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Quasipolynomial formulas for the Kronecker
coefficients indexed by two two–row shapes
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Abstract. We show that the Kronecker coefficients indexed by two two–row shapes are given by quadratic quasipoly-
nomial formulas whose domains are the maximal cells of a fan. Simple calculations provide explicitly the quasipoly-
nomial formulas and a description of the associated fan.

These new formulas are obtained from analogous formulas for the corresponding reduced Kronecker coefficients and
a formula recovering the Kronecker coefficients from the reduced Kronecker coefficients.

As an application, we characterize all the Kronecker coefficients indexed by two two-row shapes that are equal to
zero. This allowed us to disprove a conjecture of Mulmuley about the behavior of the stretching functions attached to
the Kronecker coefficients.

Résumé. Nous démontrons que les coefficients de Kronecker indexés par deux partitions de longueur au plus 2 sont
donnés par des formules quasipolynomiales quadratiques dont les domaines de validité sont les cellules maximales
d’un éventail. Des calculs simples nous donnent une description explicite des formules quasipolynomiales et de
l’éventail associé. Ces nouvelles formulas sont obtenues de formules analogues pour les coefficients de Kronecker
réduits correspondants et au moyen d’une formule reconstruisant les coefficients de Kronecker à partir des coefficients
de Kronecker réduits.

Une application est la caractérisation exacte de tous les coefficients de Kronecker non–nuls indexés par deux partitions
de longueur au plus deux. Ceci nous a permis de réfuter une conjecture de Mulmuley au sujet des fonctions de
dilatations associées aux coefficients de Kronecker.
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Introduction
A fundamental problem in algebraic combinatorics is the Clebsch-Gordan problem: given a linearly re-
ductive group G, give a combinatorial description of the coefficients mλ

µν in the decomposition into irre-
ducibles of the tensor product of two (finite-dimensional complex) irreducible representation Vµ(G) and
Vν(G):

Vµ(G)⊗ Vν(G) ∼=
⊕
λ

mλ
µνVλ(G)

While this problem has been solved satisfactorily for the general linear group,GL(n), the most elementary
linear group, this is not the case for the symmetric group, Sn, the most fundamental finite group.

In the case of GL(n), the coefficients mλ
µν = cλµν are the well known Littlewood-Richardson coeffi-

cients. There exists several combinatorial descriptions for them. One of these descriptions was given by
Berenstein and Zelevinsky (1992) that showed that cλµν counts the integral points in a well-defined family
of polytopes. This initiated a series of works concerning the stretching functions associated to these co-
efficients that culminated with the proof by Knutson and Tao (1999) of the saturation conjecture. Finally,
Rassart (2004) showed that the Littlewood-Richardson coefficients cλµν are given by polynomial functions
of the parts of λ, µ and ν, on the maximal cells of a fan.

For the symmetric group Sn, the coefficients mλ
µν = gλµν are called the Kronecker coefficients. Amaz-

ingly, there is no combinatorial description of these coefficients in general. Particular families have been
investigated. In this paper the Kronecker coefficients indexed by two two–row shapes are considered. They
are the coefficients gλµν such that both µ and ν have two rows. Formulas for them have already been given
by Remmel and Whitehead (1994) and Rosas (2001). Recent works by Luque and Thibon (2003); Garsia
et al. (2008); Brown et al. (2008) have revived the interest of obtaining better formulas for the Kronecker
coefficients indexed by two two–row shapes as Hilbert series related to these coefficients have been linked
to problems in quantum information theory.

New problems about the Clebsch–Gordan coefficients have been raised recently by the specialists of
computational complexity. Narayanan (2006) showed that the computation of the Littlewood–Richardson
coefficients is a #P–complete problem. Bürgisser and Ikenmeyer (2008) showed that the computation
of the Kronecker coefficients is #P–hard. On the other hand, the saturation property implies that the
non–vanishing of a Littlewood–Richardson coefficient can be decided in polynomial time (Mulmuley and
Sohoni, 2005). Is it also the case for the Kronecker coefficients? This question lies at the heart of a detailed
plan, Geometric Complexity Theory, that Mulmuley and Sohoni (2001) elaborated to prove that P 6= NP
over the complex numbers (an arithmetic, non–uniform version of P 6= NP ). This lead Mulmuley (2007)
to state a series of conjectures about the stretching functions associated to the Kronecker coefficients. The
scarce information available about Kronecker coefficients made difficult even the experimental checking
of these conjectures. By means of the formulas by Remmel and Whitehead (1994) and Rosas (2001) it
was only possible to check them on large samples of Kronecker coefficients indexed by two two–row
shapes (see Mulmuley, 2007).

The present article obtains a new description for the Kronecker coefficients indexed by two two–row
shapes, given by quasi–polynomial functions on the chambers of fans, resembling the description of Ras-
sart (2004) for the Littlewood–Richardson coefficients. It is efficient enough to check Mulmuley’s con-
jectures for all Kronecker coefficients indexed by two two–row shapes (and, actually, disprove them by
providing explicit counter–examples). We start our investigation by looking at Murnaghan’s reduced
Kronecker coefficients ḡγαβ (Murnaghan, 1938), a related family of coefficients indexed by triples of parti-
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tions, which are stable values of stationary sequences of Kronecker coefficients. Our first result expresses
the Kronecker coefficients in terms of the reduced Kronecker coefficients (Theorem 3). Exploiting the
work of Rosas (2001) we are able to show that the reduced Kronecker polynomials related to the two-row
family count integral points in a polygon of R2. From this we describe an explicit piecewise quasipoly-
nomial formula for these reduced Kronecker coefficients. The pieces are the 26 maximal cells of a fan.
Last, using our formula that recovers the Kronecker coefficients from the reduced Kronecker coefficients,
we obtain, with the help of the Maple package convex by Franz (2006), explicit piecewise quasipolyno-
mial formulas for the Kronecker coefficients indexed by two two-row shapes. It is given by 74 quadratic
quasipolynomials whose domains are the maximal cells of a fan.

As an application, we list all Kronecker coefficients indexed by two two-row shapes that are equal to
zero. This made possible the discovery of counter–examples to Mulmuley’s conjectures (Briand et al.,
2008). In short, the advantage of our results is that for the first time we can completely study a complete
nontrivial family of the Kronecker coefficients.

The detailed proofs will be presented in a full version (Briand et al., In preparation) of this extended
abstract.

1 Piecewise Quasipolynomials
We now give a more detailed description of the main result. A quasipolynomial is a function on Zn
given by polynomial formulas, whose domains are the cosets of a full rank sublattice of Zn. Remarkable
examples of (univariate) quasipolynomials are the Ehrhart functions of polytopes of Rk with rational
vertices, that count the integral points in the dilations of the polytope (see Stanley, 1997, chap. 4).

We will obtain a description for the Kronecker coefficients indexed by two two–row shapes as a function
of the following kind.

Definition 1 A vector partition–like function is a function φ on Zn fulfilling the following: (i) There exists
a convex rational polyhedral cone C such that φ is zero outside C. (ii) Inside C, the function φ is given
by quasipolynomial formulas whose domains are (the sets of integral points of) the maximal (closed) cells
of a fan F.

If C and F are as above and Q is the family of quasipolynomial formulas, indexed by the maximal cells
of F, we say that the triple (C,F, Q) is a presentation of φ as a vector partition–like function.

Remark 1 A sum of vector partition–like functions φ1, φ2 is not necessarily vector partition–like. It is,
however, the case when the functions admit presentations (C,F, Q) and (C ′,F′, Q′) with the same cone:
C = C ′.

Examples of vector partition–like functions are the vector partition functions, whose corresponding
fans are the chamber complexes (see Sturmfels, 1995; Brion and Vergne, 1997).

Vector partition–like functions also arise as functions counting integral solutions to some systems of
linear inequalities depending on parameters. Precisely, consider a system of inequalities of the form

ui(x) + ci(h) ≥ 0, i = 1, . . . , N (1)

where the functions ui and ci are integral, homogeneous linear forms on Rm and Rn respectively. The
unknown is x and the parameter is h. Assume that for any h ∈ Rn the set of solutions x of the system is
bounded. Let h 7→ φ(h) be the function that counts the integral solutions x of the system. This function φ
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is vector partition–like. This follows from the reduction of this function to a vector partition function (see
Brion and Vergne, 1997). Here the cone C in Definition 1 is the set of values of the parameter h making
the system feasible.

Let ` be a positive integer. The function (λ, µ, ν) 7→ cλµ,ν from triples of partitions with at most ` parts
to Littlewood–Richardson coefficients is vector partition–like. This is because this function counts the
integral solutions of a system of inequalities depending on parameters (the parts of the partitions) of the
form (1). Indeed, such a system can be derived from the Littlewood–Richardson rule (see Mulmuley and
Sohoni, 2005). Alternatively, one can use the system defining Knutson and Tao’s Hive polytopes (see the
exposition by Buch, 2000).

It is natural to ask if similar results also hold for the Kronecker coefficients. Let `1 and `2 be positive
integers. If µ and ν are partitions of length at most `1 and `2 respectively then gλµ,ν can be nonzero only
if λ has at most `1`2 parts. The analogous function to consider is thus G`1,`2 : (λ, µ, ν) 7→ gλµ,ν defined
on triples of partitions with at most `1`2, `1 and `2 parts respectively. No interpretation of the functions
G`1,`2 as counting integral solutions to systems of inequalities of the form (1) is known. Nevertheless,
very close results were obtained by Mulmuley (2007): (i) The functions G`1,`2 fulfill the conditions in
Definition 1 with F a complex of polyhedral cones instead of a fan. (ii) For any λ, µ, ν, the stretching
function N ∈ N 7→ gN

λ

Nµ,Nν is a univariate quasipolynomial. Here Nλ stands for the partitions obtained
from λ by multiplying all parts by N . Combining these two results, one gets that the functions G`1,`2
fulfill the conditions in the definition of vector partition–like with “maximal closed cells” replaced with
“open cells” in (ii).

The simplest non–trivial case is G2,2, describing the Kronecker coefficients indexed by two two–row
shapes. Even this case is somehow difficult. In this work we prove the following:

Theorem 1 The function

G2,2 : (λ1, . . . , λ4, µ1, µ2, ν1, ν2) ∈ Z8 7→ g
(λ1,λ2,λ3,λ4)
(µ1,µ2)(ν1,ν2)

is vector partition–like.

Remark 2 A Kronecker coefficient gλµ,ν can be nonzero only if its three indexing partitions have the same

weight. This and the formula g(λ1,λ2,λ3,λ4)
(µ1,µ2)(ν1,ν2) = g

(λ1−1,λ2−1,λ3−1,λ4−1)
(µ1−2,µ2−2)(ν1−2,ν2−2) reduce the study of G2,2 to the

study of the function
(n, γ1, γ2, r, s) 7→ g

(n−γ1−γ2,γ1,γ2)
(n−r,r)(n−s,s)

2 Murnaghan’s Theorem and reduced Kronecker coefficients
In this section we introduce Murnaghan’s reduced Kronecker coefficients gγα,β . They are integers indexed
by triples of partitions closely related to the Kronecker coefficients. The Kronecker coefficients indexed
by two two–row shapes will be re–obtained from the reduced Kronecker coefficients indexed by two
one–row shapes (Section 3) which will be easy to describe (Theorem 4 and Section 4).

The Jacobi–Trudi formula expresses the Schur functions as determinants in the complete sums hk.
When λ has at most k parts, it asserts that:

sλ = det(hj−i+λi)i,j=1,...,k

(where hk = 0 when k < 0, h0 = 1 and λi = 0 for i greater than the length of λ.)
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This formula can also be applied in the case when λ is not a partition, i.e. is not nondecreasing. The
functions sλ obtained are either 0, or Schur functions up to a sign.

Let n be an integer and λ a partition. Then |λ| stands for the sum of the parts of λ and for any integer n,
we denote with (n−|λ|, λ) the sequence (n−|λ|, λ1, λ2, . . .). This is a partition if and only if n ≥ |λ|+λ1.
Last λ stands for the partition (λ2, λ3, . . .), which is obtained by removing the first part of λ.

Theorem 2 (Murnaghan (1938, 1955)) There exists a family of nonnegative integers (gγα,β) indexed by
triples of partitions (α, β, γ) such that, for fixed partitions α and β, only finitely many terms gγα,β are
non–zero, and for all n ≥ 0,

s(n−|α|,α) ∗ s(n−|β|,β) =
∑
γ

gγα,βs(n−|γ|,γ)

Following Klyachko (2004), we call the coefficients gγα,β the reduced Kronecker coefficients. They are
called extended Littlewood–Richardson numbers in Kirillov (2004) because of the following property,
observed first in Murnaghan (1955) and proved in Littlewood (1958): if α, β and γ are three partitions
such that |γ| = |α|+ |β| then gγαβ = cγαβ .

Remark 3 It follows from Murnaghan’s Theorem that for fixed partitions α, β, γ, the sequence of Kro-
necker coefficients g(n−|γ|,γ)

(n−|α|,α),(n−|β|,β) (n big enough so that all three indices are partitions) is stationary
with limit gγαβ .

3 From reduced to non–reduced Kronecker coefficients
In this section we give a formula that allows us to recover the Kronecker coefficients from the reduced
Kronecker coefficients, and we apply it for the Kronecker coefficients indexed by two two–row shapes.

For any infinite sequence u = (u1, u2, . . .) and any positive integer i we denote with u†i the sequence
obtained from u by incrementing by 1 its i − 1 first terms and removing its i–th term, that is: u†i =
(u1+1, u2+1, . . . , ui−1+1, ui+1, ui+2 . . .). Partitions are identified with infinite sequences by appending
trailing zeros. Under this identification, if λ is a partition then so is λ†i for all i.

Theorem 3 Let `1, `2 and n be positive integers. Let λ, µ, ν be partitions of n such that µ has length at
most `1 and ν has length at most `2. Then:

gλµν =
`1`2∑
i=1

(−1)i+1gλ
†i

µ,ν (2)

For `1 = `2 = 2, Formula (2) applies as follows:

g
(λ1,λ2,λ3)
(n−r,r)(n−s,s) = g

(λ2,λ3)
(r)(s) − g

(λ1+1,λ3)
(r)(s) + g

(λ1+1,λ2+1)
(r)(s) (3)

where n = |λ|, because the last expected summand g(λ1+1,λ2+1,λ3+1)
(r)(s) is always zero.

The reduced Kronecker coefficients that appear in this formula are all of the form g
(γ1,γ2)
(r)(s) . These co-

efficients admit the following description, derived in Briand et al. (2008) from the description for the
Kronecker coefficients indexed by two two–row shapes provided by Rosas (2001). An equivalent descrip-
tion for the reduced Kronecker coefficients indexed by two one–row shapes is given by Thibon (1991).



246 Emmanuel Briand, Rosa Orellana and Mercedes Rosas

Theorem 4 (Briand et al. (2008)) Let r, s and γ1 ≥ γ2 be nonnegative integers and h = (r, s, γ1, γ2).
The reduced Kronecker coefficient g(γ1,γ2)

(r)(s) counts the integral solutions to the system of inequalities
ui(X,Y ) + ci(h) ≥ 0 for i = 0, . . . , 6, where:

u0(v) + c0(h) = X − s
u1(v) + c1(h) = X − r
u2(v) + c2(h) = X + Y − r − s+ γ1

u3(v) + c3(h) = Y

u4(v) + c4(h) = Y −X + |γ|
u5(v) + c5(h) = −X − Y + r + s− γ2

u6(v) + c6(h) = X − Y − γ1

(4)

In particular, the function R : (r, s, γ1, γ2) ∈ Z4 7→ g
(γ1,γ2)
(r)(s) is vector partition–like.

Theorem 4 and Formula (3) provide a piecewise quasipolynomial description for G2,2 (see Remark
2). But the corresponding domains of quasipolynomiality obtained are neither closed, nor cones. The
remainder of this work is devoted to correct this and obtain, still from Theorem 4 and Formula (3) a
vector partition–like presentation for G2,2.

The main tools are the Lemma 1, below, and an explicit vector partition–like presentation for the func-
tion R (section 4) showing that the lemma applies.

Let F0, F1, F2 be the linear maps from R5 to R4 that send (n, r, s, γ1, γ2) to (r, s, γ1, γ2), (r, s, n −
γ1 − γ2, γ2), (r, s, n − γ1 − γ2, γ1) respectively. Let T1 and T2 be the translations in R4 of vector
v1 = (0, 0, 1, 0) and v2 = (0, 0, 1, 1) respectively.

Let ∆ (resp. ∆′) be the cone of R5 (resp. of R4) generated by all (n, r, s, γ1, γ2) ∈ Z5 (resp. all
(r, s, γ1, γ2) ∈ Z4) such that the Kronecker coefficient g(n−γ1−γ2,γ1,γ2)

(n−r,r)(n−s,s) (resp. the reduced Kronecker

coefficient g(γ1,γ2)
(r)(s) ) is defined and positive. The explicit description of ∆ is provided by Bravyi (2004)

(see also the general approach by Klyachko (2004)). The cone ∆′ is the image of ∆ under F0.
For x ∈ Z5 set χ∆(x) = 1 if x ∈ ∆ and χ∆(x) = 0 otherwise. Then we can rewrite Formula 3 as

follows:
G(x) = R ◦ F0(x)− χ∆(x) ·R ◦ T1 ◦ F1(x) + χ∆(x) ·R ◦ T2 ◦ F2(x)

where G(x) = G(n, r, s, γ1, γ2) = g
(n−γ1−γ2,γ1,γ2)
(n−r,r)(n−s,s) when (n− r, r), (n− s, s), (n− γ1− γ2, γ1, γ2) are

partitions, and G(n, r, s, γ1, γ2) = 0 otherwise.
After Remark 1, Theorem 1 will be proved if we show that all three vector partition–like functions

R ◦ F0, χ∆ · R ◦ T1 ◦ F1 and χ∆ · R ◦ T2 ◦ F2 admit presentations with the same cone: (∆,F0, Q0),
(∆,F1, Q1) and (∆,F2, Q2).

That R ◦ F0 admits a presentation (∆,F0, Q0) is immediate because F−1
0 (∆′) = ∆. To show that

χ∆ · R ◦ T1 ◦ F1 and χ∆ · R ◦ T2 ◦ F2 also admit presentations with cone ∆ we will need to apply two
times Lemma 1 below, with p = 5, q = 4, C = ∆, C ′ = ∆′, φ = R and F = Fi, v = vi for i = 1, 2.

Given subsets A, B of Rq we denote with A+ B the set {a+ b | a ∈ A, b ∈ B}. Given v ∈ Rq and I
subset of R we denote with I v the set {xv |x ∈ I}.

Lemma 1 Let φ be a vector partition–like function on Zq with presentation (C ′,F′, Q). Let C be a
convex rational polyhedral cone of Rp and F an integral linear map from Rp onto Rq . Let v ∈ Zq and T
be the translation of Rq of vector v. Let F be the fan subdividing C ∩ F−1(C ′), whose cells are all sets
of the form C ∩ F−1(σ′) for σ′ cell of F′.

Assume that the cone C ∩ F−1(C ′) is full–dimensional in Rp. Assume also that:
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(a) Whenever H is a hyperplane separating two adjacent maximal cells σ′1, σ′2 of F′ such that F (C) is
not included in H+ R+v, the following holds: The quasipolynomials Qσ′1 and Qσ′2 coincide on the
integral points of the strip H + ]0; 1] v.

(b) Whenever H is a hyperplane containing a facet of C ′, such that R+ v + F (C) is not contained in
the half–plane H +C ′, the following holds: For all maximal cells σ′ of F′ having a facet contained
in H , the quasipolynomial Qσ′ vanishes on the integral points of the strip H + ]0; 1] v.

Then

(i) The function φ ◦ T ◦ F is zero on the integral points of the closure of C \ F−1(C ′).

(ii) IfC∩F−1(σ′) is a maximal cell of F (where σ′ is a maximal cell of F′) then φ◦T ◦F andQσ◦T ◦F
coincide on its integral points.

Applying the lemma as indicated requires a precise description of a presentation (∆′,FR, QR) of R.
The next section provides such a description.

4 Formulas for the reduced Kronecker coefficients indexed by two
one–row shapes

Let ui and ci, for i = 0, 1, . . . , 6 be the integral linear forms defined in (4). After Brion and Vergne (1997),
the function ψ that associates to y ∈ Z7 the number of integral solutions of the system ui(X,Y )+yi ≥ 0,
i = 0, . . . , 6 is a vector partition function. In particular, it admits a very well–described vector partition–
like presentation (Cψ,Fψ, Qψ). The corresponding fan is the chamber complex of ψ, see Brion and
Vergne (1997); Sturmfels (1995).

Remember (Theorem 4) thatR is the function that associates the reduced Kronecker coefficient g(γ1,γ2)
(r)(s)

to (r, s, γ1, γ2) ∈ Z4. ThenR = ψ◦c, where c is the linear map from R4 to R7 that maps h = (r, s, γ1, γ2)
to (c0(h), c1(h), . . . , c6(h)). Therefore, one obtains a very explicit vector partition–like presentation
(c−1(Cψ),FR, QR) for R by taking for FR the inverse image of Fψ under c, and for QR the family of
functions QR,c−1(σ) = Qψ,σ ◦ c for σ maximal cell of Fψ . We present this description.

Let h ∈ R7. Denote with Π(h) the set of real solutions of the system (4). For i = 0, 1, . . . , 6, let Li(h)
be the line with equation aiX + biY + ci(h) = 0 where ui(X,Y ) = aiX + biY .

For any three elements i, j, k of {0, 1, . . . , 6} define:

fijk(h) = −

∣∣∣∣∣∣
ai aj ak
bi bj bk

ci(h) cj(h) ck(h)

∣∣∣∣∣∣ (5)

Define also f25 = γ1 − γ2 and f46 = γ2. The linear form f25 (resp. f46) is proportional to f25k for all
k 6= 2, 5 (resp.: to f46k for all k 6= 4, 6) and its vanishing is the condition for the two parallel lines L2 and
L5 (resp. L4 and L6) to coincide.

• The cone c−1(Cψ) is equal to the cone ∆′ introduced in Section 3. It is defined by the system of
linear inequalities:

f145 ≤ 0, f045 ≤ 0, f356 ≤ 0, f035 ≤ 0, f135 ≤ 0, f25 ≥ 0, f46 ≥ 0.
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Fig. 1: The graph G.

• The fan FR: Let S be the locus of parameters h such that three lines Li(h), Lj(h), Lk(h) meet in
Π(h). The fan FR is the fan whose chambers (maximal open cells) are the connected components
of ∆′ \S. In each chamber σ the set of indices i such that Li(h) supports a side of Π(h) is constant.
Denote this set with Sides(σ). This set Sides(σ) determines σ. Therefore we denote a chamber
σ with σI when Sides(σ) = I , e.g. σ1245 for the chamber σ such that Sides(σ) = {1, 2, 4, 5}.
There are 26 chambers σI in FR. The corresponding indices I = Sides(σI) are the vertices of the
graph G in Figure 1. Adjacency in G represents adjacency in FR: chambers σI and σJ are adjacent
(i.e. their closures have a common facet) if and only if I and J are adjacent vertices in G. Observe
that when σI and σJ are adjacent then:

– either I and J are obtained from each other by exchanging 0 and 1. Then σI and σJ are
separated by the hyperplane of equation r = s. There is r > s on σI if 1 ∈ I .

– or one of the sets is obtained from the other by inserting a unique element. Say J = I ∪ {j}
with j 6∈ I . If the elements of J are p1 < p2 < · · · < pt say that the successor of pq is pq+1,
for q = 1, . . . , t− 1, and that the successor of pt is p1. This defines a cyclic order on J . Let i
and k be the predecessor and successor of j in this cyclic order. Then σI and σJ are separated
by the hyperplane of equation fijk = 0, and fijk > 0 on σI .

• The quasipolynomial formulas on each maximal cell: For simplicity we set qI = QR,σI . This is
the quasipolynomial formula for R valid on the cell σI (the topological closure of the chamber σI ).
Rather than displaying explicit expressions for all quasi–polynomials qI , it is enough to present one
of them (we choose q135) and display all differences qI − qJ for σI and σJ adjacent. All quasi–
polynomials qI can be recovered easily from this information by chasing on the graph G (Figure 1),
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ijk qI(h)− qJ(h)
Values δ s. t.
qI = qJ

on fijk = δ

613, 123, 134
603, 023, 034

1
2fijk(h) (fijk(h)− 1) 0, 1

234 1
4 (fijk(h))2 +

{
0 if fijk(h) ≡ 0 mod 2
−1/4 else. −1, 0, 1

345, 124, 561
024, 560

1
4fijk(h) (fijk(h)− 2) +

{
0 if fijk(h) ≡ 0 mod 2

1/4 else 0, 1, 2

Tab. 1: The differences qI − qJ for σI and σJ adjacent chambers of F.

e.g.
q1456 = (q1456 − q13456) + (q13456 − q1356) + (q1356 − q135) + q135

There is:
q135(r, s, γ1, γ2) =

1
2

(s− γ2 + 1) (s− γ2 + 2)

Let σI and σJ be two adjacent chambers of F.

– If I and J are obtained from each other by exchanging 0 and 1 then qI = qJ .

– If J = I ∪ {j} with j 6∈ I then qI − qJ depend only of j and its predecessor i and successor
k in J , and is as indicated in Table 1.

If σI and σJ are adjacent, the quasi–polynomials qI and qJ coincide not only on the affine hyperplane
spanned by the facet σI ∩ σJ but also on close parallel hyperplanes.

Proposition 1 Let σI and σJ be two adjacent chambers of F such that J = I ∪ {j} with j 6∈ I . Let i and
k be the predecessor and successor, respectively, of j in J .

Then qI − qJ coincide on the affine hyperplanes fijk = δ for the values of δ given by the third column
in Table 1.

Similarly, if the hyperplane H supports a facet of a maximal cell σI , and this facet is contained in the
border of ∆′, then qI vanishes on affine hyperplanes close and parallel to H .

Proposition 2 Let σI be a chamber of F and τ an external facet of σI (i.e. a facet contained in the border
of ∆′). The hyperplane supporting τ admits as equation f = 0 where f is one of the linear forms f145,
f045, f356, f035, f135, f25, f46.

The set of values δ ∈ Z such that f vanishes identically on the affine hyperplane of equation f = δ is
provided by Table 2.

It is immediate that R ◦ F0 has a vector partition–like presentations (∆,F0, Q0). Propositions 1 and 2
are used to apply Lemma 1 and show that χ∆ ·R ◦T1 ◦F1 and χ∆ ·R ◦T2 ◦F2 have vector partition–like
presentations (∆,F1, Q1) and (∆,F2, Q2). After Remark 1, this proves Theorem 1 and provides a way
to compute a vector partition–like presentation for G and G2,2.
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Form f Chambers having a facet
supported by f = 0

Values δ such that
qI vanishes identically

on f = δ

f46 = γ2 3456, 1456, 0456 −1
f25 = γ1 − γ2 1245, 0245, 1235, 0235 −1

f145 = r − s− γ1 145 1, 2, 3
f045 = s− r − γ1 045 1, 2, 3
f356 = |γ| − r − s 356 1, 2, 3
f035 = γ2 − r 035 1, 2
f135 = γ2 − s 135 1, 2

Tab. 2: The linear forms defining the facets of ∆′.

5 Formulas for the Kronecker coefficients indexed by two two–
row shapes

Once the presentations (∆,F0, Q0), (∆,F1, Q1), (∆,F2, Q2) forR◦F0, χ∆·R◦T1◦F1 and χ∆·R◦T2◦F2

have been determined, an explicit presentation (∆,F3, Q3) for G is obtained: The cells of F3 are the
intersection σ0 ∩ σ1 ∩ σ2 for σi a cell of Fi, i ∈ {0, 1, 2}. If σ0 ∩ σ1 ∩ σ2 is a maximal cell of F3 then the
corresponding quasipolynomial formula for G is Q0,σ0 − Q1,σ1 + Q2,σ2 . We computed the description
for F3 by using the Maple Package CONVEX by Franz (2006): it has 177 maximal cells. It turns out that
on some of them G is given by the same quasipolynomial formulas, and that they can be glued together to
form the maximal cells of a new fan FK . In the new presentation (∆,FK , P ) obtained for G the fan FK
has only 74 maximal cells.

All 74 quasipolynomial formulas Pσ have the following form:

Pσ = 1/4 Qσ + 1/2 Lσ +Mσ/4 (6)

where Qσ and Lσ are integral homogeneous polynomials in (n, r, s, γ1, γ2) respectively quadratic and
linear. The function Mσ takes integral values, fulfills Mσ(0)/4 = 1 and is constant on each coset of Z5

modulo the sublattice defined by r + s ≡ n ≡ γ1 ≡ γ2 ≡ 0 mod 2.
Moreover, for all maximal cells σ, the functions Qσ , Lσ are nonnegative on σ. This also holds for Mσ ,

for all cells σ except four. This makes specially easy studying the support of the Kronecker coefficients
indexed by two two–row shapes. This is the set of all triples (λ, µ, ν) such that gλµ,ν > 0 and µ and ν have
at most two parts.

We obtain the following result. Let (n, r, s, γ1, γ2) ∈ ∆. Then g(n−γ1−γ2,γ1,γ2)
(n−r,r)(n−s,s) is zero if and only if at

least one of the following five systems of conditions is fulfilled:{
n = 2 s = 2 r
γ1 or γ2 odd. n = max(2 r, 2 s)
γ1 = γ2

r + s+ γ1 odd.

 n = max(2 r, 2 s, |γ|+ γ1)
γ2 = 0
r + s+ γ1 odd.{
n = |γ|+ γ1 = max(2 r, 2 s)
r + s+ γ1 odd.


n = max(2 r, 2 s)
|r − s| = 1
min(2 r, 2 s) ≥ |γ|+ γ1

γ1 or γ2 even.

(7)
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This exhaustive description led us to a family of counterexamples for SH, a saturation conjecture for-
mulated by Mulmuley (2007). The stretching functions g̃λµ,ν : N 7→ gNλNµ,Nν attached to the Kronecker
coefficients are quasipolynomials (Mulmuley, 2007). This means that for any fixed λ, µ, ν there exist
an integer k and polynomials p1, p2, . . . , pk such that for any N ≥ 1, g̃λµ,ν(N) = pi(N) when N ≡ i

mod k. Mulmuley’s SH conjecture stated that for any such description, gλµ,ν = 0 ⇔ F1 = 0. The right-
most system of conditions in (7) above provides a family of counterexamples to this conjecture (Briand
et al., 2008). The discovery of these counterexamples led Mulmuley (2008) to propose a weaker form of
the conjecture SH, still strong enough for the aims of Geometric Complexity Theory.
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