Perfectness of Kirillov–Reshetikhin crystals for nonexceptional types

Ghislain Fourier¹[†], Masato Okado²[‡] and Anne Schilling³[§]

¹ Mathematisches Institut der Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany

² Department of Mathematical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

³ Department of Mathematics, University of California, One Shields Avenue, Davis, CA 95616-8633, U.S.A.

Abstract. For nonexceptional types, we prove a conjecture of Hatayama et al. about the prefectness of Kirillov–Reshetikhin crystals.

Résumé. Pour les types non-exceptionnels, on démontre une conjecture de Hatayama et al. concernant la perfection des cristaux de Kirillov–Reshetikhin.

Keywords: Crystal bases, combinatorial models for Kirillov-Reshetikhin crystals, perfectness

1 Introduction

Kirillov–Reshetikhin (KR) crystals $B^{r,s}$ are crystals corresponding to finite-dimensional $U'_q(\mathfrak{g})$ -modules [3, 4], where \mathfrak{g} is an affine Kac–Moody algebra. Recently, a lot of progress has been made regarding long outstanding problems concerning these crystals which appear in mathematical physics and the path realization of affine highest weight crystals [13]. In [20, 21] the existence of KR crystals was shown. In [5] a major step in understanding these crystals was provided by giving explicit combinatorial realizations for all nonexceptional types. This abstract is based on [5, 6]. We prove a conjecture of Hatayama, Kuniba, Okado, Takagu, and Tsuboi [8, Conjecture 2.1] about the perfectness of these KR crystals.

Conjecture 1.1 [8, Conjecture 2.1] The Kirillov-Reshetikhin crystal $B^{r,s}$ is perfect if and only if $\frac{s}{c_r}$ is an integer with c_r as in Table 1. If $B^{r,s}$ is perfect, its level is $\frac{s}{c_r}$.

In [14], this conjecture was proven for all $B^{r,s}$ for type $A_n^{(1)}$, for $B^{1,s}$ for nonexceptional types (except for type $C_n^{(1)}$), for $B^{n-1,s}$, $B^{n,s}$ of type $D_n^{(1)}$, and $B^{n,s}$ for types $C_n^{(1)}$ and $D_{n+1}^{(2)}$. When the highest weight is given by the highest root, level-1 perfect crystals were constructed in [1]. For $1 \le r \le n-2$

[†]Supported in part by DARPA and AFOSR through the grant FA9550-07-1-0543 and by the DFG-Projekt "Kombinatorische Beschreibung von Macdonald und Kostka-Foulkes Polynomen".

[‡]Supported by grant JSPS 20540016.

[§]Supported in part by the NSF grants DMS-0501101, DMS-0652641, and DMS-0652652.

^{1365-8050 © 2009} Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

	(c_1,\ldots,c_n)
$A_n^{(1)}, D_n^{(1)}, A_{2n-1}^{(2)}, A_{2n}^{(2)}, D_{n+1}^{(2)}$	$(1,\ldots,1)$
$B_n^{(1)}$	$(1,\ldots,1,2)$
$C_n^{(1)}$	$(2,\ldots,2,1)$

Tab. 1: List of c_r

for type $D_n^{(1)}$, $1 \le r \le n-1$ for type $B_n^{(1)}$, and $1 \le r \le n$ for type $A_{2n-1}^{(2)}$, the conjecture was proved in [22]. The case $G_2^{(1)}$ and r = 1 was treated in [24] and the case $D_4^{(3)}$ and r = 1 was treated in [16]. Naito and Sagaki [18] showed that the conjecture holds for twisted algebras, if it is true for the untwisted simply-laced cases.

In this paper we prove Conjecture 1.1 in general for nonexceptional types.

Theorem 1.2 If g is of nonexceptional type, Conjecture 1.1 is true.

The paper is organized as follows. In Section 2 we give basic notation and the definition of perfectness in Definition 2.1. In Section 3 we review the realizations of the KR crystals of nonexceptional types as recently provided in [5]. Section 4 is reserved for the proof of Theorem 1.2 and an explicit description of the minimal elements $B_{\min}^{r,c_r,s}$ of the perfect crystals. A long version of this article containing further details and examples is available at [6].

2 Definitions and perfectness

We follow the notation of [12, 5]. Let \mathcal{B} be a $U'_q(\mathfrak{g})$ -crystal [15]. Denote by α_i and Λ_i for $i \in I$ the simple roots and fundamental weights and by c the canoncial central element associated to \mathfrak{g} , where I is the index set of the Dynkin diagram of \mathfrak{g} (see Table 2). Let $P = \bigoplus_{i \in I} \mathbb{Z}\Lambda_i$ be the weight lattice of \mathfrak{g} and P^+ the set of dominant weights. For a positive integer ℓ , the set of level- ℓ weights is

$$P_{\ell}^{+} = \{ \Lambda \in P^{+} \mid \text{lev}(\Lambda) = \ell \}.$$

where $lev(\Lambda) := \Lambda(c)$. The set of level-0 weights is denoted by P_0 . We identify dominant weights with partitions; each Λ_i yields a column of height *i* (except for spin nodes). For more details, please consult [11].

We denote by $f_i, e_i : \mathcal{B} \to \mathcal{B} \cup \{\emptyset\}$ for $i \in I$ the Kashiwara operators and by wt $: \mathcal{B} \to P$ the weight function on the crystal. For $b \in \mathcal{B}$ we define $\varepsilon_i(b) = \max\{k \mid e_i^k(b) \neq \emptyset\}, \varphi_i(b) = \max\{k \mid f_i^k(b) \neq \emptyset\}$, and

$$\varepsilon(b) = \sum_{i \in I} \varepsilon_i(b) \Lambda_i$$
 and $\varphi(b) = \sum_{i \in I} \varphi_i(b) \Lambda_i$.

Next we define perfect crystals, see for example [11].

Definition 2.1 For a positive integer $\ell > 0$, a crystal \mathcal{B} is called perfect crystal of level ℓ , if the following conditions are satisfied:

- 1. \mathcal{B} is isomorphic to the crystal graph of a finite-dimensional $U'_{a}(\mathfrak{g})$ -module.
- 2. $\mathcal{B} \otimes \mathcal{B}$ is connected.
- 3. There exists a $\lambda \in P_0$, such that $\operatorname{wt}(\mathcal{B}) \subset \lambda + \sum_{i \in I \setminus \{0\}} \mathbb{Z}_{\leq 0} \alpha_i$ and there is a unique element in \mathcal{B} of classical weight λ .
- 4. $\forall b \in \mathcal{B}, \ \operatorname{lev}(\varepsilon(b)) \ge \ell.$
- 5. $\forall \Lambda \in P_{\ell}^+$, there exist unique elements $b_{\Lambda}, b^{\Lambda} \in \mathcal{B}$, such that

$$\varepsilon(b_{\Lambda}) = \Lambda = \varphi(b^{\Lambda}).$$

We denote by \mathcal{B}_{\min} the set of minimal elements in \mathcal{B} , namely

$$\mathcal{B}_{\min} = \{ b \in \mathcal{B} \mid \text{lev}(\varepsilon(b)) = \ell \}.$$

Note that condition (5) of Definition 2.1 ensures that $\varepsilon, \varphi : \mathcal{B}_{\min} \to P_{\ell}^+$ are bijections. They induce an automorphism $\tau = \varepsilon \circ \varphi^{-1}$ on P_{ℓ}^+ .

In [22, 5] \pm -diagrams were introduced, which describe the branching $X_n \to X_{n-1}$ where $X_n = B_n, C_n, D_n$. A \pm -diagram P of shape Λ/λ is a sequence of partitions $\lambda \subset \mu \subset \Lambda$ such that Λ/μ and μ/λ are horizontal strips (i.e. every column contains at most one box). We depict this \pm -diagram by the skew

tableau of shape Λ/λ in which the cells of μ/λ are filled with the symbol + and those of Λ/μ are filled with the symbol –. There are further type specific rules which can be found in [5, Section 3.2]. There exists a bijection Φ between \pm -diagrams and the X_{n-1} -highest weight vectors inside the X_n crystal of highest weight Λ .

3 Realization of KR-crystals

Throughout the paper we use the realization of $B^{r,s}$ as given in [5, 21, 22]. In this section we briefly recall the main constructions.

3.1 KR crystals of type $A_n^{(1)}$

Let $\Lambda = \ell_0 \Lambda_0 + \ell_1 \Lambda_1 + \dots + \ell_n \Lambda_n$ be a dominant weight. Then the level is given by

$$\operatorname{lev}(\Lambda) = \ell_0 + \dots + \ell_n.$$

A combinatorial description of $B^{r,s}$ of type $A_n^{(1)}$ was provided by Shimozono [23]. As a $\{1, 2, ..., n\}$ crystal

$$B^{r,s} \cong B(s\Lambda_r).$$

The Dynkin diagram of $A_n^{(1)}$ has a cyclic automorphism $\sigma(i) = i + 1 \pmod{n+1}$ which extends to the crystal in form of the promotion operator. The action of the affine crystal operators f_0 and e_0 is given by

$$f_0 = \sigma^{-1} \circ f_1 \circ \sigma$$
 and $e_0 = \sigma^{-1} \circ e_1 \circ \sigma$.

3.2 KR crystals of type $D_n^{(1)}$, $B_n^{(1)}$, $A_{2n-1}^{(2)}$

Let $\Lambda = \ell_0 \Lambda_0 + \ell_1 \Lambda_1 + \dots + \ell_n \Lambda_n$ be a dominant weight. Then the level is given by

$$\begin{aligned} &\operatorname{lev}(\Lambda) = \ell_0 + \ell_1 + 2\ell_2 + 2\ell_3 + \dots + 2\ell_{n-2} + \ell_{n-1} + \ell_n & \text{for type } D_n^{(1)} \\ &\operatorname{lev}(\Lambda) = \ell_0 + \ell_1 + 2\ell_2 + 2\ell_3 + \dots + 2\ell_{n-2} + 2\ell_{n-1} + \ell_n & \text{for type } B_n^{(1)} \\ &\operatorname{lev}(\Lambda) = \ell_0 + \ell_1 + 2\ell_2 + 2\ell_3 + \dots + 2\ell_{n-2} + 2\ell_{n-1} + 2\ell_n & \text{for type } A_{2n-1}^{(2)}. \end{aligned}$$
(3.1)

We have the following realization of $B^{r,s}$. Let $X_n = D_n, B_n, C_n$ be the classical subalgebra for $D_n^{(1)}$, $B_n^{(1)}, A_{2n-1}^{(2)}$, respectively.

Definition 3.1 Let $1 \le r \le n-2$ for type $D_n^{(1)}$, $1 \le r \le n-1$ for type $B_n^{(1)}$, and $1 \le r \le n$ for type $A_{2n-1}^{(2)}$. Then $B^{r,s}$ is defined as follows. As an X_n -crystal

$$B^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda),$$
(3.2)

where the sum runs over all dominant weights Λ that can be obtained from $s\Lambda_r$ by the removal of vertical dominoes. The affine crystal operators e_0 and f_0 are defined as

$$f_0 = \sigma^{-1} \circ f_1 \circ \sigma \quad and \quad e_0 = \sigma^{-1} \circ e_1 \circ \sigma, \tag{3.3}$$

where σ is the crystal automorphism defined in [22, Definition 4.2].

Definition 3.2 Let $B_{A_{2n-1}^{(2)}}^{n,s}$ be the $A_{2n-1}^{(2)}$ -KR crystal. Then $B^{n,s}$ of type $B_n^{(1)}$ is defined through the unique injective map $S: B^{n,s} \to B_{A_{2n-1}^{(2)}}^{n,s}$ such that

$$S(e_ib) = e_i^{m_i}S(b), \quad S(f_ib) = f_i^{m_i}S(b) \quad for \ i \in I,$$

where $(m_i)_{0 \le i \le n} = (2, 2, \dots, 2, 1).$

In addition, the \pm -diagrams of $A_{2n-1}^{(2)}$ that occur in the image are precisely those which can be obtained by doubling a \pm -diagram of $B^{n,s}$ (see [5, Lemma 3.5]). S induces an embedding of dominant weights of $B_n^{(1)}$ into dominant weights of $A_{2n-1}^{(2)}$, namely $S(\Lambda_i) = m_i \Lambda_i$. It is easy to see that for any $\Lambda \in P^+$ we have $\operatorname{lev}(S(\Lambda)) = 2 \operatorname{lev}(\Lambda)$ using (3.1).

For the definition of $B^{n,s}$ and $B^{n-1,s}$ of type $D_n^{(1)}$, see for example [5, Section 6.2].

3.3 KR crystal of type $C_n^{(1)}$

The level of a dominant $C_n^{(1)}$ weight $\Lambda = \ell_0 \Lambda_0 + \dots + \ell_n \Lambda_n$ is given by

$$\operatorname{lev}(\Lambda) = \ell_0 + \dots + \ell_n.$$

We use the realization of $B^{r,s}$ as the fixed point set of the automorphism σ [22, Definition 4.2] (see Definition 3.1) inside $B^{r,s}_{A^{(2)}_{2n+1}}$ of [5, Theorem 5.7].

Definition 3.3 For $1 \le r < n$, the KR crystal $B^{r,s}$ of type $C_n^{(1)}$ is defined to be the fixed point set under σ inside $B_{A_{2n+1}^{(2)}}^{r,s}$ with the operators

$$e_i = \begin{cases} e_0 e_1 & \text{for } i = 0, \\ e_{i+1} & \text{for } 1 \le i \le n \end{cases}$$

where the Kashiwara operators on the right act in $B_{A_{2n+1}^{(2)}}^{r,s}$. Under the crystal embedding $S: B^{r,s} \to B_{A_{2n+1}^{(2)}}^{r,s}$ we have

$$\Lambda_i \mapsto \begin{cases} \Lambda_0 + \Lambda_1 & \text{for } i = 0, \\ \Lambda_{i+1} & \text{for } 1 \le i \le n. \end{cases}$$

Under the embedding S, the level of $\Lambda \in P^+$ doubles, that is $lev(S(\Lambda)) = 2 lev(\Lambda)$.

For $B^{n,s}$ of type $C_n^{(1)}$ we refer to [5, Section 6.1].

3.4 KR crystals of type $A_{2n}^{(2)}$, $D_{n+1}^{(2)}$

Let $\Lambda = \ell_0 \Lambda_0 + \ell_1 \Lambda_1 + \dots + \ell_n \Lambda_n$ be a dominant weight. The level is given by

$$lev(\Lambda) = \ell_0 + 2\ell_1 + 2\ell_2 + \dots + 2\ell_{n-2} + 2\ell_{n-1} + 2\ell_n \qquad \text{for type } A_{2n}^{(2)}$$
$$lev(\Lambda) = \ell_0 + 2\ell_1 + 2\ell_2 + \dots + 2\ell_{n-2} + 2\ell_{n-1} + \ell_n \qquad \text{for type } D_{n+1}^{(2)}.$$

Define positive integers m_i for $i \in I$ as follows:

$$(m_0, m_1, \dots, m_{n-1}, m_n) = \begin{cases} (1, 2, \dots, 2, 2) & \text{for } A_{2n}^{(2)}, \\ (1, 2, \dots, 2, 1) & \text{for } D_{n+1}^{(2)}. \end{cases}$$
(3.4)

Then $B^{r,s}$ can be realized as follows.

Definition 3.4 For $1 \le r \le n$ for $\mathfrak{g} = A_{2n}^{(2)}$, $1 \le r < n$ for $\mathfrak{g} = D_{n+1}^{(2)}$ and $s \ge 1$, there exists a unique injective map $S: B_{\mathfrak{g}}^{r,s} \longrightarrow B_{C_n^{(1)}}^{r,2s}$ such that

$$S(e_ib) = e_i^{m_i}S(b), \quad S(f_ib) = f_i^{m_i}S(b) \quad \text{for } i \in I.$$

The \pm -diagrams of $C_n^{(1)}$ that occur in the image of S are precisely those which can be obtained by doubling a \pm -diagram of $B^{r,s}$ (see [5, Lemma 3.5]). S induces an embedding of dominant weights for $A_{2n}^{(2)}, D_{n+1}^{(2)}$ into dominant weights of type $C_n^{(1)}$, with $S(\Lambda_i) = m_i \Lambda_i$. This map preserves the level of a weight, that is $\text{lev}(S(\Lambda)) = \text{lev}(\Lambda)$.

For the case r = n of type $D_{n+1}^{(2)}$ we refer to [5, Definition 6.2].

4 Proof of Theorem 1.2

For type $A_n^{(1)}$, perfectness of $B^{r,s}$ was proven in [14]. For all other types, in the case that $\frac{s}{c_r}$ is an integer, we need to show that the 5 defining conditions in Definition 2.1 are satisfied:

- 1. This was recently shown in [21].
- 2. This follows from [7, Corollary 6.1] under [7, Assumption 1]. Assumption 1 is satisfied except for type A_{2n}⁽²⁾: The regularity of B^{r,s} is ensured by (1), the existence of an automorphism σ was proven in [5, Section 7], and the unique element u ∈ B^{r,s} such that ε(u) = sΛ₀ and φ(u) = sΛ_ν (where ν = 1 for r odd for types B_n⁽¹⁾, D_n⁽¹⁾, A_{2n-1}⁽²⁾, ν = r for A_n⁽¹⁾, and ν = 0 otherwise) is given by the classically highest weight element in the component B(0) for ν = 0, B(sΛ₁) for ν = 1, and B(sΛ_r) for ν = r. Note that Λ₀ = τ(Λ_ν), where τ = ε ∘ φ⁻¹. For type A_{2n}⁽²⁾, perfectness follows from [18].
- 3. The statement is true for $\lambda = s(\Lambda_r \Lambda_r(c)\Lambda_0)$, which follows from the decomposition formulas [2, 9, 10, 19].

Conditions (4) and (5) will be shown in the following subsections using case by case considerations: Section 4.1 for type $A_n^{(1)}$, Sections 4.2, 4.3, and 4.4 for types $B_n^{(1)}$, $D_n^{(1)}$, $A_{2n-1}^{(2)}$, Sections 4.5 and 4.6 for type $C_n^{(1)}$, Section 4.7 for type $A_{2n}^{(2)}$, and Sections 4.8 and 4.9 for type $D_{n+1}^{(2)}$. When $\frac{s}{c_n}$ is not an integer, we show in the subsequent sections that the minimum of the level of $\varepsilon(b)$

When $\frac{s}{c_r}$ is not an integer, we show in the subsequent sections that the minimum of the level of $\varepsilon(b)$ is the smallest integer exceeding $\frac{s}{c_r}$, and provide examples that contradict condition (5) of Definition 2.1 for each crystal, thereby proving that $B^{r,s}$ is not perfect. In the case that $\frac{s}{c_r}$ is an integer, we provide an explicit construction of the minimal elements of $B^{r,s}$.

4.1 *Type* $A_n^{(1)}$

It was already proven in [14] that $B^{r,s}$ is perfect. We give below its associated automorphism τ and minimal elements. τ on P is defined by

$$\tau(\sum_{i=0}^n k_i \Lambda_i) = \sum_{i=0}^n k_i \Lambda_{i-r \mod n+1}.$$

Recall that $B^{r,s}$ is identified with the set of semistandard tableaux of $r \times s$ rectangular shape over the alphabet $\{1, 2, \ldots, n+1\}$. For $b \in B^{r,s}$ let $x_{ij} = x_{ij}(b)$ denote the number of letters j in the *i*-th row of b for $1 \le i \le r, 1 \le j \le n+1$. Set r' = n+1-r, then

$$x_{ij} = 0$$
 unless $i \le j \le i + r'$.

Let $\Lambda = \sum_{i=0}^{n} \ell_i \Lambda_i$ be in P_s^+ , that is, $\ell_0, \ell_1, \ldots, \ell_n \in \mathbb{Z}_{\geq 0}, \sum_{i=0}^{n} \ell_i = s$. Then $x_{ij}(b)$ of the minimal element b such that $\varepsilon(b) = \Lambda$ is given by

$$x_{ii} = \ell_0 + \sum_{\alpha=i}^{r-1} \ell_{\alpha+r'},$$

$$x_{ij} = \ell_{j-i} \quad (i < j < i+r'),$$

$$x_{i,i+r'} = \sum_{\alpha=0}^{i-1} \ell_{\alpha+r'}$$
(4.1)

for $1 \leq i \leq r$.

4.2 Types
$$B_n^{(1)}$$
, $D_n^{(1)}$, $A_{2n-1}^{(2)}$

Conditions (4) and (5) of Definition 2.1 for $1 \le r \le n-2$ for type $D_n^{(1)}$, $1 \le r \le n-1$ for type $B_n^{(1)}$, and $1 \le r \le n$ for type $A_{2n-1}^{(2)}$ were shown in [22, Section 6]. To a given fundamental weight Λ_k a \pm -diagram diagram(Λ_k) was associated. This map can be extended to any dominant weight $\Lambda = \ell_0 \Lambda_0 + \cdots + \ell_n \Lambda_n$ by concatenating the columns of the \pm -diagrams of each piece. To every fundamental weight Λ_k a string of operators $f(\Lambda_k)$ can be associated as in [22, Section 6].

The minimal element b in $B^{r,s}$ that satisfies $\varepsilon(b) = \Lambda$ can now be constructed as follows

$$b = f(\Lambda_n)^{\ell_n} \cdots f(\Lambda_2)^{\ell_2} \Phi(\operatorname{diagram}(\Lambda)).$$

For $\Lambda = \sum_{i=0}^{n} \ell_i \Lambda_i \in P_s^+$, we have

$$\tau(\Lambda) = \begin{cases} \Lambda & \text{if } r \text{ is even,} \\ \ell_0 \Lambda_1 + \ell_1 \Lambda_0 + \sum_{i=2}^n \ell_i \Lambda_i & \text{if } r \text{ is odd,} \\ & \text{types } B_n^{(1)}, A_{2n-1}^{(2)}, \\ \ell_0 \Lambda_1 + \ell_1 \Lambda_0 + \sum_{i=2}^{n-2} \ell_i \Lambda_i + \ell_{n-1} \Lambda_n + \ell_n \Lambda_{n-1} & \text{if } r \text{ is odd, type } D_n^{(1)}. \end{cases}$$

4.3 Type
$$D_n^{(1)}$$
 for $r = n - 1, n$

The cases when r = n, n - 1 for type $D_n^{(1)}$ were treated in [14]. We refer to [14] or [6, Section 4.3] for an explicit description of the minimal elements.

The automorphism τ is given by

$$\tau\left(\sum_{i=0}^{n}\ell_{i}\Lambda_{i}\right) = \ell_{0}\Lambda_{n-1} + \ell_{1}\Lambda_{n} + \sum_{i=2}^{n-2}\ell_{i}\Lambda_{n-i} + \begin{cases} \ell_{n-1}\Lambda_{0} + \ell_{n}\Lambda_{1} & n \text{ even,} \\ \ell_{n-1}\Lambda_{1} + \ell_{n}\Lambda_{0} & n \text{ odd.} \end{cases}$$

Type $B_n^{(1)}$ for r = n4.4

In this section we consider the perfectness of $B^{n,s}$ of type $B_n^{(1)}$.

Proposition 4.1 We have

$$\min\{\operatorname{lev}(\varepsilon(b)) \mid b \in B^{n,2s+1}\} \ge s+1$$
$$\min\{\operatorname{lev}(\varepsilon(b)) \mid b \in B^{n,2s}\} \ge s.$$

Proof: Suppose, there exists an element $b \in B^{n,2s+1}$ with $lev(\varepsilon(b)) = p < s + 1$. Since $B^{n,2s+1}$ is embedded into $B^{n,2s+1}_{A^{(2)}_{2n-1}}$ by Definition 3.2, this would yield an element $\tilde{b} \in B^{n,2s+1}_{A^{(2)}_{2n-1}}$ with $lev(\tilde{b}) < 2s + 1$. But this is not possible, since $B^{n,2s+1}_{A^{(2)}_{2n-1}}$ is a perfect crystal of level 2s + 1.

Suppose there exists an element $b \in B^{n,2s}$ with $lev(\varepsilon(b)) = p < s$. By the same argument one obtains a contradiction to the level of $B^{n,2s}_{{}_{\scriptscriptstyle A}(2)}$

Hence to show that $B^{n,2s+1}$ is not perfect, it is enough to provide two elements $b_1, b_2 \in B^{n,2s+1}_{A^{(2)}_{2n-1}}$ which are in the realization of $B^{r,s}$ under S and satisfy $\varepsilon(b_1) = \varepsilon(b_2) = \Lambda$, where $\operatorname{lev}(\Lambda) = 2s + 2$. We use the notation $f_{\vec{a}} = f_{a_1}^{m_1} \cdots f_{a_k}^{m_k}$ for $\vec{a} = (a_1^{m_1}, \dots, a_k^{m_k})$.

Proposition 4.2 Define the following elements $b_1, b_2 \in B^{n,2s+1}_{A^{(2)}_{2n-1}}$: For n odd, let P_1 be the \pm -diagram corresponding to one column of height n containing one +, and 2s columns of height 1 each containing a - sign, and P_2 the analogous \pm -diagram but with a - in the column of height n. Set $\vec{a} = (n, (n - in))$ $(1)^2, n, (n-2)^2, (n-1)^2, n, \dots, 2^2, \dots, (n-1)^2, n)$ and

$$b_1 = f_{\vec{a}}(\Phi(P_1))$$
 and $b_2 = f_{\vec{a}}(\Phi(P_2)).$

For n even, replace the columns of height 1 with columns of height 2 and fill them with \pm -pairs. Then $b_1, b_2 \in S(B^{n,2s+1})$ and $\varepsilon(b_1) = \varepsilon(b_2) = 2s\Lambda_1 + \Lambda_n$, which is of level 2s + 2.

Proof: It is clear from the construction that the \pm -diagrams corresponding to b_1 and b_2 can be obtained by doubling a $B_n^{(1)}$ ±-diagram (see [5, Lemma 3.5]). Hence $\Phi(P_1), \Phi(P_2) \in S(B^{n,2s+1})$. The sequence \vec{a} can be obtained by doubling a type $B_n^{(1)}$ sequence using $(m_1, m_2, \ldots, m_n) = (2, \ldots, 2, 1)$, so by Definition 3.2 b_1 and b_2 are in the image of the embedding S that realizes $B^{n,2s+1}$. The claim that $\varepsilon(b_1) = \varepsilon(b_2) = 2s\Lambda_1 + \Lambda_n$ can be checked explicitly.

Corollary 4.3 The KR crystal $B^{n,2s+1}$ of type $B_n^{(1)}$ is not perfect.

Proof: This follows directly from Proposition 4.2 using the embedding S of Definition 3.2.

Proposition 4.4 There exists a bijection, induced by ε , from $B_{\min}^{n,2s}$ to P_s^+ . Hence $B^{n,2s}$ is perfect of level *s*.

Proof: Let S be the embedding from Definition 3.2. Then we have an induced embedding of dominant weights Λ of $B_n^{(1)}$ into dominant weights of $A_{2n-1}^{(2)}$ via the map S, that sends $\Lambda_i \mapsto m_i \Lambda_i$.

In [22, Section 6] (see Section 4.2) the minimal elements for $A_{2n-1}^{(2)}$ were constructed by giving a \pm diagram and a sequence from the $\{2, \ldots, n\}$ -highest weight to the minimal element. Since $(m_0, \ldots, m_n) =$ $(2, \ldots, 2, 1)$ and columns of height n for type $A_{2n-1}^{(2)}$ are doubled, it is clear from the construction that the \pm -diagrams corresponding to weights $S(\Lambda)$ are in the image of S of \pm -diagrams for $B_n^{(1)}$ (see [5, Lemma 3.5]). Also, since under S all weights Λ_i for $1 \leq i < n$ are doubled, it follows that the sequences are "doubled" using the m_i . Hence a minimal element of $B^{n,2s}$ of level s is in one-to-one correspondence with those minimal elements in $B_{A_{2n-1}^{(2)}}^{n,2s}$ that can be obtained from doubling a \pm -diagram of $B^{n,2s}$. This implies that ε defines a bijection between $B_{\min}^{n,2s}$ and P_s^+ .

The automorphism τ of the perfect KR crystal $B^{n,2s}$ is given by

$$\tau\left(\sum_{i=0}^{n}\ell_{i}\Lambda_{i}\right) = \begin{cases} \sum_{i=0}^{n}\ell_{i}\Lambda_{i} & \text{if } n \text{ is even,} \\ \ell_{0}\Lambda_{1} + \ell_{1}\Lambda_{0} + \sum_{i=2}^{n}\ell_{i}\Lambda_{i} & \text{if } n \text{ is odd.} \end{cases}$$

4.5 *Type* $C_n^{(1)}$

In this section we consider $B^{r,s}$ of type $C_n^{(1)}$ for r < n.

Proposition 4.5 Let r < n. Then

$$\min\{\operatorname{lev}(\varepsilon(b)) \mid b \in B^{r,2s+1}\} \ge s+1$$
$$\min\{\operatorname{lev}(\varepsilon(b)) \mid b \in B^{r,2s}\} \ge s.$$

Proof: By Definition 3.3, the crystal $B^{r,s}$ is realized inside $B^{r,s}_{A^{(2)}_{2n+1}}$. The proof is similar to the proof of Proposition 4.1 for type $B^{(1)}_n$.

Hence to show that $B^{r,2s+1}$ is not perfect, it is suffices to give two elements $b_1, b_2 \in B^{r,2s+1}_{A^{(2)}_{2n+1}}$ that are fixed points under σ with $\varepsilon(b_1) = \varepsilon(b_2) = \Lambda$, where $\operatorname{lev}(\Lambda) = 2s + 2$.

Proposition 4.6 Let $b_1, b_2 \in B_{A_{2n+1}}^{r,2s+1}$, where b_1 consists of s columns of the form read from bottom to top (1, 2, ..., r), s columns of the form $(\overline{r}, \overline{r-1}, ..., \overline{1})$, and a column $(\overline{r+1}, ..., \overline{2})$. In b_2 the last column is replaced by (r+2, ..., 2r+2) if $2r+2 \leq n$ and $(r+2, ..., n, \overline{n}, ..., \overline{k})$ of height n otherwise. Then

$$\varepsilon(b_1) = \varepsilon(b_2) = \begin{cases} s\Lambda_r + \Lambda_{r+1} & \text{if } r > 1, \\ s(\Lambda_0 + \Lambda_1) + \Lambda_2 & \text{if } r = 1, \end{cases}$$

which is of level 2s + 2.

Proof: The claim is easy to check explicitly.

Corollary 4.7 The KR crystal $B^{n,2s+1}$ of type $C_n^{(1)}$ is not perfect.

Proof: The $\{2, ..., n\}$ -highest weight elements in the same component as b_1 and b_2 of Proposition 4.6 correspond to \pm -diagrams that are invariant under σ . Hence, by Definition 3.3, b_1 and b_2 are fixed points under σ . Combining this result with Proposition 4.5 proves that $B^{r,2s+1}$ is not perfect.

Proposition 4.8 There exists a bijection, induced by ε , from $B_{\min}^{r,2s}$ to P_s^+ . Hence $B^{r,2s}$ is perfect of level *s*.

Proof: By Definition 3.3, $B^{r,s}$ of type $C_n^{(1)}$ is realized inside $B_{A_{2n+1}^{(2)}}^{r,s}$ as the fixed points under σ . Under the embedding S, it is clear that a dominant weight $\Lambda = \ell_0 \Lambda_0 + \ell_1 \Lambda_1 + \dots + \ell_{n+1} \Lambda_{n+1}$ of type $A_{2n+1}^{(2)}$ is in the image if and only if $\ell_0 = \ell_1$. Hence it is clear from the construction of the minimal elements for $A_{2n+1}^{(2)}$ as described in Section 4.2 that the minimal elements corresponding to Λ with $\ell_0 = \ell_1$ are invariant under σ . By [22, Theorem 6.1] there is a bijection between all dominant weights Λ of type $A_{2n+1}^{(2)}$ with $\ell_0 = \ell_1$ and lev(Λ) = 2s and minimal elements in $B_{A_{2n+1}^{(2)}}^{r,2s}$ that are invariant under σ . Hence using S, there is a bijection between dominant weights in P_s^+ of type $C_n^{(1)}$ and $B_{\min}^{r,2s}$.

The automorphism τ of the perfect KR crystal $B^{r,2s}$ is given by the identity.

4.6 *Type* $C_n^{(1)}$ *for* r = n

This case is treated in [14]. For the minimal elements, we follow the construction in Section 4.2. To every fundamental weight Λ_k we associate a column tableau $T(\Lambda_k)$ of height n whose entries are $k + 1, k + 2, \ldots, n, \overline{n}, \ldots, \overline{n-k+1}$ $(1, 2, \ldots, n$ for k = 0) reading from bottom to top. Let $f(\Lambda_k)$ be defined such that $T(\Lambda_k) = f(\Lambda_k)b_1$, where b_k is the highest weight tableau in $B(k\Lambda_n)$. Then the minimal element b in $B^{n,s}$ such that $\varepsilon(b) = \Lambda = \sum_{i=0}^{n} \ell_i \Lambda_i \in P_s^+$ is constructed as

$$b = f(\Lambda_n)^{\ell_n} \cdots f(\Lambda_1)^{\ell_1} b_s.$$

The automorphism τ is given by

$$\tau(\sum_{i=0}^{n} \ell_i \Lambda_i) = \sum_{i=0}^{n} \ell_i \Lambda_{n-i}$$

4.7 *Type* $A_{2n}^{(2)}$

For type $A_{2n}^{(2)}$ one may use the result of Naito and Sagaki [18, Theorem 2.4.1] which states that under their [18, Assumption 2.3.1] (which requires that $B^{r,s}$ for $A_{2n}^{(1)}$ is perfect) all $B^{r,s}$ for $A_{2n}^{(2)}$ are perfect. Here we provide a description of the minimal elements via the emebdding S into $B_{C^{(1)}}^{r,2s}$.

Proposition 4.9 The minimal elements of $B^{r,s}$ of level s are precisely those that corresponding to doubled \pm -diagrams in $B^{r,2s}_{C^{(1)}}$.

Proof: In Proposition 4.8 a description of the minimal elements of $B_{C_n^{(1)}}^{r,2s}$ is given. We have the realization of $B^{r,s}$ via the map S from Definition 3.4. In the same way as in the proof of Proposition 4.4 one can show, that the minimal elements of $B_{C_n^{(1)}}^{r,2s}$ that correspond to doubled dominant weights are precisely those in the realization of $B^{r,s}$, hence ε defines a bijection between $B_{\min}^{r,s}$ and P_s^+ .

The automorphism τ is given by the identity.

The automorphism τ is given by the identity.

4.8 Type
$$D_{n+1}^{(2)}$$
 for $r < n$

Proposition 4.10 Let r < n. There exists a bijection $B_{\min}^{r,s}$ to P_s^+ , defined by ε . Hence $B^{r,s}$ is perfect.

Proof: This proof is analogous to the proof of Proposition 4.9.

4.9 Type
$$D_{n+1}^{(2)}$$
 for $r = n$

This case is already treated in [14], which we summarize below. As a B_n -crystal it is isomorphic to $B(s\Lambda_n)$. There is a description of its elements in terms of semistandard tableaux of $n \times s$ rectangular shape with letters from the alphabet $\mathcal{A} = \{1 < 2 < \cdots < n < \overline{n} < \cdots < \overline{1}\}$. Moreover, each column does not contain both k and \overline{k} . Let c_i be the *i*th column, then the action of e_i, f_i $(i = 1, \ldots, n)$ is calculated through that of $c_s \otimes \cdots \otimes c_1$ of $B(\Lambda_n)^{\otimes s}$. With this realization the minimal element b_Λ such that $\varepsilon(b_\Lambda) = \Lambda = \sum_{i=0}^n \ell_i \Lambda_i \in P_s^+$ is given as follows. Let x_{ij} $(1 \le i \le n, j \in \mathcal{A})$ be the number of j in the *i*th row. Note that $x_{ij} = 0$ unless $i \le j \le \overline{n-i+1}$. The table (x_{ij}) of b_Λ is then given by $x_{ii} = \ell_0 + \cdots + \ell_{n-i}$ $(1 \le i \le n), x_{ij} = \ell_{j-i}$ $(i+1 \le j \le n), x_{ij} = \ell_j + \cdots + \ell_n$ $(n-i+1 \le j \le n)$. The automorphism τ is given by

$$\tau(\sum_{i=0}^n \ell_i \Lambda_i) = \sum_{i=0}^n \ell_i \Lambda_{n-i}.$$

References

- [1] G. Benkart, I. Frenkel, S-J. Kang, and H. Lee, *Level 1 perfect crystals and path realizations of basic representations at* q = 0, Int. Math. Res. Not. 2006, Art. ID 10312, 28 pp.
- [2] V. Chari, On the fermionic formula and the Kirillov-Reshetikhin conjecture, Internat. Math. Res. Notices 12 (2001) 629–654.
- [3] V. Chari, A. Pressley, *Quantum affine algebras and their representations*, in Representations of groups, CMS Conf. Proc. 16, Amer. Math. Soc., Providence, RI (1995) 59–78.
- [4] V. Chari, A. Pressley, *Twisted quantum affine algebras*, Comm. Math. Phys. **196** (1998) 461–476.
- [5] G. Fourier, M. Okado, A. Schilling *Kirillov-Reshetikhin crystals of non-exceptional type*, Advances in Mathematics, to appear (arXiv:0810.5067 [math.RT])
- [6] G. Fourier, M. Okado, A. Schilling Perfectness of Kirillov-Reshetikhin crystals of non-exceptional type, Contemp. Math., to appear (arXiv:0811.1604 [math.RT])

- [7] G. Fourier, A. Schilling, M. Shimozono, *Demazure structure inside Kirillov-Reshetikhin crystals*, J. Algebra 309 (2007) 386–404.
- [8] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Z. Tsuboi, *Paths, crystals and fermionic formulae*, MathPhys Odyssey 2001, 205–272, Prog. Math. Phys. 23, Birkhäuser Boston, Boston, MA, 2002.
- [9] D. Hernandez, The Kirillov-Reshetikhin conjecture and solution of T-systems, J. Reine Angew. Math. 596 (2006) 63–87.
- [10] D. Hernandez, Kirillov-Reshetikhin conjecture: The general case, preprint arXiv:0704.2838.
- [11] J. Hong, S.-J. Kang, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, American Mathematical Society, Providence, RI, 2002. xviii+307 pp.
- [12] V. G. Kac, "Infinite Dimensional Lie Algebras," 3rd ed., Cambridge Univ. Press, Cambridge, UK, 1990.
- [13] S-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima, A. Nakayashiki, Affine crystals and vertex models, Int. J. Mod. Phys. A 7 (suppl. 1A) (1992), 449–484.
- [14] S.-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima, A. Nakayashiki, Perfect crystals of quantum affine Lie algebras, Duke Math. J. 68 (1992) 499–607.
- [15] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465–516.
- [16] M. Kashiwara, K. C. Misra, M. Okado, D. Yamada, *Perfect crystals for* $U_q(D_4^{(3)})$, J. Alg. **317** (2007) 392–423.
- [17] M. Kashiwara, T. Nakashima, Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Alg. **165** (1994) 295–345.
- [18] S. Naito, D. Sagaki, Construction of perfect crystals conjecturally corresponding to Kirillov-Reshetikhin modules over twisted quantum affine algebras, Comm. Math. Phys. 263 (2006), no. 3, 749–787.
- [19] H. Nakajima, t-analogues of q-characters of Kirillov-Reshetikhin modules of quantum affine algebras, Represent. Theory 7 (2003) 259–274.
- [20] M. Okado, Existence of crystal bases for Kirillov-Reshetikhin modules of type D, Publ. RIMS 43 (2007) 977-1004.
- [21] M. Okado, A. Schilling, Existence of Kirillov-Reshetikhin crystals for nonexceptional types, Representation Theory 12 (2008) 186–207.
- [22] A. Schilling, Combinatorial structure of Kirillov-Reshetikhin crystals of type $D_n^{(1)}$, $B_n^{(1)}$, $A_{2n-1}^{(2)}$, J. Algebra **319** (2008) 2938–2962.
- [23] M. Shimozono, Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties, J. Algebraic Combin. 15 (2002), no. 2, 151–187.

[24] S. Yamane, Perfect crystals of $U_q(G_2^{(1)})$, J. Algebra **210** (1998), no. 2, 440–486.