . < σn of Σn.

The expression of lcms enable to obtain the following recurrence relation for HBn
, for n ≥ 1 (with the

convention HB0(t) = 1):

HBn
(t) =

n∑
i=1

(−1)i+1ti(i−1)/2HBn−i
(t) + (−1)nt(n)2 .

3.4 Type D
The Artin monoid A(Dn) of type D is the monoid whose set of generators is Σn = {τ, σ1, . . . , σn−1}
and submitted to the following relations:

τσ2τ = σ2τσ2, σiσi+1σi = σi+1σiσi+1 for i ≥ 2, (3.1)
τσi = σiτ for i 6= 2 and σiσj = σjσi if |i− j| ≤ 2. (3.2)

In [1], Allcock introduced a representation in terms of braids on some orbifolds of the elements of this
monoid.

Let J ⊂ Σn, because of the symmetric role of τ and σ1 we have to study two cases depending on either
at most one of them belongs to J or both of them. Without loss of generality, we assume that only σ1

belongs to J , then MJ = ∆J1 . . .∆Jp
, where the Ji as defined in Paragraph 3.2 (it suffices to replace

each occurrence of σ1 in MJ by τ to deal with the symmetric case). If τ and σ1 belong both to J , we
moreover assume that σ1 ∈ J1, then MJ = ∆̃J1∆J2 . . .∆Jp , where ∆̃J1 = (τσ1σ2 . . . σm)|J1| with σm
the maximal element of J1 for the classical ordering σ1 < σ2 < . . . < σn of Σn.

Once again, this leads to the following recurrence relation for the denominator of the generating func-
tion of A(Dn), for n ≥ 2 (by convention HB0(t) = 1 and HB1(t) = 1):

HDn
(t) =

n−1∑
i=1

(−1)i+1ti(i−1)/2HDn−i
(t) + (−1)n−12t(n)(n−1)/2 + (−1)nt(n)(n−1).

4 Dual braid monoids
4.1 Definition
We defined Coxeter systems in paragraph 2.2. Let T be the set of reflections of W , i.e. the set T =
{wsw−1, s ∈ S}; T is obviously a generating set for W , and we let `T (w) = k where k is the minimal
number of reflections ti ∈ T such that w = t1 · tk; the function `T is then invariant under conjugation,
that is we have `T (w) = `T (zwz−1) for any two elements w, z ∈W . Then one defines a partial order on
W by setting w ≤T z if `T (w) + `T (w−1z) = `T (z). A Coxeter element is an element c of W which
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is the product of the Coxeter generators S in any order; one can show that any two Coxeter elements are
conjugate in W . Given a Coxeter element c ∈ W , one defines a poset NC(W, c) = [1, c] with respect to
the partial order≤T . Since `T is invariant under conjugation and any two Coxeter elements are conjugate,
we have that the isomorphism type of NC(W, c) does not depend on the particular c chosen, and we will
just write NC(W ). We refer to [2] and the references therein for more information about this topic.

Bessis [5] showed that one can define a certain dual braid monoid for every poset, with generating set in
bijection with T , which is a Garside monoid such that the lattice of elements dividing the Garside element
is isomorphic to the lattice NC(W ). As shown in Section 1.3, we need only this lattice to compute the
growth function of the monoid. We refer the reader to [5] for the general definition of the monoid, and to
[18] for explicit presentations in classical types.

Note that the values
∑
rk(x)=k µ(x) of the Möbius functions of the posets NC(W ) have already been

computed in general, so by the results of Subsection 1.3, all growth functions of the dual braid monoids
can be obtained. What we will do here is to find first a combinatorial proof of this result in type A
and B, and then verify that the resolution (1.9) we obtain shows that the corresponding algebras of the
corresponding dual braid monoids are in fact Koszul algebras (Paragraph 4.5). The combinatorial objects
that we will deal with are noncrossing alternating forests, which we now study.

4.2 Noncrossing alternating forests and unary binary trees
Consider n points aligned horizontally, labeled 1, 2, . . . , n from left to right. We identify pairs pairs (i, j),
i < j, with arcs joining i and j above the horizontal line. Two arcs (i, j) and (k, l) are crossing if
i < k < j < l or k < i < l < j.

Definition 10. A noncrossing alternating forest on n points is a set of noncrossing arcs on [[1, n]] such that
at every vertex i, all the arcs are going in the same direction (to the right or to the left).

It is easily seen that these conditions determine forests in the graph-theoretical sense, that is the arcs
cannot form a cycle.We defineNCAF(n, k) as the set of noncrossing alternating forests on n points with
k arcs, and in this subsection we will determine bijectively their cardinality denoted NCAF (n, k).

We will actually define a bijection with unary binary trees, by which we mean rooted plane trees all of
whose vertices have 0, 1 or 2 sons. It is well known that such trees with m vertices are counted by the
Motzkin number Mm−1 (cf. [22]) and that they are in bijection with Motzkin paths with m − 1 steps:
these are paths in N2 from (0, 0) to (m−1, 0), with allowed steps (1, 1), (1, 0) and (1,−1). The bijection
consists of a prefix traversal of the tree, as shown by the dotted line around the tree on the left of Figure
1; for every left son (respectively right son, resp. single son) encountered for the first time, we draw an
up step (resp. a down step, resp. a horizontal step). Under this bijection, unary vertices correspond to
horizontal steps; by the cyclic lemma, it is then easy to show that:

Proposition 11. The number of unary binary trees with m vertices and p binary vertices is given by

1
m

(
m

m− 2p− 1, p, p+ 1

)
=

(m− 1)!
(m− 2p− 1)!p!(p+ 1)!

Suppose we have just one connected component in a noncrossing alternating forest, i.e k = n − 1:
we obtain the noncrossing alternating trees introduced in [12], where a bijection with binary trees with
n leaves was given. We recall this bijection: given a noncrossing alternating tree on n ≥ 2 points, there
is necessarily an edge between 1 and n. Destroying that arc, we get two smaller noncrossing alternating
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Fig. 1: A unary binary tree and the corresponding Motzkin path.

trees, on i and n − i points say. By induction, we can attach a binary tree to each of these smaller trees;
let T1 and T2 be these two trees respectively, and create a new root (corresponding to the deleted arc) with
left subtree T1 and right subtree T2. The inverse bijection is immediate.

We can generalize this bijection as follows:

Theorem 12. There is a bijection between unary binary trees with n+k−1 vertices and k binary vertices,
and noncrossing alternating forests on n points with k arcs.

Proof. Let us be given a noncrossing alternating forest on n points with k arcs; for each of the n − k
components, we apply the bijection for noncrossing trees described above, keeping the labels on the
leaves. So we have a collection C of binary trees, such that each integer [[1, n]] appears exactly once as
the label of a leaf. Let T be the tree containing the label 1, and let m be such that 1, . . . ,m label leaves
of T , but m + 1 does not; let T ′ be the tree containing the label m + 1. We then form a new tree T1 by
transforming the leaf labeled m in a unary vertex (still labeled m), whose attached subtree is T ′. We now
remove T and T ′ from C and replace them by T1; we can now repeat the same operation, and we do it
until C has just one element, which is a unary binary tree with n− k − 1 unary vertices.

Conversely, given a unary binary tree with k−1 unary vertices and n leaves, we make a prefix traversal
of the tree, and we label only unary vertices and leaves (thus leaving binary vertices unlabeled). Then we
cut every edge stemming from a unary vertex, which gives us a forest of k binary trees labeled on leaves:
we apply to each of them the bijection for noncrossing trees (using as point set the labels of the leaves),
thereby obtaining the desired noncrossing forest.

The bijection is illustrated on Figure 2, in which n = 10 and k = 5. From Proposition 11, we have the
immediate corollary:

Corollary 13. The number of noncrossing alternating forests on n points with k arcs is given by

NCAF (n, k) =
(n− 1 + k)!

(n− 1− k)!k!(k + 1)!

4.3 Type A
In type A, the poset NC(W ) is isomorphic to the noncrossing partition lattice NCA(n), which we de-
scribe. A set partition of [n] is noncrossing if it does not have two blocksB,B′ and elements i, j ∈ B and
k, l ∈ B′ such that i < k < j < l. Let NCA(n) be the poset of noncrossing partitions of size n ordered
by refinement.
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Fig. 2: Bijection between unary binary trees and noncrossing alternating forests

We now need to compute joins of cliques in this poset; we will use here a certain order on atoms to
restrict to certain order compatible cliques (see Section 1). The atoms of NCA(n) are the partitions with
one block of size 2 and all other blocks are singletons, and we identify these atoms with arcs (i, j) between
the points labeled i and j if n points horizontally aligned and labelled from 1 to n are given. Now we
define the following order on atoms:(i, j) < (k, l) if l − k > j − i, or if l − k = j − i and i < k; the
important point is that if an arc contains another arc, then it is bigger.

Consider a clique of size two {(i, j), (k, l)}. If i < k ≤ j < l, then the join of these elements is the
partition with one non-singleton block {i, j, k, l}; but (i, l) is smaller in the poset than this partition, and
bigger than both (i, j) and (k, l) for the order <, so the clique cannot be OC. Now it can be shown that
all other size 2 cliques are OC, and that OC cliques of size k are precisely the elements of NCAF(n, k);
the join of such an OC-clique is simply the partition whose blocks are the labels of each tree in the
forest. For the element of NCAF(10, 2) on the left of Figure 2, the noncrossing partition has blocks
{1, 3, 6, 7}, {2}, {4, 5}, {8, 10} and {9}.

From this, Proposition 11 and 11 we have that the growth function of the dual braid monoid of type A
is given by

GA(t) =

(
n∑
k=0

(−1)k
(n− 1 + k)!

(n− 1− k)!k!(k + 1)!

)−1

This answers a conjecture of Krammer [15, Exercise 17.37].

4.4 Type B
Here the poset NC(W ) is isomorphic to the type B noncrossing partitions NCB(n), which is defined
as the subposet of NCA(2n) formed by partitions of {1, 2, · · · , n,−1,−2, · · · ,−n} that are invariant
under the bijection i 7→ −i . We note ((i1, . . . , it)) the partition with non singleton blocks {i1, . . . , it}
and {−i1, . . . ,−it}. There are n2 atoms in the poset NCB(n): n with exactly one non singleton block
[i] := {i,−i}, and n(n − 1) of the type ((i, j)) and ((i,−j)) where 1 ≤ i < j ≤ n. Consider now as
before n labeled points aligned horizontally: we identify the atoms [i] with the points, and ((i, j)) and
((i,−j)) with arcs between i and j to which we assign respectively a positive and a negative sign.

Now we consider any linear order that extends the following partial order defined by Blass and Sagan
[6]: an atom –identified with a positive or negative arc, or a negative vertex– is bigger than another if it
strictly contains it, and a positive arc is bigger than the same arc with negative sign. By extending the
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analysis of [6] which focused on the top element {1, 2, · · · , n,−1,−2, · · · ,−n}, we can show that the
OC cliques of size k can be constructed in two ways:

• Pick an element ofNCAF(n, k); then either choose any of the k arcs and assign a negative sign to
this arc and all arcs above it, or assign all arcs positive signs.

• Pick an element ofNCAF(n, k− 1), either choose any of the k− 1 arcs and assign both a positive
and a negative sign to it, or choose any of the n points and mark it negatively. In both cases, assign
a negative sign to all arcs that contain the chosen arc or point and assign a positive sign to all other
arcs.

In both cases one checks that the corresponding join of atoms is of rank k exactly in the poset. From
their description above one has immediately that there are (k+1)NCAF (n, k)+(n+k−1)NCAF (n, k−
1) OC-cliques of size k, so we get that the growth function GB(t) for the dual braid monoid of type B is
given by

GB(t) =

(
n∑
k=0

(−1)k
(
n

k

)(
n+ k − 1

k

)
tk

)−1

Remark: for W of type Dn, the poset NC(W ) is isomorphic to the type D noncrossing partitions
NCD(n) defined in [4]; we did not find a similar order on atoms as described in types A and B in
order to compute the growth function. Note that the order described in [6] cannot be used, since it is
applied to a certain poset of [20] that has been since shown to be different from the poset NC(Dn).

4.5 Koszul algebras
Let A be a finitely generated graded algebra A = ⊕i≥0Ai,of the form A = Z < x1, . . . , xk >/I for an
homogeneous ideal I , . A is said to be a Koszul algebra if Z admits a free resolution of A-modules, such
that the matrices of all linear maps in the resolution have coefficients in A1 (the resolution is then called
linear) [19, 11].

Now, given a homogeneous monoid M with atoms S verifying the conditions of Section 1, the algebra
ZM is graded. In the resolutions (1.7) and (1.9), the entries of the matrices are (up to sign) the elements
δsi

Ji
, which are the elements x in M such that MJ−{si}x = MJ , and the component A1 of the algebra

is ZS. For the orders on atoms defined for dual monoids in type A and B, our analysis of OC cliques J
show that δsi

Ji
= si: indeed we showed that such cliques have joins of rank k in the poset, which means

that in the monoid the lcm is of length |J | precisely. The resolution (1.9) is thus linear, and we have:

Theorem 14. The monoid algebras of the dual braid monoids of type A and type B are Koszul algebras.

By the general theory of Koszul algebras, they possess graded dual algebras called Koszul duals, whose
homogeneous components have the dimensions of the modules C̃i in a linear resolution; in type A for
instance, we have that this dual algebra is finite dimensional, and has a basis given by noncrossing al-
ternating forests, the number of arcs determining the grading. It would be interesting to investigate the
structure of these algebras, and generalize this to all finite Coxeter groups.

A promising way is certainly to investigate the descending chains for the EL-labeling of NC(W )
defined in [3] and relate them to the OC cliques we described in type A and B: we can prove for instance
that they are identical in type A, but differ in type B.

Acknowledgment. The authors thank Vic Reiner for pointing out the link between Theorem 2 and Koszul
algebras.
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