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A permutationr is said to ber—avoiding if it does not contain any subsequence havindhalsime pairwise com-
parisons as. This paper concerns the characterization and enumeratiparmutations which avoid a sé¥’ of
subsequences increasing both in number and in length aathe me. LetF’ be the set of subsequences of the
form “o(j + 1)(j + 2)", o being any permutation ofil, ..., j}. Forj = 1 the only subsequence iR® is 123
and thel23—-avoiding permutations are enumerated by the Catalan msmioe j = 2 the subsequences Ii* are
1234, 2134 and the (234, 2134)—avoiding permutations are enumerated by the Schrodebexanfor each other
value ofj greater thar? the subsequences F¥ arej! and their length i§j + 2); the permutations avoiding thege
subsequences are enumerated by a number seafene. ; such thailC, < a, < n!, C,, being then—th Catalan
number. For eacliwe determine the generating function of permutations amgithie subsequencesiti , according

to the length, to the number of left minima and of non-invemsi
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1 Introduction

The study of permutations represents an interesting aadael discipline in Mathematics which began
with Euler who first analyzed permutation statistics relatethé study of parameters different from their
length [16]. MacMahon in [24] further developed this vastdibut meaningful progress has been only
made in the last thirty years.

Recently, the new problems coming from Computer Sciencedetie development of the concept
of permutations with forbidden subsequences. They ariseriting problems [10, 22, 33, 36, 37], in
the analysis of regularities in words [4, 23], in particulastances of pattern matching algorithms opti-
mization [8]; just to mention some examples. The enumenadigpermutations with specific forbidden
subsequences has also applications in areas such as Alg€le@inetry and Combinatorics. TR#43—
avoiding permutations, called vexillary permutationg, @levant to the theory of Schubert polynomials.
In Combinatorics, permutations with forbidden subsequept®y an important role as they present bi-
jections with a great number of non—trivial combinatoriajeaits [13, 14, 15, 18, 20, 21] and moreover
their enumeration gives rise to classical number sequences
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Then—th Catalan number is the common value of permutations withgesforbidden subsequence of
length three [22]. More precisely Knuth shows tBa2—avoiding permutations are the one stack sortable
permutations. The problem of avoiding more than one regrievas first studied by Simion and Schmidt
[34] and they determined the number of permutations avgitiio or three subsequences of length three.

As far as forbidden subsequences of length four are concenegdenumeration results concern the
subsequenck234 [17], 1342 [6] and all the ones behaving identically [1, 35, 36], while f824—avoiding
permutations the only result is proved by Bona in [5] andveg only a numerical lower bound. Permu-
tations avoiding some couples of subsequences of lengthgiva the Schroder numbers [20]; results
concerning permutations avoiding more than one forbiddéseguence of length four exist; we refer to
[20] for an exhaustive survey of the results available ompaations with forbidden subsequences.

Regarding permutations avoiding a single subsequencegtiereater than four the most important
result solves the problem of one increasing subsequenceyofeagth giving an asymptotic value of
the number of permutations avoiding the subsequédncek + 1 [30]. In [11] Chow and West study
(123, k... 1(k + 1))—avoiding permutations; their generating functions camygessed as a quotient of
modified Chebyshev polynomials and they give rise to numéguences lying between the well-known
Fibonacci and Catalan numbers. In [3] the authors s(@&y, (k + 2)1(k + 3)2. .. (k + 1))—avoiding
permutations where the latter forbidden subsequence mieanthe subsequenc¢g + 1)(k +2)1...k
[thatis(k + 2)(k + 3)2...%k + 1 restricted on{1, ...,k + 2}] is allowed only in the case it is part of a
longer subsequence of type+ 2)1(k + 3)2...k + 1. Their generating functions are algebraic and give
rise to sequences of numbers lying between the well-known NMo&id Catalan numbers involving the
left—Motzkin factor numbers as a particular case.

A natural generalization of sequence avoidance is theicedrsequence inclusion. In this case a pre-
scribed number of occurences of a sequence in the perrmaagiocequired. Noonan [28] and Bona [7] de-
termined a simple expression for the number of permutationtining exactly one 123, respectively one
132 sequence. Robertson [31] proved that the numbg2®favoiding permutations containing exactly
one 132 sequence is given by — 2)2"—3. There are some other recent interesting results. Rolvertso
Wilf and Zeilberger [32] express the generating functiontftie number ofl32—avoiding permutations
which have a given number of 123 sequences in form of a corttifmaetion. Mansour and Vainshtein
[27] extend the previous result to determine the generdtingtion of the number of 132-avoiding per-
mutations having a given numbertf . . . k sequences. Mansour [25] studies the permutations avoéding
sequence of length four and a nonempty set of sequencegytifi l#mmee. Mansour [26] provides a simple
espression for the number of permutations which avoid alls#suences ofr € Sy, | m = m} (i.e.,
the sequences of lengthhaving the first element equal ta). Moreover, he gives a generalization of
Robertson’s result.

In this paper, we continue this line of research in countirrgqeations which avoid a set of restrictions.
We study a case which is similar to the problem studied by Mang6], that is the set of permutations
which avoid all the sequences of € S;12 | 7j41 =7 + 1, Tj42 = j + 2}

Section 2 of this paper contains the basic definitions abewhptations with forbidden subsequences.
In Section 3, we describe the tools used to obtain the enuiverasults, which are succession rules
and generating trees. The former ones consist of rulesileggthe growing behavior of an object with
a fixed parameter value, the latter ones are schematic epeati®ns of the former. In Section 4, we
express the permutations we are studying in terms of successies. We translate the construction,
represented by the generating tree, into formulae, thuairiby a set of functional equations. Their
solution gives the generating function of the permutatiaeeording to the length, number of left minima,
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non-inversions and active sites. We are able to determingéherating function according to the length
of the permutations, number of left minima and non-inversioThis result allows us to show that the
generating function is algebraic of degree two, excepj feroo.

2 Notations and definitions

In this section we recall the basic definitions about pernrtatwith forbidden subsequences that will
be referred to in the next sections.

A permutationt = 7 (1) 7 (2)....w(n) on[n] = {1,2,...,n} is a bijection betweefn] and[n]. Let
Sy, be the set of permutations ¢

A permutationt € S,, contains a subsequence of typec Sy if and only if a sequence of indices
1 <irq) <irp@) < ... <irg < nexists such that (iy) 7 (i2) . .. 7 (i) has all the same pairwise
comparisons as. We denote the set of permutations®)f not containing subsequences of typéy
Sp (7).

Example 2.1 The permutatiol$145732 belongs taS;(2413) because all its subsequences of leniytine
not of type2413. This permutation does not belong3e(3142) because there exist subsequences of type
3142, namelyr (1) 7 (2)w(5)w(6) = 6173, w(1)7(2)7(5)7(7) = 6172.

If we have the set; € S,,...,7, € Sk, of permutations, we denote the st (m1) N ... N Sy(7)
by S, (m1,...,7p). We call the familyF' = {r,...,7,} afamily of forbidden subsequenceabe set
Sn (F) afamily of permutations with forbidden subsequenaed |J S, (F) aclass of permutations

n>1
with forbidden subsequences B

Givenr € S,,, we call the position on the left af(1) position0, the position between(i) andr (i+1),

1 <4 < n -1, positionz, and the position on the right af(n), positionn. We will refer to any of these
positions as thsitesof .

Definition 2.1 Let F = {r,...,7,}. The position, 0 < i < n, of a permutationr € S,, (F) is an
active siteif the insertion ofn + 1 into positions gives a permutation belonging to the sgt,1 (F);
otherwise it is said to be aimactive site

Example 2.2 The permutationr = 6145732 € S7(2413) has5 active sites (the positior 4, 5, 6 and
7) and3 inactive sites (the positionis 2 and3) as61458732 € Sg(2413) while 61845732 ¢ S(2413),
just to give an example.

Definition 2.2 Letw € S,. The pair of indiceqi, j), i < j, is anon-inversionf = (i) < w(j). An
elementr (i) is aleft minimumif = (¢) < 7(j), Vj € [1,i — 1].

Example 2.3 The permutation of Example 2.2 hasion-inversions(1, 5)(2, 3)(2,4)(2, 5)(2, 6)
(2,7)(3,4)(3,5)(4,5) and2 left minima: 7 (1) = 6 andr (2) = 1.

3 Succession rules and generating trees

In this section we briefly describe the tools used to deducewoumerative results, namely succession
rules and generating trees. They were introduced in [12hestudy of Baxter permutations and further
applied to the study of permutations with forbidden subsaqes by West [11, 38, 39].
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Definition 3.1 Agenerating trees a rooted, labelled tree such that the labels of the set itdien of each
nodev can be determined from the labelhoftself. Thus, any particular generating tree can be spetifie
by a recursive definition consisting of:

1. basis: the label of the root,

2. inductive step: a set of succession rules that yields a multiset of labellddreim depending solely on
the label of the parent.

A succession rule contains at least the information abaubhtimber of children. Let be a forbidden
subsequence. Following the idea developed in [12], the g#ingrtree forr—avoiding permutations is a
rooted tree such that the nodes on levalre exactly the elements 8f,(7); the children of a permutation
7 =n(1l)...w(n) are all ther—avoiding permutations obtained by inserting- 1 into 7. Labels must be
assigned to the nodes and they record the number of childi@egigen node.

Example 3.1 The Catalan tree ani23—avoiding permutations are obtained by the succession rule

basis: (2)
{ isfllusctive step: (k) = (k+1)(2)...(k). (31)

The permutation of length one has two active sitess(s in rule(3.1)). Letr = 7(1)...w(n) € S,(123);
and letk, 2 < k < n, be the minimum index imr such that; < k exists andr(i1) < w(k); then the
active sites ofr are the positions, . . ., k—1. The insertion of, + 1 into each other site on the right of the
positionk — 1 gives the subsequeneé€i, )7 (k)(n + 1) that is forbidden. This means that the active sites
of & are all the positions lying among any pair of elements ebnstituting the longest initial decreasing
subsequence. if hask active sites then its longest initial decreasing subsetgibas lengttk — 1. The
permutation obtained by inserting+ 1 into the positior) gives a new permutation wittk + 1) active
sites; the permutation obtained by inserting- 1 into the positionj, 1 < i < k — 1, gives(i + 1) active
sites, (nductive step in rul€3.1)). The generating tree representir®3—avoiding permutations can be
obtained by developing rule (3.1) and by labelling each pgation with the right labe(k).

Example 3.2 The Schroder tree an(d234, 2134)—avoiding permutations are obtained by the succession
rule:
basis: (2)
inductive step: (2) — (3)(3) (3.2)
inductive step: (k) - (k+1)(k+1)(3)...(k), k>3.

The permutation of length one has two active sitess(s in rule(3.2)). Letr = n(1)...w(n) € S,(1234,
2134); and letk, 3 < k < n, be the minimum index i such that there exist < i2 < k for which
w(i1)mw(i2)w (k) is of typel23, or 213; then the active sites afare the positions, . .., k—1. The insertion

of n+ 1 into each other site, that is the positidns. . , n, gives at least one of the forbidden subsequences
1234, 2134. Let 7 be a permutation witk active sites; the permutations obtained by inserting 1 into

the positiord and1 have(k+ 1) active sites; the permutation obtained by insertirgl into the position,

2 <i < k-1, has(i+1) active sites, each other site gives at least one of the tviidden subsequences
becauser + 1 has at least two smaller elements on its l@ft(ctive step in rul€3.2)). The generating
tree related to rule (3.2) and representfihg34, 2134)—avoiding permutations is shown in Figure 1.
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Fig. 1: The generating tree fq1234, 2134)—avoiding permutations.
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It should be noticed that the succession rule (3.2) diffesenf(3.1) just by a replacement (2) by
(k + 1) in theinductive step

4 Permutations avoiding S;(7 + 1)(7 + 2)

In this section we study the class of permutati6hs= |J S, (F7), whereF7 is a set of subsequences
n>1

suchthal F/| = jland anyr € F has the formr = o(j +1)(j + 2), o being a permutation belonging to
the symmetric groufs;. Another way to characterize the class of permutati®nis in terms of patterns
in the corresponding permutation matrix. In this view whdbibidden is any submatrix of the form:

10 -~ 00
00 --- 00
00 --- 01

with as many ag 1's appearing in both above and to the left of this structure.

These permutations are enumerated by number sequencethauttten—th term is between the—th
Catalan number and! (see Figure 2). We describe the structure of their gengratee and use this
construction to obtain a set of functional equations satisby the generating function of the class of
permutationg’’. Some computations allow us to determine this generatingtion according to the
length of the permutations, number of left minima and noreigions.

From Catalan numbers to factorial

Number of
Forbidden subsequences Forbidden Numbers
Subsequences
123 1 1 2 5 14 42 132 429 1430 4862.....[.......
+1!
1234,2134 2 1 2 6 22 90 394 1806 8558 41586 .....|.......
+2!
12345,13245,21345,23145,31245,32145 6 1 2 6 24 114 600 3372 19824 120426 .....|.......
+3!
{1234}!56 12 1 2 6 24 120 696 4440 30168 214200 .....[.......
+(n-2)!
o 0 1 2 6 24 120 720 5040. 40320 36288d.....

Fig. 2: First numbers of the sequences counting the permutatia® in
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4.1 The generating tree for CJ permutations

The class of permutatio¥ contains permutations avoiding configurations of the formx ...y ...
such that: < y andz is preceded by at leagielements all of them less than As a matter of fact, the set
FJ contains subsequences having length 2) such that the two largest elements, thdtjis- 1), (j +2),
are the(j + 1)—th and the(j + 2)—th elements of the sequences, while the ojhelements{1,.. ., j}
can be in any order. This means that the positioh < i < n, in a permutationr € S, (F7), is an
active site if and only if a sequence of indicgs. . .,4;,4;4+1 such that; < --- < 4; < i;41 <4 and
mazi<i<j (m(i¢)) < m(ij4+1) does not exist. It follows that the active sites lie on thedéthe minimum
indexi;1 that gives such a sequence. This, in turn, means th4j the ) leftmost sites of a permutation
are always active, if they exist.

Letw € S,(F7), j > 1, be a permutation witlk active sites, the positior ...,k — 1, so there is
a sequence of indices, . ..,i;41 = k such thaty < --- < i; < k andmazi<;<;n(i;) < w(k). By
insertingn + 1 into the position, 0 < i < j — 1, we obtain a new permutation?, with (k + 1) active
sites as the new element is not relevant to the existence sttiuence of indices, .. . ,4;,4;41, and the
minimum index that gives such a sequencgkig- 1) as the(k + 1)—th element ofr is equal tor (k). By
insertingn + 1 into the position, j < i < k— 1, we obtain a new permutatierf with (i + 1) active sites.
As a matter of fact, the sequence of indides. ., 7, (i + 1) satisfies the required properties and moreover
(i + 1) is the minimum index leading to such a sequence (see Figure 3)

M= —N@— . —(+1) — . =A@ — .— . =M@ Nk+1) . .M @)
0 i 1 K
i=0,..., j-1
Nn=-0W-.—.—-0¢ —.— . —NK Ak+1)..M0Mn M= —n@—.—. —N@ — @+1) . . MK Nk). .M )
0 1 k-1 0 R
M= —N@=—.—.=N) —. .= @D . . MK NkD. .MM
0 R i
i=j+1, ..., k-1

Fig. 3: The active sites in the children af

The above arguments prove the following proposition:

Proposition 4.1 Letw € S, (F7), j > 1, be a permutation wittt active sites (namely the positions
0,...,k—1),and letr? be the permutation obtained fromby insertingn + 1 into 4, then the number of
active sites of? is (k+ 1) for0 <i<j—1land(i +1)forj <i<k-—1.

The succession rule for the generating tre€opermutations follows immediately:

basis: (2)

inductive step: (k) = (k+ 1), k<j (4.3)
inductive step: (k) = (k+1)7(j +1).....(k), k> j.
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In a “Catalan permutationit a position:, 0 < ¢ < n, is an active site if and only if there do not exist
anyi; < ia < i suchthatr(i;) < m(i2); in a “Schrdder permutationt a positioni, 0 < i < n, is an
active site if and only if there do not exist aiy < i» < i3 < i such thatnaz {w(i1),7(i2)} < 7(i3).
By comparing these conditions with the definition of actiie $or a permutations € C’; we realise
that the role of the parametgris to increase the length of the index sequefge..,i;41 such that
i1 < .. < ij < ij41 and eachr(iz), ¢t = 1,...,4, is smaller thanr(i;11). Observe that no constraint
is required on the order of the elements of the {sgi1), ..., 7(i;)}. Once the permutations ¥ are
established we are interested in the results concerningaghemeration.

4.2 The generating function

For eachj, we are interested in the generating function for the pertimmtsiin C/ according to the
length, number of left minima and non-inversions. ke€ C/; we denote the length of by n(x), the
number of its left minima byn(x), the number of its non-inversions byi(7) and the number of its
active sites byi(w). The generating function @’ according to the above mentioned parameters is the
following:

Ci(@,y,q,8) = 3 amMymmgnilm e,
el

From (4.3) we deduce that a permutatiore C7 is the father ofa(7) permutations, namely?, ...,
7™ =1 in C7, obtained by inserting a new element into the positions ., a(w) — 1 which are active
sites. If we look at the parameter changes in each permutatiéh< i < a(w) — 1, then we find:

a) if 0 <i <min{j,a(mr)} —1then:

m(n%) = m(n) + 1,

m(ri) = m(n) if 1> 0, ni(r?) = ni(7) +14, a(n?) =a(r) + 1.

n(r?) = n(r) + 1, {
b) if min {j,a(mr)} <i < a(wr) —1then:
n(r?) =n(r) +1, mn®) =m(r), ni(z?) =ni(r)+i, a(x?)=i+1.

The setC’ can be partitioned intg subsets:CU-2), ... cU4) cU:>) whereCU*) = {r € CJ :
a(r) = k},2 < k < j,andCY>) = {7 € C? : a(r) > j}. In terms of generating functions we obtain
the decomposition:

. J ) )
Ci(z,y,q,8) = 3 COR)(z,y,q,1)s* + CU>)(z,y,q,5).
k=2

Let ¢(%1) be the set representing the permutation of lerfigtiDbserve that each permutatisrsuch
thata(m) < j — 1 givesa(r) permutations with{a () + 1) active sites; s&@7»*) is given by modifying
k=1 9 < k < j, and the parameter changes are describel ifihis means that a permutation®f
having exactlyk < j active sites is just any permutation of length- 1. Therefore each permutatian
such thau(m) > j givesa(w) permutations with at leagj + 1) active sites and the parameter changes
are described i) for thej leftmost active sites and i) for the remaining ones.

By translating the above arguments into formulae we obtain:
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CUN(z,y,q,8) =s;

CUM(a,y,q,5) = (oys + E5(* 2 1)) CW* D(a,y,q,5), 2<k < Js
CO>)(z,y,q,5) = (my8+ 208 (¢~ - 1) ) CYd(z,y,q,5)+
+(wys+ 242 (q7 1—1) CcU>)(z,y,q,s)+
+
e C(J’>)($ y,4,1) — 122,00>) (z,y,q, 5q).

Using the standard notatlon for theanalogue of the number [i], = I_T‘{] we obtain the following

1
proposition.

Proposition 4.2 The generating functio6” (x, v, g, s) of permutations ir?7 is:

j
Ci(z,y,q,8) =Y _ CY(2,y,q,8) + C9>)(z,y,q,5),

1=2
where:

CUV(z,y,q,5) =s;

. k72 . -
CUM(z,y,q,5) =a""Ts*y [T (y+qlily), 2<k <
i=1

+ (lfsq)(lfz§€y+q[jfl]q)) [qujc(j,>)(m’ ¥,q,1) — C(j’>)(:13, Y4, SQ)] .

The third equation of Proposition 4.2 can be solved by usiedemma of Bousquet-Mélou [9]. Let us
denote the generating functidf(z, y, ¢, 1) by F(z,y, q).

Proposition 4.3 The generating functio6'>>)(z, v, ¢, s) is given by:
CO>)(,y,q,5) = FLG2Y

JO,j("”ayy(I)
where:
n n+1 jn +( +1) . L
Jii(@.y,q) = E (Tt @+ ali = 119) CO9(z,9,0),
(-1)"+! n+1qJ(n+1)+("+1) )
Joj(z,y,¢) =1+ E DT
n—1
with (a), = [T (1 — ag").
k=0

From Proposition 4.3 it follows:
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Theorem 4.4 The generating functio6 (z, y, ¢) of permutations i€’ according to the length, number
of left minima and non-inversions is:

. . Jj—1 J k—2
Ci(z,y,q) = 27y fi(z,y,q) H1 (y +qli]y) + kZ zkly H1 (+dliy), 7>1,
= =2 =
with:

o (ntl
(cynandH("37)
T@in ey Fali=TTgm 41

(—1)nmnqj"+(g)
(@)n (z(y+ali—1lg))n
n>0

fi(z,y,q) = ==

We denote the numerator and the denominatof;6f,y, q) by A;(z,y,q) and B;(z,y, g), respec-
tively. After some computations we obtain:

Lemma 4.5 The functionsd;(z, y, ¢) and B;(z, y, q) satisfy the following equalities:
Aj(2g,y,q) = s [(1— oy + qj — 1], + ¢%)) A;(2,9,9) — Bj(w,,9)]

Bj(zq,y,q) = (1 — x(y + qlj — 1])) 4;(=,y,9).

Lemma 4.5 allows us to find the-equation satisfied by;(x, y, q):

PPy +qlf — 1) i@, v, 0) fi(wy,0) — (1 — 2y +alj — 1) + &) fi(z,y,9) +1=0. (4.4)

If y = ¢ = 1then Equation (4.4) gives:

1-(G+Dz—/1-2G+ 1)z + (j —1)%2?
2jx?

fj(xa 17 1) =

so from Theorem 4.4 we obtain:

— (1 - — _ 2 p2
1-G+z—/1-2G+z+(j—1)2z +Zk‘w

C(x,1,1) =27 72(j — 1)! 5

This means that the generating functionCdf permutations according to the length is algebraic and
guadratic, except fof = oco. In this case we obtain the expected result for the generéimgfion of
permutations according to the length, number of left minamd non-inversions, that is:

*(2,9,9) Zwa y+qlm

n>1
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5 Related results

The classes of permutations described in this paper are emated by numbers lying between the
Catalan numbers and the factorial (see Figure 2). The presgult is an extension of previously known
results forj = 1 andj = 2. It is easy to prove that thg + 2)—th number of th€;j + 1)-th sequence is
obtained from thé; + 2)—th term of thej—th sequence by adding

In [11], permutations with the forbidden subsequnde@3((j + 1)j...1(j + 2)), j > 1, are studied.
Their generating tree can be expressed in terms of the fallpwiiccession rule:

basis: (2)
inductive step: (k) = (2)...(k)(k+1), k<j+1 (5.5)
inductive step: (j) = (2)...(4)(), k>j+ 1.

The parametey allows us to obtain classes of permutations such that the auofipermutations of
lengthn is a number lying betwee2* ! and then—th Catalan numbe¢,,. The generating functions of
these number sequences are all rational, excegtfopo as123—avoiding permutations are enumerated
by the Catalan numbers whose generating function is algebrai

In [3], permutations with the forbidden subsequncgl( (j + 1)1(j + 3)2...(j + 1)), j > 1, are
studied. Their generating tree can be expressed in terrhe dblowing succession rule:

basis: (2)
inductive step: (k) = (k)...(2)(k+1), k<j+1 (5.6)
{ inductive step: (k) > (k—1)...(j))(H)-.-2)(k+1), k>j+ 1

The parametey allows us to obtain classes of permutations enumerated byersntying between the
Motzkin and the Catalan numbers whose generating functi@isath algebraic.

In [29], the set of permutation$ (Ff) U---ys (Fj) where? = (j + 3)i(j + 2)o; ando; is a
permutation on the s€t(j + 1),...,(: + 1), (i — 1),...,1} is introduced. The resulting generating tree
is described by the succession rule:

basis: (2)
inductive step: (k) — (k)...(k+1)F, k<j+1 (5.7)
inductive step: (k) = (k— 19 (k+1), k>j+1.

The parametej allows us to obtain classes of permutations enumerated bypermiying between the
Bell numbers and the factorial both having transcendengigeimg functions.

Let us note that we describe countably many succession rulehwdad to rational, algebraic and
transcendent generating functions. These are instandbe general theory developed by C. Banderier
etal. in[2].
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