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Combinatorial invariant theory of
projective reflection groups

Fabrizio Caselli
Dipartimento di matematica, Università di Bologna,
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Abstract. We introduce the class of projective reflection groups which includes all complex reflection groups. We
show that several aspects involving the combinatorics and the representation theory of complex reflection groups find
a natural description in this wider setting.

Résumé. On introduit la classe des groupes de réflexions projectifs, ce qui généralises la notion de groupe engendré
par des réflexions. On montre que plusieurs aspects concernants la combinatoire et la théorie des representations des
groupes de reflexions complèxes trouvent une description naturelle dans ce cadre plus général.
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1 Introduction
A complex reflection (or simply a reflection) is an endomorphism of a complex vector space V which
is of finite order and such that its fixed point space is of codimension 1. Finite reflection groups are
finite subgroups of GL(V ) generated by reflections. They have probably been introduced by Shephard
in (16) and have been characterized by means of their ring of invariants and completely classified by
Chevalley (11) and Shephard-Todd (17) in the fifties, generalizing the well-known fundamental theorem
of symmetric functions. In this classification there is an infinite family G(r, p, n) of irreducible reflection
groups, where r, p, n are positive integers (with r ≡ 0 mod p) and 34 other exceptional groups. The
relationship between the combinatorics and the (invariant) representation theory of symmetric groups is
fascinating from both combinatorial and algebraic points of view, and the problem of generalizing these
sort of results to all reflection groups has been faced in many ways. Besides several results that holds in
the full generality of reflection groups, there are some relevant generalizations which have been obtained
only for the wreath product groups G(r, n) = G(r, 1, n) (see, e.g., (21; 22; 3; 5; 2)). Some attempts to
extend these results to other reflection groups have been made, in particular for Weyl groups of type D,
(see, e.g., (8; 9; 4)) though they are probably not completely satisfactory as in the case of wreath products.

In this work we introduce a new class of groups, the projective reflection groups, which are a gen-
eralization of reflection groups. We will concentrate our attention on an infinite family G(r, p, q, n) of
such groups (where G(r, p, 1, n) = G(r, p, n) in the previous notation). Fundamental in this theory is the
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following notion of duality: if G = G(r, p, q, n) then we denote by G∗ = G(r, q, p, n) (where the roles
of p and q have been interchanged). We note in particular that reflection groups G satisfying G = G∗

are exactly the wreath products G(r, n) = G(r, 1, 1, n) and that in general if G is a reflection group then
G∗ is not. We show that much of the theory of reflection groups can be extended to projective reflection
groups and that the combinatorics of a projective reflection group G = G(r, p, q, n) is strictly related to
the (invariant) representation theory of G∗, generalizing several known results for wreath products in a
very natural way.

The paper is organized as follows. We present definitions and a characterization in terms of invariants
of projective reflection groups in §2. We exploit those combinatorial aspects of these groups that we need
in §3. In §4 we further consider the action of a projective reflection group on a ring of polynomials to
define and study its coinvariant algebra. In §5 we analyze the structure of the irreducible representations
of a projective reflection group G(r, p, q, n) and we provide a combinatorial interpretation for their di-
mensions. In §6 we consider a decomposition of the homogeneous components of the coinvariant algebra
that leads us to define the descent representations of a projective reflection group: these representations
are used in §7 to describe the main new results of this paper. Here we show an explicit basis of the di-
agonal invariant algebra as a free module over the tensorial invariant algebra of all projective reflection
groups G(r, p, q, n). It is in this description that the interplay between a group G and its dual G∗ attains
its apex. In §8 we deduce some properties of the Kronecker coefficients of a projective reflection group
that can be deduce from the main results. In §9 we extend the Robinson-Schensted correspondence on
wreath products to all projective reflection groups of the form G(r, p, q, n): in this general context it is
not a bijection but it will be the key point to solve in §10 a problem posed by Barcelo, Reiner and Stanton
on the Hilbert series of a certain diagonal invariant module twisted by a Galois automorphism.

2 Definitions and characterizations
Let V be a finite dimensional complex vector space and consider the natural map ϕ : GL(V ) →
GL(Sq(V )), where Sq(V ) is the q-th symmetric power of V . We clearly have kerϕ = Cq , where

Cq is the cyclic group of scalar matrices of order q generated by ζqI , with ζq
def= e

2πi
q .

Now, ifW ⊆ GL(V ) is a finite reflection group we have ϕ(W ) ∼= W/(W ∩Cq). In particular, ifCq ⊂W
we have that W/Cq can be identified with a subgroup of GL(Sq(V )) by means of the map ϕ.

Definition 2.1 Let G be a finite subgroup of GL(Sq(V )). We say that G is a projective reflection group
if there exists a reflection group W ⊂ GL(V ) such that Cq ⊆W and G = W/Cq .

Note that we obtain standard reflection groups in the case q = 1.
It follows from the previous definition that to classify all possible projective reflection groups we only

have to describe all possible scalar subgroups of a reflection group. We know by the work of Shephard
and Todd (17) that all but a finite number of irreducible reflection groups are the groups G(r, p, n) that
we are going to describe. If A is a matrix with complex entries we denote by |A| the real matrix whose
entries are the absolute values of the entries of A. The groups G(r, n) = G(r, 1, n) are given by all n×n
matrices satysfying the following conditions:

• the non-zero entries are r-th roots of unity;

• there is exactly one non-zero entry in every row and every column (i.e. |A| is a permutation matrix).
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If p divides r then the reflection group G(r, p, n) is the subgroup of G(r, n) given by all matrices A ∈
G(r, n) such that detA

det |A| is a r
p -th root of unity.

It is easy to characterize all possible scalar subgroups of the groups G(r, p, n): in fact we can easily
observe that the scalar matrix ζqI belongs to G(r, p, n) if and only if q|r and pq|rn.

Definition 2.2 Let r, p, q, n ∈ N be such that p|r, q|r and pq|rn. Then we let

G(r, p, q, n) def= G(r, p, n)/Cq,

where Cq is the cyclic group generated by ζqI .

We observe that starting from the wreath product group G(r, n) we could have done first the quotient by
the subgroup Cq and then taken the subgroup of this quotient consisting of elements A satysfing detA

det |A| is
a r
p -th root of unity (note that this requirement would have been well-defined). We would have obtained

the same group G(r, p, q, n) and one of the targets of this paper is to convince the reader that these two
operations of “taking subgroups” and “taking quotients” have the same dignity and for many aspects their
are dual to each other. In fact, we note the symmetry on the conditions for the parameters p and q in the
definition of the group G(r, p, q, n). In particular if G = G(r, p, q, n) then the group G∗ def= G(r, q, p, n),
where the roles of the parameters p and q are interchanged, is always well-defined. The classical Weyl
groups of type A,B and D are respectively in this notation the groups G(1, 1, 1, n), G(2, 1, 1, n) and
G(2, 2, 1, n). Note that while Weyl groups of type A and B are fixed by the ∗-operatator, Weyl groups
of type D and general reflection groups are not. The main target of this work is to show that the several
aspects of the invariant theory of a projective reflection groupG is strongly related to and easily described
by the combinatorics of G∗.

One may ask for which choice of the parameters one has G ∼= G∗ as abstract groups.

Proposition 2.3 Let G = G(r, p, q, n), with n 6= 2. Then G ∼= G∗ if and only if GCD( rnpq ,
r
p ) =

GCD( rnpq ,
r
q ).

Any finite subgroup of GL(V ) acts naturally on the symmetric algebra S(V ∗). A well-known theorem
due to Chevalley and Shephard-Todd says that a finite group G of GL(V ) is a reflection group if and only
if its invariant ring S(V ∗)G is itself a polynomial algebra. Our next target is to generalize this result to the
present context. We recall that a projective reflection group is equipped with an action on the symmetric
power Sq(V ). The dual action can be extended to Sq[V ∗], the algebra of polynomial functions on V
generated by homogeneous polynomial functions of degree q.

Theorem 2.4 Let V be a complex vector space, n = dimV , and G be a finite group of graded auto-
morphisms of Sq[V ∗], the algebra generated by homogeneous polynomial functions on V of degree q.
Then G is a projective reflection group if and only if the invariant algebra Sq[V ∗]G is generated by n
algebraically independent homogeneous elements.

3 Statistics
In this section we introduce the main combinatorial tools of projective reflection groups that we need.
If g ∈ G(r, n) we write g = [σ; c1, . . . , cn] if the non-zero entry in the i-th row of g is ζcir and σ ∈ Sn
is the permutation associated to |g| (i.e. σ(i) = j if gi,j 6= 0). We observe that g determines σ uniquely
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while the integers ci are determined only modulo r. We also note that in this notation we have that
g = [σ; c1, . . . , cn] belongs to G(r, p, n) if and only if

∑
ci ≡ 0 mod p.

If g ∈ G(r, p, q, n) we also write g = [σ; c1, . . . , cn] to mean that g can be represented by [σ; c1, . . . , cn]
in G(r, p, n) and we let

HDes(g) def= {i ∈ [n− 1] : ci ≡ ci+1 and σi > σi+1}

hi(g) def= #{j ≥ i : j ∈ HDes(g)}

ki(g) def=
{

[cn]r/q if i = n
ki+1 + [ci − ci+1]r if i ∈ [n− 1],

where [c]s is the smallest non negative representative of the class of the integer c modulo s.
Note that these statistics do not depend on the choice of the integers c1, . . . , cn for representing g. For
example, let g = [27648153; 2, 3, 3, 5, 1, 7, 3, 2] ∈ G(6, 2, 3, 8). Then HDes(g) = {2, 5}, (h1, . . . , h8) =
(2, 2, 1, 1, 1, 0, 0, 0) and (k1, . . . , k8) = (18, 13, 13, 9, 5, 5, 1, 0).

If q = p = 1 these statistics give an alternative definition for the flag-major index of Adin and Roichman
(see (3)) for wreath products G(r, n). In fact, if we let

Des(g) = {i : either [ci]r < [ci+1]r or [ci]r = [ci+1]r and σi > σi+1},

then the flag-major index is defined as

fmaj(g) def= r
∑

i∈Des(g)

i+
∑
i

[ci]r

and we can easily verify that in this case we have fmaj(g) =
∑

(r · hi(g) + ki(g)).

We note that if λi(g) def= r · hi(g) + ki(g) then the sequence λ(g) def= (λ1(g), . . . , λn(g)) is a partition.
We may also observe that λ(g) is such that g = [|g|;λ(g)] and that λ(g) is the minimal partition (with
respect to containment of the corresponding Ferrers diagram) satysfing this condition.
Extending the notion of flag-major index we define the flag-major index for the projective reflection group
G(r, p, q, n) by fmaj(g) def= |λ(g)|.

4 The coinvariant algebra
As we observed in §2 we have an action of any projective reflection group G on the algebra Sq[V ∗]
generated by homogeneous polynomial functions on V of degree q. We denote by IG+ the ideal of Sq[V ∗]
generated by homogeneous elements in Sq[V ∗]G of positive degree, and define the coinvariant algebra of
G by

RG
def= Sq[V ∗]/IG+ .

The coinvariant algebraRG is a graded representation ofG and, as it was the case for reflection groups,
it is isomorphic as a G-module to the group algebra CG.

Proposition 4.1 If G is any projective reflection group, we have an isomorphism of G-modules RG ∼=
CG.
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If the projective reflection group G is of the form G = G(r, p, q, n) we can describe the coinvariant
algebra in a more explicit way. It could be natural to expect a basis for the algebra RG indexed by
elements of G. As it was mentioned in the introduction, this is the first occurrence of the invariant theory
of a projective reflection group G which is naturally described by its dual group G∗. Generalizing and
unifying results and definitions in (1; 8; 4), we associate to any element g ∈ G a monomial ag ∈ C[X] def=
C[x1, . . . , xn] of degree fmaj(g) in the following way

ag(X) def=
∏
i

x
λi(g)
|g|(i).

We denote by Sq[X] the algebra of polynomials in C[X] generated by the monomials of degree q. Then
it is not difficult to verify that

ag ∈ Sp[X],

for all g ∈ G(r, p, q, n).

Theorem 4.2 If G = G(r, p, q, n) then the set {ag : g ∈ G∗} represents a basis for RG.

5 The irreducible representations
In this section we describe explicitly a natural parametrization of the irreducible representations of a
projective reflection group G(r, p, q, n). Given a partition µ of n, the Ferrers diagram of shape µ is a
collection of boxes, arranged in left-justified rows, with µi boxes in row i. We denote by Fer(r, p, n)
the set of r-tuples of Ferrers diagrams whose shapes (λ(0), . . . , λ(r−1)) are such that

∑
|λ(i)| = n and∑

i i|λ(i)| ≡ 0 mod p. This may recall the definition of G(r, p, n) where the role of
∑
i ci(g) is played

by
∑
i i|λ(i)|. In an extreme parallelism with the groups G(r, p, n) we have the following result.

Lemma 5.1 Let (λ(0), . . . , λ(r−1)) ∈ Fer(r, p, n) (and q ∈ N be such that q|r and pq|rn). Then

(λ(r/q), . . . , λ(r−1+r/q)) ∈ Fer(r, p, n),

where λ(j) def= λ(j−r) if j ≥ r.

If µ ∈ Fer(r, p, n) we denote by ST µ the set of all possible fillings of the boxes in µ with all the
numbers from 1 to n appearing once, in such way that rows are increasing from left to right and columns
are incresing from top to bottom in every single Ferrers diagram of µ. Moreover we let ST (r, p, n) def=
∪µ∈Fer(r,p,n)ST µ.
By Lemma 5.1 we have a natural action of Cq on both Fer(r, p, n) and ST (r, p, n). We denote the
corresponding quotient sets by Fer(r, p, q, n) and ST (r, p, q, n). If T ∈ ST (r, p, q, n) we denote by µ(T )
its corresponding shape in Fer(r, p, q, n) and if µ ∈ Fer(r, p, q, n) we let ST µ

def= {T ∈ ST (r, p, q, n) :

µ(T ) = µ}. Finally, if Fer = Fer(r, p, q, n), we let Fer∗ def= Fer(r, q, p, n).

Proposition 5.2 The irreducible representations ofG(r, p, q, n) are naturally parametrized by pairs (µ, ρ),
where µ ∈ Fer∗ and ρ ∈ (Cp)µ, the stabilizer of any element in the class µ. Moreover the dimension of
the irreducible representation indexed by (µ, ρ) is independent of ρ and it is equal to |ST µ|.

If φ is an irreducible representation of G indexed by a pair (µ, ρ) we let µ(φ) def= µ ∈ Fer∗.
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6 The descent representations
If M is a monomial in C[X] we denote by λ(M) its exponent partition, i.e. the partition obtained by
rearranging the exponents of M . We say that a polynomial is homogeneous of partition degree λ if it is a
linear combination of monomials whose exponent partition is λ. IfG = G(r, p, q, n) and |λ| ≡ 0 mod q,
we can consider the submoduleRG�λ ofRG spanned by monomials of total degree |λ| and partition degree
�λ and we can similarly define RG�λ. Here � and � mean smaller and strictly smaller in the dominance
order of partitions. Following and generalizing (1; 8; 4) we denote the quotient module by

RGλ
def= RG�λ/R

G
�λ.

We call the modules RGλ the descent representations of G. A straightforward application of Maschke’s
theorem implies that, for any k ≡ 0 mod q, we have an isomorphism

ϕ : RGi
∼=−→
⊕
λ`i

RGλ

such that every element in ϕ−1(RGλ ) can be represented by a homogeneous polynomial in Sq[X] of
partition degree λ. We recall that if g ∈ G∗ then the monomial ag has partition degree λ(g) and so it
represents an element in RGλ(g).

Lemma 6.1 Let λ be a partition such that |λ| ≡ 0 mod q. Then the set

{ag : g ∈ G∗ and λ(g) = λ}

is a system of representatives of a basis of RGλ . In particular dim(RGλ ) = |{g ∈ G∗ : λ(g) = λ}|.
Our next target is an explicit description of the irreducible decomposition of the modules RGλ . We can

define the statistics hi and ki in ST (r, p, q, n) similarly to the case ofG(r, p, q, n). Let T ∈ ST (r, p, q, n)
be represented by (T1, . . . , Tr). For i ∈ [n] we let ci = j if i ∈ Tj .

HDes(T ) def= {i ∈ [n− 1] : ci = ci+1 and i appears strictly above i+ 1}

hi(T ) def= #{j ≥ i : j ∈ HDes(T )}

ki(T ) def=
{

[cn]r/q if i = n
ki+1 + [ci − ci+1]r if i ∈ [n− 1]

It is clear that these definitions do not depend on the choice of the representative (T1, . . . , Tr). For
example if

T =
(

5
1 4

3
2

9
8 6 7, ,

)
∈ ST (3, 1, 3, 9),

we have (h1, . . . , h9) = (3, 3, 2, 2, 1, 1, 1, 1, 0) and (k1, . . . , k9) = (5, 3, 3, 2, 2, 1, 1, 0, 0). We define
λi(T ) def= rhi(T ) + ki(T ), λ(T ) = (λ1(T ), . . . , λn(T ) and fmaj(T ) = |λ(T )|.
Proposition 6.2 Let φ be an irreducible representation of G. Then the multiplicity of φ in RGλ is given by

〈χφ, χR
G
λ 〉 = |{T ∈ ST µ(φ) : λ(T ) = λ|,

where µ(φ) ∈ Fer∗ is defined at the end of §5.
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This proposition unifies and generalizes the corresponding coarse results of Lusztig (unpublished) and
Kraśkiewicz-Weyman (14) in Type A and Stembridge (22) for reflection groups and the corresponding
refined results of Adin-Brenti-Roichman (1) in Type A and B and of Bagno-Biagioli (4) for reflection
groups.

7 Tensorial and diagonal actions
In this section we describe the main result of this work (Theorem 7.5) which present an explicit basis
for the diagonal invariant algebra of a projective reflection group G = G(r, p, q, n) (considered as a
free module over the tensorial invariant algebra) in terms of the dual group G∗. This result is new also
in the generality of reflection groups (see (7; 6) for related results in type A and B). Here it is really
apparent that not only the combinatorics of G∗ (as in the previous sections) but also its algebraic structure
play a crucial role in the invariant theory of G. Let Sq[X]⊗k be the k-th tensor power of the algebra
of polynomials Sq[X] defined in §4. On this algebra we consider the natural action of the group Gk

(where the i-th coordinate of Gk acts on the i-th factor in Sq[X]⊗k) and of its diagonal subgroup ∆G.
We are particularly interested in the corresponding invariant algebras. Every monomial in Sq[X]⊗k can
be described by a k × n-matrix with non negative integer entries such that the sum in each row is divided
by q. To any such matrix A we associate the monomial XA def=

∏
i,j x

ai,j
i,j . Here and in what follows we

identify Sq[X]⊗k with the algebra of polynomials Sq[X1, . . . , Xk] = Sq[xi,j ] (where i ∈ [k] and j ∈ [n])
spanned by monomials whose degree in xi,1, . . . , xi,n is a multiple of q for all i ∈ [k]. We refer to the
algebra Sq[X1, . . . , Xk]∆G as the diagonal invariant algebra of G. It is clear that Sq[X1, . . . , Xk]∆G is
generated by the polynomials

(XA)# def=
1
|G|

∑
g∈∆G

g(XA).

Lemma 7.1 Let A be a k×n matrix with row sums divided by q and let si be the sum of the entries in its
i-th column. Then (XA)# 6= 0 if and only if the following two conditions are satisfied

1. si ≡ sj for all i, j;

2. psi ≡ 0 for all i.

We recall that a k-partite partition (see (12; 13)) is a k × n matrix A = (ai,j) with non-negative integer
entries such that ai,j ≥ ai,j+1 whenever ah,j = ah,j+1 for all h < i. We denote by Bk(r, p, q, n) the set
of k × n-matrices which are k-partite partitions, with row sums divided by q and column sums satisfying
(1) and (2) in Lemma 7.1.

Corollary 7.2 The set {(XA)# : A ∈ Bk(r, p, q, n)} is a basis for the diagonal invariant algebra of G.

We recall that the algebra Sq[X1, . . . , Xk]∆G, being Cohen-Macaulay (see (19, Proposition 3.1)), is a
free module over its subalgebra Sq[X1, . . . , Xk]G

k

and our next target is the description of a basis for
Sq[X1, . . . , Xk]∆G as a free Sq[X1, . . . , Xk]G

k

-module.

Definition 7.3 Let λ be a partition with n parts and g ∈ G(r, p, q, n). We say that λ is g-compatible if
λ− λ(g) is a partition and g = [|g|; λ].
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We note that in the case of the symmetric group the condition g = [|g|; λ] in the previous definition is
empty and we obtain an equivalent definition of a σ-compatible partition given in (12). The special case
of the following result where G is the symmetric group is proved in (12).

Theorem 7.4 There is a bijection between Bk(r, p, q, n) and (2k)-tuples (g1, . . . , gk;λ(1), . . . , λ(k))
where

• g1, . . . , gk ∈ G∗ are such that g1 · · · gk = 1;

• λ(i) is a gi-compatible partition.

The bijection is given by

Φ(g1, . . . , gk;λ(1), . . . , λ(k)) =


λ

(1)
1 λ

(1)
2 · · · λ

(1)
n

λ
(2)
σ1(1) λ

(2)
σ1(2) · · · λ

(2)
σ1(n)

λ
(k)
(σ1...σk−1)(1) λ

(k)
(σ1...σk−1)(2) · · · λ

(k)
(σ1...σk−1)(n)

 ,

where σi = |gi| and the composition of permutations is from left to right.

If g1, . . . , gk ∈ G∗ and g1 · · · gk = 1 we let

A(g1, . . . , gk) def= Φ(g1, . . . , gk;λ(g1), . . . , λ(gk)).

With this terminology Theorem 7.4 can be restated as follows: ifA ∈ Bk(r, p, q, n) then there exist unique
g1, . . . , gk ∈ G∗ with g1 · · · gk = 1 such that

XA = XA(g1,...gk)M1(X1) · · ·Mk(Xk),

where, for all i ∈ [k], Mi is a monomial such that λ(Mi) = λi(XA)−λ(gi) is a partition whose parts are
all congruent to the same multiple of r/p modulo r. Here λi(XA) is the exponent partition of XA with
respect to the variables xi,1, . . . , xi,n. This is the main point in the proof of the following result.

Theorem 7.5 The set of polynomials

{(XA(g1,...,gk))# : g1, . . . , gk ∈ G∗ and g1 · · · gk = 1},

is a basis for Sq[X1, . . . , Xk]∆G as a free module over Sq[X1, . . . , Xk]G
k

.

An immediate consequence of Theorem 7.5 is the following equality

Hilb(Sq[X1, . . . , Xk]∆G)(y1, . . . , yk)
Hilb(Sq[X1, . . . , Xk]Gk)(y1, . . . , yk)

=
∑

g1,...,gk∈G∗:
g1···gk=1

y
fmaj(g1)
1 · · · yfmaj(gk)

k .

Theorem 7.5 and its proof allow us to obtain an important refinement of the previous identity. The algebra
Sq[X1, . . . , Xk] is multigraded by k-tuples of partitions with at most n parts: we just say that a monomial
M is homogeneous of multipartition degree (λ(1), . . . , λ(k)) if its exponent partition with respect to the
variables xi,1, . . . xi,n is λ(i) for all i. If we consider the Hilbert series of the invariant algebras above
with respect to this multipartition degree we obtain the following result.
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Corollary 7.6 We have

Hilb(Sq[X1, . . . , Xk]∆G)(Y1, . . . , Yk)
Hilb(Sq[X1, . . . , Xk]Gk)(Y1, . . . , Yk)

=
∑

g1,...,gk∈G∗:
g1···gk=1

Y
λ(g1)
1 · · ·Y λ(gk)

k ,

where Yi = (yi,1, . . . , yi,n).

8 The Kronecker coefficients
We can use the descent representations of a projective reflection group introduced in §6 to give to the
coinvariant algebra the structure of a partition-graded module. By means of this grading of the coinvariant
algebra we can also decompose the algebra

Sq[X1, . . . , Xk]
IG

k

+

∼= RG ⊗ · · · ⊗RG︸ ︷︷ ︸
k

and its diagonal invariant subalgebra(
Sq[X1, . . . , Xk]

IG
k

+

)∆G

∼=
Sq[X1, . . . , Xk]∆G

JG
k

+

in homogeneous components whose degrees are k-tuples of partitions with at most n parts. Here IG
k

+

and JG
k

+ are the ideals generated by homogeneous Gk-invariant polynomials of positive degree inside
Sq[X1, . . . , Xk] and Sq[X1, . . . , Xk]∆G respectively.

We define the refined fake degree polynomial fφ(y1, . . . , yn) of a projective reflection group G as the
polynomial whose coefficient of yλ1

1 · · · yλnn is the multiplicity of the irreducible representation φ of G in
RGλ . If φ1, . . . , φk are k irreducible representations of G we define the Kronecker coefficients of G by

gφ1,...,φk
def=

1
|G|

∑
g∈G

χφ1(g) · · ·χφk(g),

If G = G(r, p, q, n) and µ1, . . . , µk ∈ Fer∗ = Fer(r, q, p, n), we define the coarse Kronecker coefficients
of G by

gµ1,...,µk
def=
∑
i

∑
φi:µ(φi)=µi

gφ1,...,φk .

The following result is a consequence of (18, Theorem 5.11).

Theorem 8.1 We have

Hilb
(Sq[X1, . . . , Xk]∆G

JG
k

+

)
(Y1, . . . , Yk) =

∑
φ1,...,φk∈Irr(G)

gφ1,...,φkf
φ1(Y1) · · · fφk(Yk)

where the sum is taken over all k-tuples of irreducible representations of G.
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By Proposition 6.2 we deduce that Theorem 8.1 can be restated as follows

Hilb
(Sq[X1, . . . , Xk]∆G

JG
k

+

)
(Y1, . . . , Yk) =

∑
T1,...,Tk∈ST ∗

gµ(T1),...,µ(Tk)Y
λ(T1)
1 · · ·Y λ(Tk)

k ,

where ST ∗ def= ST (r, q, p, n). So, by Theorem 7.5 and Corollary 7.6 we have the following result.

Corollary 8.2 Let G = G(r, p, q, n) and ST = ST (r, p, q, n). Then∑
g1,...,gk∈G
g1···gk=1

Y
λ(g1)
1 · · ·Y λ(gk)

k =
∑

T1,...,Tk∈ST
gµ(T1),...,µ(Tk)Y

λ(T1)
1 · · ·Y λ(Tk)

k .

We observe that Corollary 8.2 provides us a purely combinatorial algorithm to compute the coarse
Kronecker coefficients of G. This can be achieved in a way which is similar to the corresponding result
for the symmetric group (see (10, §4)).

In the next section we describe a bijective proof of Corollary 8.2 in the case k = 2.

9 The Robinson-Schensted correspondence
Recall the classical Robinson-Schensted correspondence from (20, §7.11)). This correspondence has
been extended to wreath product groups G(r, n) in (21) in the following way. Given g ∈ G(r, n) and
j ∈ [0, r − 1], we let {i1, . . . , ih} = {l ∈ [n] : cl(g) = j} and we consider the two-line array Aj =(

i1 i2 · · · ih
σ(i1) σ(i2) · · · σ(ih)

)
, where σ = |g|, and the pair of tableaux (Pj , Qj) obtained by applying

the Robinson-Schensted correspondence to Aj . Then the Stanton-White correspondence

g 7→ (P (g), Q(g)) def=
(

(P0, . . . , Pr−1), (Q0, . . . , Qr−1)
)

is a bijection between G(r, n) and pairs of tableaux of the same shape in ST (r, 1, n). Furthermore we
have λ(g) = λ(Q(g)) and λ(ḡ−1) = λ(P (g)).
Now let g ∈ G(r, p, q, n) and g̃ ∈ G(r, p, n) be a lifting of g. Then the classes in ST (r, p, q, n) of the
tableaux P (g̃) and Q(g̃) obtained by applying the previous correspondence depend uniquely on g and not
on the lifting g̃. Therefore one can define a map g 7→ (P (g), Q(g)) which associates to any element in
G(r, p, q, n) a pair of tableaux in ST (r, p, q, n) of the same shape. The following result is the natural
generalization of the Stanton-White correspondence to projective reflection groups.

Theorem 9.1 Let P,Q be two tableaux in ST (r, p, q, n) of the same shape µ. Then

|{g ∈ G(r, p, q, n) : P (g) = P and Q(g) = Q}| = |(Cq)µ|,

where (Cq)µ is the stabilizer in Cq of any element in the class µ.

We observe that Theorem 9.1 provides a bijective proof that

|G| =
∑

φ∈Irr(G∗)

(dimφ)2,

since dimφ = |ST µ(φ)| and, given µ ∈ Fer, we have |{φ ∈ Irr(G∗) : µ(φ) = µ}| = |(Cq)µ|.



Combinatorial invariant theory of projective reflection groups 287

10 Galois automorphisms
The next target is to use the theory developed in the previous sections to solve a problem posed in (5,
Question 6.3). The objects of our study here are again Hilbert series of invariant algebras as in §7 but
with a new ingredient given by a Galois automorphism. Given any projective reflection group G (not
necessarily of the form G(r, p, q, n)) we consider a cyclotomic field Q[e

2πi
m ] which contains the entries of

the (representatives of the) elements in G. Then we observe that for any σ ∈ Gal(Q[e
2πi
m ],Q) we have

σ(Cq) = Cq and so we can consider the group Gσ def= σ(G) obtained by applying σ to the entries of the
representatives of the elements of G. We observe that if G = G(r, p, q, n) then, since σ(ζr) = ζdr for
some d such that GCD(r, d) = 1, we have that Gσ = G, i.e. σ ∈ Aut(G). The setting is similar to that
of §7 with k = 2: we consider the following twisted diagonal subgroup of G×Gσ

∆σG
def= {(g, gσ) : g ∈ G},

where gσ def= σ(g). We recall that G×Gσ acts on the symmetric algebra Sq[X1, X2] and that this algebra
has a bipartition degree given by the exponent partitions in the two sets of variables. The coinvariant
algebra of RG×G

σ

is canonically isomorphic to RG ⊗ RG
σ

and so it also affords a bipartition degree
given by

RG×G
σ

λ(1),λ(2)
∼= RGλ(1) ⊗RG

σ

λ(2) .

We are interested in the subalgebra ofRG×G
σ

consisting of ∆σG-invariants and in particular to its Hilbert
series with respect to the bipartition degree defined above.

The following result was proved in (5) for reflection groups in its unrefined version (i.e. considering
only the bidegree in N2 and not the bipartition degree).

Theorem 10.1 Let G be any projective reflection group. Then

Gσ(Y1, Y2) def= Hilb

(
Sq[X1, X2]∆

σG

JG×G
σ

+

)
(Y1, Y2) =

∑
φ∈Irr(G)

fσφ(Y1)f φ̄(Y2).

IfG is of the formG = G(r, p, q, n), by Theorem 9.1, then the polynomialGσ(Y1, Y2) takes the following
simple form in terms of the dual group G∗.

Corollary 10.2 For any projective reflection group G = G(r, p, q, n) and any Galois automorphism
σ ∈ Gal(Q[e

2πi
m ]/Q) we have

Gσ(Y1, Y2) =
∑
g∈G∗

Y
λ(gσ)
1 Y

λ(g−1)
2 .

The unrefined version of the previous corollary

Gσ(y1, y2) =
∑
g∈G∗

y
fmaj(gσ)
1 y

fmaj(g−1)
2

provides an answer to (5, Question 6.3). We believe that one can generalize these facts to a multivariate
setting using Corollaries 7.6 and 8.2 instead of Theorem 9.1.
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