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Permutations realized by shifts

Sergi Elizalde
Department of Mathematics, Dartmouth College, Hanover, NH 03755-3551

Abstract. A permutation π is realized by the shift on N symbols if there is an infinite word on an N -letter alphabet
whose successive left shifts by one position are lexicographically in the same relative order as π. The set of real-
ized permutations is closed under consecutive pattern containment. Permutations that cannot be realized are called
forbidden patterns. It was shown in [J.M. Amigó, S. Elizalde and M. Kennel, J. Combin. Theory Ser. A 115 (2008),
485–504] that the shortest forbidden patterns of the shift on N symbols have length N + 2. In this paper we give a
characterization of the set of permutations that are realized by the shift on N symbols, and we enumerate them with
respect to their length.

Résumé. Une permutation π est réalisée par le shift avec N symboles s’il y a un mot infini sur un alphabet de N
lettres dont les déplacements successifs d’une position à gauche sont lexicographiquement dans le même ordre relatif
que π. Les permutations qui ne sont pas réalisées s’apellent des motifs interdits. On sait [J.M. Amigó, S. Elizalde
and M. Kennel, J. Combin. Theory Ser. A 115 (2008), 485–504] que les motifs interdits les plus courts du shift avec
N symboles ont longueur N + 2. Dans cet article on donne une caractérisation des permutations réalisées par le shift
avec N symboles, et on les dénombre selon leur longueur.
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1 Introduction and definitions
This paper is motivated by an innovative application of pattern-avoiding permutations to dynamical sys-
tems (see (1; 2; 4)), which is based on the following idea. Given a piecewise monotone map on a one-
dimensional interval, consider the finite sequences (orbits) that are obtained by iterating the map, starting
from any point in the interval. It turns out that the relative order of the entries in these sequences cannot
be arbitrary. This means that, for any given such map, there will be some order patterns that will never
appear in any orbit. The set of such patterns, which we call forbidden patterns, is closed under consecutive
pattern containment. These facts can be used to distinguish random from deterministic time series.

A natural question that arises is how to determine, for a given map, what its forbidden patterns are.
While this problem is wide open in general, in the present paper we study it for a particular kind of
maps, called (one-sided) shift systems. Shift systems are interesting for two reasons. One one hand,
they exhibit all important features of low-dimensional chaos. On the other hand, they are natural maps
from a combinatorial perspective, and the study of their forbidden patterns can be done in an elegant
combinatorial way.

Forbidden patterns in shift systems were first considered in (1; 2). The authors prove that the smallest
forbidden pattern of the shift on N symbols has length N + 2. They also conjecture that, for any N ,
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there are exactly six forbidden patterns of minimal length. In the present paper we give a complete
characterization of forbidden patterns of shift systems, and enumerate them with respect to their length.

We will start with some background on consecutive pattern containment, forbidden patterns in maps,
and shift systems. In Section 2 we give a formula for the parameter that determines how many symbols
are needed in order for a permutation to be realized by a shift. This characterizes allowed and forbidden
patterns of shift maps. In Section 3 we give another equivalent characterization involving a transformation
on permutations, and we prove that the shift on N symbols has six forbidden patterns of minimal length
N + 2, as conjectured in (1). In Section 4 we give a formula for the number of patterns of a given length
that are realized by the binary shift, and then we generalize it to the shift on N symbols, for arbitrary N .
Many of the proofs are omitted in this extended abstract, but they can be found in the full version (5).

1.1 Permutations and consecutive patterns
We denote by Sn the set of permutations of {1, 2, . . . , n}. If π ∈ Sn, we will write its one-line notation
as π = [π(1), π(2), . . . , π(n)] (or π = π(1)π(2) . . . π(n) if it creates no confusion). The use of square
brackets is to distinguish it from the cycle notation, where π is written as a product of cycles of the form
(i, π(i), π2(i), . . . , πk−1(i)), with πk(i) = i. For example, π = [2, 5, 1, 7, 3, 6, 4] = (1, 2, 5, 3)(4, 7)(6).

Given a permutation π = π(1)π(2) . . . π(n), let D(π) denote the descent set of π, that is, D(π) =
{i : 1 ≤ i ≤ n − 1, π(i) > π(i + 1)}. Let des(π) = |D(π)| be the number of descents. The Eulerian
polynomials are defined by An(x) =

∑
π∈Sn

xdes(π)+1. Its coefficients are called the Eulerian numbers.
The descent set and the number of descents can be defined for any sequence of integers a = a1a2 . . . an
by letting D(a) = {i : 1 ≤ i ≤ n− 1, ai > ai+1}.

Let X be a totally ordered set, and let x1, . . . , xn ∈ X with x1 < x2 < · · · < xn. Any permutation
of these values can be expressed as [xπ(1), xπ(2), . . . , xπ(n)], where π ∈ Sn. We define its reduction to
be ρ([xπ(1), xπ(2), . . . , xπ(n)]) = [π(1), π(2), . . . , π(n)] = π. Note that the reduction is just a relabeling
of the entries with the numbers from 1 to n, keeping the order relationships among them. For example
ρ([4, 7, 1, 6.2,

√
2]) = [3, 5, 1, 4, 2]. If the values y1, . . . , yn are not all different, then ρ([y1, . . . , yn]) is

not defined.
Given two permutations σ ∈ Sm, π ∈ Sn, with m ≥ n, we say that σ contains π as a consecutive

pattern is there is some i such that ρ([σ(i), σ(i + 1), . . . , σ(i + n − 1)]) = π. Otherwise, we say that σ
avoids π as a consecutive pattern. The set of permutations in Sn that avoid π as a consecutive pattern is
denoted by Avn(π). We let Av(π) =

⋃
n≥1 Avn(π). Consecutive pattern containment was first studied

in (6), where the sets Avn(π) are enumerated for certain permutations π.

1.2 Allowed and forbidden patterns in maps
Let f be a map f : X → X . Given x ∈ X and n ≥ 1, we define

Pat(x, f, n) = ρ([x, f(x), f2(x), . . . , fn−1(x)]),

provided that there is no pair 1 ≤ i < j ≤ n such that f i−1(x) = f j−1(x). If there is such a pair, then
Pat(x, f, n) is not defined. When it is defined, we have Pat(x, f, n) ∈ Sn. If π ∈ Sn and there is some
x ∈ X such that Pat(x, f, n) = π, we say that π is realized by f (at x), or that π is an allowed pattern of
f . The set of all permutations realized by f is denoted by Allow(f) =

⋃
n≥1 Allown(f), where

Allown(f) = {Pat(x, f, n) : x ∈ X} ⊆ Sn.
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The remaining permutations are called forbidden patterns, and denoted by Forb(f) =
⋃
n≥1 Forbn(f),

where Forbn(f) = Sn \Allown(f).
We are introducing some variations to the notation and terminology used in (1; 2; 4). The main change

is that our permutation π = Pat(x, f, n) is essentially the inverse of the permutation of {0, 1, . . . , n− 1}
that the authors of (1) refer to as the order pattern defined by x. Our convention, aside from simplifying the
notation, will be more convenient from a combinatorial point of view. The advantage is that now the set
Allow(f) is closed under consecutive pattern containment, in the standard sense used in the combinatorics
literature, and we no longer need to talk about outgrowth forbidden patterns like in (1). Indeed, if σ ∈
Allow(f) and σ contains τ as a consecutive pattern, then τ ∈ Allow(f). An equivalent statement is that
if π ∈ Forb(f), then Allow(f) ⊆ Av(π). The minimal elements of Forb(f), i.e., those permutations in
Forb(f) that avoid all other patterns in Forb(f), will be called basic forbidden patterns of f . The set of
these patterns will be denoted BF(f). Note that basic patterns are the inverses of root patterns as defined
in (1).

Let us consider now the case in which X is a closed interval in R, with the usual total order on real
numbers. An important incentive to study the set of forbidden patterns of a map comes from the following
result, which is a consequence of (4).

Proposition 1.1 If I ⊂ R is a closed interval and f : I → I is piecewise monotone, then Forb(f) 6= ∅.
Recall that piecewise monotone means that there is a finite partition of I into intervals such that f is
continuous and strictly monotone on each of those intervals. It fact, it is shown in (4) that for such a
map, the number of allowed patterns of f grows at most exponentially, i.e., there is a constant C such that
|Allown(f)| < Cn for n large enough. The value of C is related to the topological entropy of f (see (4)
for details). Since the growth of the total number of permutations of length n is super-exponential, the
above proposition follows.

Proposition 1.1, together with the above observation that Allow(f) is closed under consecutive pattern
containment, provides an interesting connection between dynamical systems on one-dimensional interval
maps and pattern avoiding permutations. An important application is that forbidden patterns can be used
to distinguish random from deterministic time series. Indeed, in a sequence (x1, x2, x3, . . . ) where each
xi has been chosen independently at random from some continuous probability distribution, any pattern
π ∈ Sn appears as π = ρ([xi, xi+1, . . . , xi+n−1]) for some i with nonvanishing probability, and this
probability approaches one as the length of the sequence increases. On the other hand, if the sequence has
been generated by defining xk+1 = f(xk) for k ≥ 1, where f : I → I is a piecewise monotone map, then
Proposition 1.1 guarantees that some patterns (in fact, most of them) will never appear in the sequence.
The practical aspect of these applications has been considered in (3).

A structural property of the set of allowed patterns of a map is that it is closed under consecutive pattern
containment. A new and interesting direction of research is to study more properties of the sets Allow(f).
Some natural problems that arise are the following.

1. Understand how Allow(f) and BF(f) depend on the map f .
2. Describe and/or enumerate (exactly or asymptotically) Allow(f) and BF(f) for a particular f .
3. Among the sets of patterns Σ such that Avn(Σ) grows at most exponentially in n (this is a necessary

condition), characterize those for which there exists a map f such that BF(f) = Σ.
4. Given a map f , determine the length of its smallest forbidden pattern.

Most of this paper is devoted to solving problem 2 for a specific family of maps, that we describe next.
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1.3 One-sided shifts
We will concentrate on the set of allowed patterns of certain maps called one-sided shift maps, or simply
shifts for short. For a detailed definition of the associated dynamical system, called the one-sided shift
space, we refer the reader to (1).

The totally ordered set X considered above will now be the setWN = {0, 1, . . . , N − 1}N of infinite
words on N symbols, equipped with the lexicographic order. Define the (one-sided) shift transformation

ΣN : WN −→ WN

w1w2w3 . . . 7→ w2w3w4 . . . .

We will use Σ instead of ΣN when it creates no confusion.
Given w ∈ WN , n ≥ 1, and π ∈ Sn, we have from the above definition that Pat(w,Σ, n) = π if, for

all indices 1 ≤ i, j ≤ n, Σi−1(w) < Σj−1(w) if and only if π(i) < π(j). For example,

Pat(2102212210 . . . ,Σ, 7) = [4, 2, 1, 7, 5, 3, 6], (1)

because the relative order of the successive shifts is
2102212210 . . . 4
102212210 . . . 2
02212210 . . . 1
2212210 . . . 7
212210 . . . 5
12210 . . . 3
2210 . . . 6,

regardless of the entries in place of the dots. The case N = 1 is trivial, since the only allowed pattern of
Σ1 is the permutation of length 1. In the rest of the paper, we will assume that N ≥ 2.

If x ∈ {0, 1, . . . , N − 1}, we will use the notation x∞ = xxx . . . . If w ∈ WN , then wn denotes
the n-th letter of w, and we write w = w1w2w3 . . . . We will also write w[k,`] = wkwk+1 . . . w`, and
w[k,∞) = wkwk+1 . . . . Note that w[k,∞) = Σk−1(w).

It is shown in (1) that ΣN has the same set of forbidden patterns as the so-called sawtooth map defined
by x 7→ Nx mod 1 for x ∈ [0, 1]. This map is piecewise linear, and therefore has forbidden patterns by
Proposition 1.1. Forbidden patterns of shift systems were first studied in (1), where the main result is the
following.

Proposition 1.2 ((1)) Let N ≥ 2. We have that

(a) Forbn(ΣN ) = ∅ for every n ≤ N + 1,
(b) Forbn(ΣN ) 6= ∅ for every n ≥ N + 2.

Example 1. It can be checked that the smallest forbidden patterns of Σ4 are 615243, 324156, 342516,
162534, 453621, 435261.

Recall that a word w ∈ {0, 1, . . . , N − 1}k is primitive if it cannot be written as a power of any proper
subword, i.e., it is not of the form w = um for any m > 1, where the exponent indicates concatenation
of u with itself m times. Let ψN (k) denote the number of primitive words of length k over an N -letter
alphabet. It is well known that ψN (k) =

∑
d|k µ(d)Nk/d, where µ denotes the Möbius function.
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2 The number of symbols needed to realize a pattern
Given a permutation π ∈ Sn, let N(π) be the smallest number N such that π ∈ Allow(ΣN ). The value
of N(π) indicates what is the minimum number of symbols needed in the alphabet in order for π to be
realized by a shift. For example, if π = [4, 2, 1, 7, 5, 3, 6], then N(π) ≤ 3 because of equation (1), and it
is not hard to see that N(π) = 3. The main result in this section is a formula for N(π).

Theorem 2.1 Let n ≥ 2. For any π ∈ Sn, N(π) is given by

N(π) = 1 + |A(π)|+ ∆(π), (2)

where

A(π) = {a : 1 ≤ a ≤ n−1 such that if i = π−1(a), j = π−1(a+1), then i, j < n and π(i+1) > π(j+1)},

and ∆(π) = 0 except in the following three cases, in which ∆(π) = 1:
(I) π(n) /∈ {1, n}, and if i = π−1(π(n)− 1), j = π−1(π(n) + 1), then π(i+ 1) > π(j + 1);

(II) π(n) = 1 and π(n− 1) = 2; or
(III) π(n) = n and π(n− 1) = n− 1.

Note that A(π) is the set of entries a in the one-line notation of π such that the entry following a + 1
is smaller than the entry following a. For example, if π = [4, 3, 6, 1, 5, 2], then A(π) = {3, 4, 5}, so
Theorem 2.1 says that N(π) = 1 + 3 + 0 = 4. The following lemma, whose proof is omitted here, will
be useful in the proof.

Lemma 2.2 Suppose that Pat(w,Σ, n) = π.
1. If 1 ≤ i, j < n, π(i) < π(j), and π(i+ 1) > π(j + 1), then wi < wj .
2. If 1 ≤ i < k ≤ n are such that |π(i)− π(k)| = 1, then the word w[i,k−1] is primitive.

We will prove Theorem 2.1 in two parts. First we show that N(π) ≥ 1 + |A(π)| + ∆(π) by proving
that if w ∈ WN is such that Pat(w,Σ, n) = π, then necessarily N ≥ 1 + |A(π)| + ∆(π). This fact is a
consequence of the following lemma.

Lemma 2.3 Suppose that Pat(w,Σ, n) = π, and let b = π(n). The entries of w satisfy

wπ−1(1) ≤ wπ−1(2) ≤ · · · ≤ wπ−1(n), (3)

with strict inequalities wπ−1(a) < wπ−1(a+1) for each a ∈ A(π). Additionally, if ∆(π) = 1, then in each
of the three cases from Theorem 2.1 we have, respectively, that

(I) one of the inequalities wπ−1(b−1) ≤ wn ≤ wπ−1(b+1) is strict;
(II) · · · ≤ wn+2 ≤ wn+1 ≤ wn ≤ wn−1 and one of these inequalities is strict;

(III) wn−1 ≤ wn ≤ wn+1 ≤ wn+2 ≤ · · · and one of these inequalities is strict.

In all cases, the entries of w must satisfy |A(π)|+ ∆(π) strict inequalities.

Proof: The condition Pat(w,Σ, n) = π is equivalent to

w[π−1(1),∞) < w[π−1(2),∞) < · · · < w[π−1(n),∞), (4)
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which clearly implies equation (3). If we remove the term wn from it, we get
(a) wπ−1(1) ≤ wπ−1(2) ≤ · · · ≤ wπ−1(b−1) ≤ wπ−1(b+1) ≤ · · · ≤ wπ−1(n) if b /∈ {1, n},
(b) wπ−1(2) ≤ wπ−1(3) ≤ · · · ≤ wπ−1(n) if b = 1,
(c) wπ−1(1) ≤ wπ−1(2) ≤ · · · ≤ wπ−1(n−1) if b = n.

(5)

For every a ∈ A(π), the inequality wπ−1(a) < wπ−1(a+1) in (5) has to be strict, by Lemma 2.2 with
i = π−1(a) and j = π−1(a + 1). Let us now see that in the three cases when ∆(π) = 1, an additional
strict inequality must be satisfied.

Consider first case (I). Let i = π−1(b − 1) and j = π−1(b + 1). Since π(i + 1) > π(j + 1),
Lemma 2.2 implies that wi < wj , so the inequality wπ−1(b−1) < wπ−1(b+1) (equivalently, wi < wj)
in (5a) has to be strict. In case (II), the leftmost inequality in (4) is w[n,∞) < w[n−1,∞). For this
to hold, we need · · · ≤ wn+2 ≤ wn+1 ≤ wn ≤ wn−1 and at least one of these inequalities must
be strict. Similarly, in case (III), the rightmost inequality in (4) is w[n−1,∞) < w[n,∞). This forces
wn−1 ≤ wn ≤ wn+1 ≤ wn+2 ≤ · · · with at least one strict inequality. 2

We will refer to the |A(π)| + ∆(π) strict inequalities in Lemma 2.3 as the required strict inequalities.
Combined with the weak inequalities from the lemma, they force the number of symbols used in w to be
at least 1 + |A(π)|+ ∆(π). Examples 2 and 3 illustrate how this lemma is used.

Now we show that N(π) ≤ 1 + |A(π)| + ∆(π). We will show how for any given π ∈ Sn one can
construct a word w ∈ WN with Pat(w,Σ, n) = π, where N = 1 + |A(π)|+ ∆(π). We need w to satisfy
condition (4). Again, let b = π(n).

The first important observation is that, if we can only useN different symbols, then the |A(π)|+∆(π) =
N − 1 required strict inequalities from Lemma 2.3 determine the values of the entries w1w2 . . . wn−1.
This fact is restated as Corollary 2.9. Consequently, we are forced to assign values to these entries as
follows:

(a) If b /∈ {1, n}, assign values to the variables in equation (5a) from left to right, starting with
wπ−1(1) = 0 and increasing the value by 1 at each required strict inequality.

(b) If b = 1, assign values to the variables in equation (5b) from left to right, starting with wπ−1(2) = 0
if π(n− 1) 6= 2, or with wπ−1(2) = 1 if π(n− 1) = 2 (this is needed in order for condition (II) in
Lemma 2.3 to hold), and increasing the value by 1 at each required strict inequality.

(c) If b = n, assign values to the variables in equation (5c) from left to right, starting with wπ−1(1) = 0
and increasing the value by 1 at each required strict inequality. (Note that when ∆(π) = 1, the last
assigned value is wπ−1(n−1) = wn−1 = |A(π)| = N − 2.)

It remains to assign the values to wm for m ≥ n. Before we do this, let us prove some facts about the
entries w1 . . . wn−1. In the following two lemmas, whose proof can be found in (5), π is any permutation
in Sn with N(π) = N and w1 . . . wn−1 are the values in {0, 1, . . . , N − 1} assigned above in order to
satisfy the required strict inequalities.

Lemma 2.4 Let i < n. If π(i) > π(i+ 1), then wi ≥ 1. If π(i) < π(i+ 1), then wi ≤ N − 2.

Lemma 2.5 If 1 ≤ i, j < n are such that π(i) < π(j) and π(i+ 1) > π(j + 1), then wi < wj .

Once the values w1 . . . wn−1 have been determined, there are several ways to assign values to wm for
m ≥ n. Two possibilities are the following.
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A. Assume that b 6= n. Let k = π−1(b + 1). Let u = w1w2 . . . wk−1 and p = wkwk+1 . . . wn−1.
Let m be any integer satisfying m ≥ 1 + n−2

n−k (for definiteness, we can pick m = n − 1). Let
wA(π) = upm0∞.

B. Assume that b 6= 1. Let k = π−1(b − 1). Let u = w1w2 . . . wk−1 and p = wkwk+1 . . . wn−1.
Again, let m be such that m ≥ 1 + n−2

n−k (for definiteness, we can pick m = n− 1). Let wB(π) =
upm(N−1)∞.

Clearly, wA(π) and wB(π) use N different symbols. It remains to prove that if w is any of these two
words, Pat(w,Σ, n) = π, which is equivalent to showing that w satisfies condition (4). Let us now prove
that this is the case for w = wA(π), when b 6= n.

In the following two lemmas (see the proof in (5)) and in Proposition 2.8, π is any permutation in Sn
with π(n) 6= n, and w = wA(π). Also, k, u, p and m are as defined in case A above.

Lemma 2.6 The word p = wkwk+1 . . . wn−1 is primitive and has some nonzero entry.

Lemma 2.7 We have that w[n,∞) < w[k,∞). Moreover, there is no 1 ≤ s ≤ n such that w[n,∞) <
w[s,∞) < w[k,∞).

Proposition 2.8 If 1 ≤ i, j ≤ n are such that π(i) < π(j), then w[i,∞) < w[j,∞).

The above proposition proves that Pat(wA(π),Σ, n) = π. If b 6= 1, proving that Pat(wB(π),Σ, n) =
π is analogous. We can complete the proof of the upper bound on N(π) as follows. Let π ∈ Sn be given,
and letN = 1+|A(π)|+∆(π). If π(n−1) > π(n), letw = wA(π). If π(n−1) < π(n), letw = wB(π).
Since Pat(w,Σ, n) = π and w ∈ WN , the theorem is proved.

Example 2. Let π = [4, 3, 6, 1, 5, 2]. By Theorem 2.1, N(π) = 4. If Pat(w,Σ, n) = π, then Lemma 2.3
implies that w4 ≤ w6 ≤ w2 < w1 < w5 < w3, and there are no more required strict inequalities. We
assign w4 = w2 = 0, w1 = 1, w5 = 2, w3 = 3. Since π(5) > π(6) and b = π(6) = 2, we can take
w = wA(π) (with m = 2), so k = π−1(3) = 2, u = w1 = 1, and p = w2w3w4w5 = 0302. We get
w = up20∞ = 1030203020∞.

The following consequence of the proof of Theorem 2.1 will be used in Section 4.

Corollary 2.9 Let π ∈ Sn, N = N(π), and let w ∈ WN be such that Pat(w,Σ, n) = π. Then the
entries w1w2 . . . wn−1 are uniquely determined by π.

Note that, however, with the conditions of Corollary 2.9, wn is not always determined. In the case that
π(n) /∈ {1, n} and ∆(π) = 1, we have two choices for wn. In general, there is a lot of flexibility in the
choice of wm for m ≥ n. The choices w = wA(π) and w = wB(π) in the proof of Theorem 2.1 were
made to simplify the proof of Proposition 2.8 for all cases at once.

3 An equivalent characterization
We start this section by giving an expression for N(π) that is sometimes more convenient to work with
than the one in Theorem 2.1. We denote by Cn the set of permutations in Sn whose cycle decomposition
consists of a unique cycle of length n. Let Tn be the set of permutations π ∈ Cn with one distinguished
entry π(i), for some 1 ≤ i ≤ n. We call the elements of Tn marked cycles. We will use the symbol
? to denote the distinguished entry, both in one-line and in cycle notation. Note that it is not necessary
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to keep track of its value, since it is determined once we know all the remaining entries. For example,
T3 = {[?, 3, 1], [2, ?, 1], [2, 3, ?], [?, 1, 2], [3, ?, 2], [3, 1, ?]}. Clearly, |Tn| = (n− 1)! · n = n!, since there
are n ways to choose the distinguished entry.

Define a map θ : Sn → Tn sending π 7→ π̂ as follows. For each 1 ≤ i ≤ n with i 6= π(n), let π̂(i)
be the entry immediately to the right of i in the one-line notation of π. For i = π(n), let π̂(i) = ? be the
distinguished entry.

We can also give the following equivalent definition of π̂. If π = [π(1), π(2), . . . , π(n)], then π̂ is the
permutation with cycle decomposition (π(1), π(2), . . . , π(n)) with the entry π(1) distinguished. We write
π̂ = (?, π(2), . . . , π(n)). For example, if π = [8, 9, 2, 3, 6, 4, 1, 5, 7], then π̂ = (?, 9, 2, 3, 6, 4, 1, 5, 7), or
in one-line notation, π̂ = [5, 3, 6, 1, 7, 4, ?, 9, 2].

The map θ is a bijection between Sn and Tn, since it is clearly invertible. Indeed, to recover π from
π̂ ∈ Tn, write π̂ in cycle notation, replace the ? with the entry in {1, . . . , n} that is missing, and turn the
parentheses into brackets, thus recovering the one-line notation of π.

For π̂ ∈ Tn, let des(π̂) denote the number of descents of the sequence that we get by deleting the ?
from the one-line notation of π̂. That is, if π̂ = [a1, . . . , aj , ?, aj+1, . . . , an−1], then des(π̂) = |{i : 1 ≤
i ≤ n− 2, ai > ai+1}|. We can now state a simpler formula for N(π).

Proposition 3.1 Let π ∈ Sn, π̂ = θ(π). Then N(π) is given by

N(π) = 1 + des(π̂) + ε(π̂),

where

ε(π̂) =

{
1 if π̂ = [?, 1, . . . ] or π̂ = [. . . , n, ?],
0 otherwise.

For example, if π = [8, 9, 2, 3, 6, 4, 1, 5, 7], then π̂ = [5, 3, 6, 1, 7, 4, ?, 9, 2] has 4 descents, so N(π) =
1 + 4 + 0 = 5. If π = [8, 9, 3, 1, 4, 6, 2, 7, 5], then π̂ = [4, 7, 1, 6, ?, 2, 5, 9, 3] has 3 descents, so N(π) =
1 + 3 + 0 = 4. If π = [3, 4, 2, 1], then π̂ = [?, 1, 4, 2] has 1 descent, so N(π) = 1 + 1 + 1 = 3.

If π ∈ Sn, we have by definition that N(π) = min{N : π /∈ Forbn(ΣN )} = min{N : π ∈
Allown(ΣN )}. As a consequence of Proposition 3.1 we recover Proposition 1.2, which in terms of the
statistic N(π) can be reformulated as follows.

Corollary 3.2 Let n ≥ 3. We have that

(a) for every π ∈ Sn, N(π) ≤ n− 1;
(b) there is some π ∈ Sn such that N(π) = n− 1.

We define Sn,N = {π ∈ Sn : N(π) = N}. We are interested in the numbers an,N = |Sn,N |. To
avoid the trivial cases, we will assume that n,N ≥ 2. From the definitions, Allown(ΣM ) =

⋃M
N=2 Sn,N ,

Forbn(ΣM ) =
⋃n−1
N=M+1 Sn,N . Since the sets Sn,N are disjoint, we have that

|Allown(ΣM )| =
M∑
N=2

an,N , |Forbn(ΣM )| =
n−1∑

N=M+1

an,N .

The first few values of an,N are given in Table 1. By symmetry considerations (5) it follows easily that
all the an,N are even.
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n\N 2 3 4 5 6 7
2 2
3 6
4 18 6
5 48 66 6
6 126 402 186 6
7 306 2028 2232 468 6
8 738 8790 19426 10212 1098 6

Tab. 1: The numbers an,N = |{π ∈ Sn : N(π) = N}| for n ≤ 8.

The next result shows that, independently of n, there are exactly six permutations of length n that
require the maximum number of symbols (i.e., n − 1) in order to be realized. This settles a conjecture
from (1). Given a permutation π ∈ Sn, we will use πrc to denote the permutation such that πrc(i) =
n+ 1− π(n+ 1− i) for 1 ≤ i ≤ n. If σ is a marked cycle, then σrc is defined similarly, where if σ(i) is
the marked entry of π, then σrc(n + 1 − i) is the marked entry of σrc. It will be convenient to visualize
π ∈ Sn as an n× n array with dots in positions (i, π(i)), for 1 ≤ i ≤ n. The first coordinate refers to the
row number, which increases from left to right, and the second coordinate is the column number, which
increases from bottom to top. Then, the array of πrc is obtained from the array of π by a 180-degree
rotation. Of course, the array of π−1 is obtained from the one of π by reflecting it along the diagonal
y = x. Notice also that the cycle structure of π is preserved in π−1 and in πrc. A marked cycle can be
visualized in the same way, replacing the dot corresponding to the distinguished element with a ?.

Proposition 3.3 For every n ≥ 3, an,n−1 = 6.

Proof: First we show that an,n−1 ≥ 6 by giving six permutations in Sn,n−1. Let m = dn/2e, and let

σ = [n, n− 1, . . . ,m+ 1, ?,m,m− 1, . . . , 2], τ = [?, 1, n, n− 1 . . . ,m+ 2,m,m− 1, . . . , 2] ∈ Tn

(see Figure 1). Using Proposition 3.1, it is easy to check that if π̂ ∈ {σ, σrc, σ−1, (σ−1)rc, τ, τ rc}, then
N(π) = n− 1, and that the six permutations in the set are different.

Fig. 1: The arrays of σ and τ for n = 8, with dotted lines indicating the cycle structure.

Let us now show that there are no other permutations with N(π) = n− 1. We know by Proposition 3.1
that N(π) = n− 1 can only happen if des(π̂) = n− 2, or if des(π̂) = n− 3 and ε(π̂) = 1.
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Case 1: des(π̂) = n− 2. In this case, all the entries in π̂ other that the ? must be in decreasing order. If
the distinguished entry is neither π̂(1) nor π̂(n), then the ? must be replacing either 1 or n; otherwise we
would have that π̂(1) = n and π̂(n) = 1, so π̂ would not be an n-cycle. It follows that in the array of π̂,
the entry corresponding to the ? is either in the top or bottom row, or in the leftmost or rightmost column.

If the ? is replacing 1 (i.e, it is is the bottom row of the array), we claim that the only possible n-cycle
in which the other entries are in decreasing order is π̂ = σ. Indeed, if we consider the cycle structure
of π̂ = (1, π̂(1), π̂2(1), . . . , π̂n−1(1)), we see that π̂(1) = n and π̂2(1) = π̂(n) = 2. Now, π̂i(1) 6= 1
for 3 ≤ i ≤ n − 1, so the decreasing condition on the remaining entries forces π̂3(1) = π̂(2) = n − 1,
π̂4(1) = π̂(n − 1) = 3, and so on. A similar argument, considering that rotating the array 180 degrees
preserves the cycle structure, shows that if the ? is replacing n (i.e, it is in the top row of the array), then
necessarily π̂ = σrc.

If the distinguished entry is π̂(1) (i.e, it is in the leftmost column of the array), then a symmetric
argument, reflecting the array along y = x), shows that π̂ = σ−1. Similarly, if the distinguished entry is
π̂(n) (i.e, it is is the rightmost column of the array), then necessarily π̂ = (σ−1)rc.

Case 2: des(π̂) = n− 3 and ε(π̂) = 1. The second condition forces π̂ = [?, 1, . . . ] or π̂ = [. . . , n, ?].
Let us restrict to the first case (the second one can be argued in a similar way if we rotate the array 180
degrees). We must have π̂(3) > π̂(4) > · · · > π̂(n). We claim that the only such π̂ that is also an
n-cycle is π̂ = τ . Indeed, looking at the cycle structure π̂ = (π̂−(n−1)(1), . . . , π̂−1(1), 1), we see that
π̂−1(1) = 2. Now, π̂−i(1) 6= 1 for 2 ≤ i ≤ n − 1, so the decreasing condition on the remaining entries
forces π̂−2(1) = π̂−1(2) = n, π̂−3(1) = π̂−1(n) = 3, π̂−4(1) = π̂−1(3) = n− 1, and so on. 2

4 The number of allowed patterns of a shift
In the rest of the paper, we will assume for simplicity thatwA(π) andwB(π) are defined takingm = n−1,
so they are of the form upn−1x∞, with x = 0 or x = N − 1 respectively. The following variation of
Lemma 2.7 will be useful later.

Lemma 4.1 Let w = upn−10∞ ∈ WN , where |u| = k − 1 and |p| = n − k for some 1 ≤ k ≤ n − 1,
and p is primitive. If π = Pat(w,Σ, n) is defined, then π(n) = π(k)− 1.

For n ≥ 2, the set of patterns of length n that are realized by the shift on two symbols is Allown(Σ2) =
Sn,2. The next result gives the number of these permutations. Recall that an,2 = |Sn,2| and that ψ2(t) is
the number of primitive binary words of length t.

Theorem 4.2 For n ≥ 2,

an,2 =
n−1∑
t=1

ψ2(t)2n−t−1.

Proof: Fix n ≥ 2. We will construct a set W ⊂ W2 with the following four properties:

(i) for all w ∈W , Pat(w,Σ2, n) is defined,
(ii) for all w,w′ ∈W with w 6= w′, we have that Pat(w,Σ2, n) 6= Pat(w′,Σ2, n),

(iii) for all π ∈ Allown(Σ2), there is a word w ∈W such that Pat(w,Σ2, n) = π,
(iv) |W | =

∑n−1
t=1 ψ2(t)2n−t−1.
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Properties (i)-(iii) imply that the map from W to Sn,2 sending w to Pat(w,Σ2, n) is a bijection. Thus,
an,2 = |W | and the result will follow from property (iv).

Let

W =
n−1⋃
t=1

{upn−1x∞ : u ∈ {0, 1}n−t−1, p ∈ {0, 1}t is a primitive word, and x = p̄t},

where we use the notation 0̄ = 1, 1̄ = 0. Given binary words u, p of lengths n− t− 1 and t respectively,
where p is primitive, and x = p̄t, we will denote v(u, p) = upn−1x∞.

To see that W satisfies (i), we have to show that for any w ∈ W and any 1 ≤ i < j ≤ n, we have
w[i,∞) 6= w[j,∞). This is clear because if x = 0 (resp. x = 1) both w[i,∞) and w[j,∞) end with 10∞ (resp.
01∞), with the last 1 (resp. 0) being in different positions in w[i,∞) and w[j,∞).

Now we prove thatW satisfies (ii). Let u, u′ be binary words of lengths n−t−1, n−t′−1, respectively,
and let p, p′ be primitive binary words of lengths t, t′, respectively. Let w = v(u, p) and w′ = v(u′, p′),
and let π = Pat(w,Σ2, n), π′ = Pat(w′,Σ2, n). We assume that w 6= w′, and want to show that π 6= π′.
From w 6= w′ it follows that u 6= u′ or p 6= p′.

Corollary 2.9 for N = 2 implies that if w1w2 . . . wn−1 6= w′1w
′
2 . . . w

′
n−1, then Pat(w,Σ2, n) 6=

Pat(w′,Σ2, n). In particular, if t = t′, then up 6= u′p′, so π 6= π′.
We are left with the case that t 6= t′and up = u′p′ = w1w2 . . . wn−1. Let us first assume thatwn−1 = 1

(and so pt = p′t′ = 1). By Lemma 4.1 with k = n− t, we have that π(n) = π(n− t)− 1, and similarly
π′(n) = π′(n−t′)−1. If we had that π = π′, then π(n) = π′(n) and so π(n−t) = π′(n−t′) = π(n−t′).
But t 6= t′, so this is a contradiction. In the case wn−1 = 0, an analogous argument to the proof of
Lemma 4.1 implies that w[n−t,∞) = pn−11∞ < pn−21∞ = w[n,∞) and there is no s such that w[s,∞) is
strictly in between the two. Thus, π(n) = π(n − t) + 1, and similarly π′(n) = π′(n − t′) + 1, so again
π 6= π′.

To see that W satisfies (iii) we use the construction from the proof of the upper bound in Theorem 2.1.
Let π ∈ Allown(Σ2). If π(n − 1) > π(n), let w = wA(π) = upn−10∞. By Lemma 2.4, wn−1 = 1, so
w ∈ W . Similarly, if π(n − 1) < π(n), let w = wB(π) = upn−11∞. Then wn−1 = 0, so w ∈ W . In
both cases, Pat(w,Σ2, n) = π, so this construction is the inverse of the map w 7→ Pat(w,Σ2, n).

To prove (iv), observe that the union in the definition of W is a disjoint union. This is because the value
of t determines the position of the last entry in w that is not equal to x. For fixed t, there are 2n−t−1

choices for u and ψ2(t) choices for t, so the formula follows. 2

Example 3. For n = 4, we have

W = {00 0 0 0 1∞, 00 1 1 1 0∞, 01 0 0 0 1∞, 01 1 1 1 0∞, 10 0 0 0 1∞, 10 1 1 1 0∞, 11 0 0 0 1∞, 11 1 1 1 0∞,
0 01 01 01 0∞, 0 10 10 10 1∞, 1 01 01 01 0∞, 1 10 10 10 1∞,

001 001 001 0∞, 010 010 010 1∞, 011 011 011 0∞, 100 100 100 1∞, 101 101 101 0∞, 110 110 110 1∞},

where each word is written as w = u p p p x∞. The permutations corresponding to these words are

Allow4(Σ2) = {1234, 1243, 3412, 1432, 4123, 2143, 4312, 4321,
1342, 1324, 4231, 4213,

2341, 2413, 2431, 3124, 3142, 3214}.
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Theorem 4.2 can be generalized to find a formula for the numbers an,N , which count permutations that
can be realized by the shift on N symbols but not by the shift on N − 1 symbols. The proof of the next
result is more involved and is omitted here due to lack of space, but it can be found in (5).

Theorem 4.3 For any n,N ≥ 2,

an,N =
N−2∑
i=0

(−1)i
(
n

i

)(
(N − i− 2)(N − i)n−2 +

n−1∑
t=1

ψN−i(t)(N − i)n−t−1

)
. (6)

We finish with two curious conjectures that came up while studying forbidden patterns of shift systems.
They are derived from experimental evidence, and it would be interesting to find combinatorial proofs.

For the first one, let T 0
n be the set of n-cycles where one entry has been replaced with 0. The set T 0

n is
essentially the same as Tn, with the only difference that the ? symbol in each element is replaced with a 0,
so that it produces a descent if there is an entry to its left. We have checked this conjecture by computer
for n up to 9.

Conjecture 4.4 For any n and any subset D ⊆ {1, 2, . . . , n− 1},

|{σ ∈ T 0
n : D(σ) = D}| = |{π ∈ Sn : D(π) = D}|.

In particular, the statistic des has the same distribution in T 0
n as in Sn, i.e,∑

σ∈T 0
n

xdes(σ)+1 = An(x).

Our last conjecture concerns a divisibility property of the numbers an,N which is not apparent from
Theorem 4.3.

Conjecture 4.5 For every n,N ≥ 3, an,N is divisible by 6.
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[2] J.M. Amigó, S. Elizalde and M. Kennel, Pattern avoidance in dynamical systems, Discrete Math.
Theor. Comput. Sci. proc. AJ (2008), 71–82.

[3] J.M. Amigó, S. Zambrano and M.A.F. Sanjuán, True and false forbidden patterns in deterministic
and random dynamics, Europhys. Lett. 79 (2007), 50001-p1, -p5.

[4] C. Bandt, G. Keller and B. Pompe, Entropy of interval maps via permutations, Nonlinearity 15
(2002), 1595–1602.

[5] S. Elizalde, The number of permutations realized by a shift, SIAM J. on Discrete Math, to appear.

[6] S. Elizalde and M. Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003), 110–125.

[7] I. Gessel and C. Reutenauer, Counting permutations with given cycle structure and descent set, J.
Combin. Theory Ser. A 64 (1993), 189–215.


	Introduction and definitions
	Permutations and consecutive patterns
	Allowed and forbidden patterns in maps
	One-sided shifts

	The number of symbols needed to realize a pattern
	An equivalent characterization
	The number of allowed patterns of a shift

