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Indecomposable permutations with a given
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Abstract. A permutation a1a2 . . . an is indecomposable if there does not exist p < n such that a1a2 . . . ap is a
permutation of {1, 2, . . . , p}. We compute the asymptotic probability that a permutation of Sn with m cycles is
indecomposable as n goes to infinity with m/n fixed. The error term is O( log(n−m)

n−m
). The asymptotic probability

is monotone in m/n, and there is no threshold phenomenon: it degrades gracefully from 1 to 0. When n = 2m, a
slight majority (51.1 . . . percent) of the permutations are indecomposable. We also consider indecomposable fixed
point free involutions which are in bijection with maps of arbitrary genus on orientable surfaces, for these involutions
with m left-to-right maxima we obtain a lower bound for the probability of being indecomposable.

Résumé. Une permutation a1a2 . . . an est indécomposable, s’il n’existe pas de p < n tel que a1a2 . . . ap est une
permutation de {1, 2, . . . , p}. Nous calculons la probabilité pour qu’une permutation de Sn ayant m cycles soit
indécomposable et plus particulièrement son comportement asymptotique lorsque n tend vers l’infini et que m/n est
fixé. Cette valeur décroı̂t régulièrement de 1 à 0 lorsque m/n croı̂t, et il n’y a pas de phénomène de seuil. Lorsque
n = 2m, une faible majorité (51.1 . . . pour cent) des permutations sont indécomposables. Nous considerons aussi les
involutions sans point fixe indécomposables qui sont en bijection avec les cartes de genre quelconque plongées dans
une surface orientable, pour ces involutions ayantmmaxima partiels (ou records) nous obtenons une borne inférieure
pour leur probabilité d’êtres indécomposables.

Keywords: Permutations, enumeration, asymptotics.

1 Introduction.
Indecomposable permutations (also often called connected) have been considered by many authors trying
to show that they play the same role for permutations as connected graphs play in graph theory. Mar-
shall Hall [Hal49] was probably the first to implicitly consider them while enumerating subgroups of
finite index of the free group with 2 generators. They were studied in more detail 20 years later by A.
Lentin[Len72] and L. Comtet [Com72] and are quoted in good place in many classical books in Com-
binatorics and Algorithms (see for instance [Com74], [Knu05], [GJ83], and [Sta99]). More recently, a
bijection was given by P. Ossona de Mendez and P. Rosenstiehl in [dMR04] with hypermaps (or equiva-
lently bicolored maps) is such a way that the number of cycles of the permutation is equal to the number
†Work done while visiting the CS Department at Brown University.
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of vertices of the hypermap (equivalently the number of vertices of a given color of the bipartite map).
Hence in order to generate at random a hypermap with a fixed number m of vertices, a natural algorithm
consists in generating permutations with m cycles until obtaining an indecomposable one, then to build
the hypermap in bijection with it. The efficiency of this algorithm depends on the value of the probability
for a permutation with m cycles to be indecomposable. Intuitively this probability is expected to be a de-
creasing function of mn ; we will prove this fact asymptotically in this paper and give a precise description
of the asymptotic limit of this function when n and m tend to infinity keeping n

m constant.
In a second part of the paper we restrict these permutations to be involutions with no fixed points and

take as parameter the number of left-to-right maxima instead of the number of cycles, note that these two
statistics are equal for general permutations. Similarly the above bijection associates to indecomposable
involutions maps on orientable surfaces having the same number of vertices as the involution has left-to-
right maxima. We obtain a lower bound on the probability for an involution with no fixed points and a
given number of let-to-right maxima to be indecomposable. We use combinatorial arguments and a coding
of these involutions by labeled Dyck words, often called histoires d’Hermite, (see [dMV94], [Dra09]).

Notation
A permutation will be denoted a1a2 . . . an, it is called decomposable if there exists p < n such that
a1a2 . . . ap is a permutation of {1, 2, . . . , p}, and is called indecomposable otherwise. Let Sn denote the
set of permutations of {1, 2, . . . , n}. In [Com72], Comtet proved that almost all permutations of Sn are
indecomposable, more precisely:

Pr
Sn

{α indecomposable} = 1− 2
n

+O(
1
n2

).

The event that α is decomposable depends heavily on the number of cycles of α. The permutation
with n cycles (the identity) is decomposable, and among the

(
n
2

)
permutations with n − 1 cycles (the

transpositions), all but one are decomposable. At the other extreme, a permutation with only one cycle
is never decomposable. Intuitively, it seems clear that a permutation with more cycles is more likely to
be decomposable. In this note we prove this statement, up to lower order terms; we prove that a permu-
tation with n/2 cycles is indecomposable with probability about .5117 . . .; and for any µ ∈ (0, 1], we
calculate the asymptotic probability that a permutation over {1, . . . , n} with approximatively µn cycles
is decomposable.

Let Sn,m denote the set of permutations of Sn with m cycles, sn,m, the unsigned Stirling number of
the first kind, denote the cardinality of Sn,m, and µ = m/n. Let α = a1a2 . . . an denote a permutation of
{1, 2, . . . n}.

2 Main result and proof overview

Theorem 1 Let µ be a rational number less than 1. If m and n tend to infinity while keeping their ratio
fixed at m/n = µ, then the probability pn,m that a permutation of Sn,m is indecomposable tends to p(µ),

p(µ) =
(eu − 1)2

e2u
, (1)
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Fig. 1: Asymptotic probability p∞(µ) that a permutation of Sn with µn cycles is indecomposable, as a function of
µ.

where u > 0 is defined implicitly by the equation

µ =
u

eu − 1
. (2)

Moreover, |pn,m − p(µ)| = O(log(n−m)/(n−m)).

The asymptotic probability of indecomposability of a permutation as a function of µ is depicted in
Figure 1.

The value for µ = 1/2 computed with Maple is 0.511699676. The proof of Theorem 1 follows directly
from the following three lemmas. The first lemma states some simple facts and has a short proof.

Lemma 1 If the following condition holds, then α is decomposable:

(a1 = 1) or (an = n) (3)

If the following condition holds, then α is indecomposable:

(∃i, i ≤ a1 and ai > an) (4)

Proof: If condition (3) holds then either a1 is a permutation of S1 or a1 . . . an−1 is a permutation of Sn−1.

If α is decomposable then there exist p < n such that a1a2 . . . ap is a permutation of Sp, this implies
an > ai for all 1 ≤ i ≤ p. Moreover all i such that p < i ≤ n either i ≤ p satisfies ai > a1 contradicting
(4). Note that there is a simple way to represent indecomposability as a simple drawing: put n points on a
horizontal segment numbered 1 to n from left to right draw a half circle from i to ai when ai 6= i then the
permutation is decomposable if and only if there is no vertical line intersecting the segment but not any of
the half circles. As an example the proof of the above Lemma is illustrated on Figure 2.

2

The second Lemma will be proved in the next section using an evaluation of the asymptotics of Stirling
numbers due to Moser and Wyman [MW58]
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Fig. 2: Illustration of Condition 4 guaranteeing indecomposability.

Lemma 2 Let m,n, µ, u be defined as in Theorem 1. Then the probability that a permutation of Sn,m
satisfies condition (3) tends to

2eu − 1
e2u

.

The third lemma, is the main technical point in our paper and will be proved in a following section:

Lemma 3 The probability that a permutation of Sn,m satisfies neither condition (3) nor condition (4) is
O( log(n−m)

n−m ).

3 Proofs
3.1 Proof of Lemma 2.
We use the inclusion-exclusion formula. The number of permutations of Sn,m such that a1 = 1 is equal
to sn−1,m−1, the number of those such that an = n is also equal to sn−1,m−1, and the number of those
such that a1 = 1 and an = n is equal to sn−2,m−2; hence the number satisfying condition (3) is equal to

tn,m = 2sn−1,m−1 − sn−2,m−2.

Moser and Wyman ([MW58] Equation (5.7)) give the following formula for Stirling numbers of the
first kind in the asymptotic regime where n and m tend to infinity such that m/n = µ is fixed:

sn,m = b
n!

an
√
n

um

m!
(1 +Oµ(1/m)), (5)

where u satisfies Equation (2) with µ = m/n, a = 1− e−u, b =
√

u
2π(ueu−eu+1) (note that since µ < 1,

we have u > 0 and b is well defined,) and the constants in the Oµ(1/m) are continuous functions of µ.
Using continuity, it is easy to prove that tn,m

sn,m
tends to 2eu−1

e2u . The details will be given in the extended
version of the paper.
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3.2 Proof of Lemma 3.
Let Sn,m denote the set of permutations of Sn,m such that neither condition (3) nor condition (4) hold. We
will partition the permutations of Sn,m according to their shape, defined below, and prove by probabilistic
arguments that within each class of permutations having the same shape, the fraction of those which are
in En,m is negligeable.

To each permutation α in En,m, we associate a shape (n1, . . . , nm; p, q, b, r) defined as follows. n1 ≥
n2 ≥ · · · ≥ nm are the lengths of the m cycles of α; p and q are the lengths of the cycles containing 1 and
n; when p = q, b is a boolean indicating whether 1 and n are in the same cycle; and when b is true, r > 1
is the smallest integer such that αr(1) = n. The shape of a permutation in Sn,m may be represented by a
directed graph with n vertices of indegree and outdegree 1, consisting of the union of m (directed) cycles
of lengths n1, n2, . . . , nm, and of two distinguished vertices, belonging to cycles of length not less than 2
and called the “initial”and the “last” vertices. We identify a shape and the associated graph.

Fig. 3: The shape (6, 5, 2, 2, 1, 1, 1, 1, 1; 5, 6), the initial vertex is indicated by a circle and the last one by a double
circle; the marked edges are in bold.

Given any shape σ, the following process defines a permutation drawn uniformly at random among the
permutations of Sn,m with shape σ:

• To each undistinguished vertex, independently assign a real number drawn uniformly at random
from the interval [0, 1]; assign 0 to the initial vertex and 1 to the last vertex.

• Give integer labels 1, 2, . . . n to the n vertices of the diagram in such a way that the labels are in the
same order as the reals assigned to them. This defines the permutation a1, a2, . . . , an such that the
edge with head labeled i has tail labeled ai.

Lemma 4 In the graph representing a shape σ there exist (n −m)/2 − 2 edges, called marked edges,
such that no head of a marked edge is the tail of another marked edge and such that the initial and the
last vertex are neither a head nor a tail of a marked edge.

Proof: There are m cycles, of which m1 have length 1. In each of the cycles of length ni ≥ 2, we can
mark at least (ni−1)/2 disjoint edges, for a total of [(n−m1)−(m−m1)]/2 marked edges. Discounting
the marked edges that touch the initial or the last vertex yields the result. 2

Lemma 3 follows by summing Equation (6) below over all shapes.
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Lemma 5 Given a shape σ, let sσn,m and eσn,m be the number of permutations with shape σ in Sn,m and
in En,m. Then

eσn,m ≤ sσn,m
4 log((n−m− 4)/2)

n−m− 4
(1 + o(1)). (6)

Proof: (of Lemma 5.) Let α = a1, a2, . . . , an be a permutation of shape σ = (n1, . . . , nm; p, q, b, r)
obtained by the process. We may suppose p, q > 1 since this means a1 6= 1, an 6= n. Then α in En,m, if
for all i the following condition holds

¬(i ≤ a1 and ai > an)

The probability of this event is less than if the condition holds only for the i corresponding to the heads of
marked edges. But since the marked edges have no common end points, the conditions on each marked
edges are independent. Hence an upper bound for the probability of decomposability is the `-th power of
the satisfaction of one of the conditions.

Let x and y be the real numbers assigned to the tails of the edges which heads are the first and the last
vertex respectively. For every marked edge, the values xi and yi associated to its head and tail respectively
are such that we do not have (xi < x and yj > y).

Fix x, y; for each marked edge, the probability of the event (xi < x and yi > y) is x(1 − y). By
definition of the marked edges, the values xi, yi are independent, and so the probability that no (xi, yi)
among the (n −m − 4)/2 marked edges has (xi < x and yi > y) is : (1 − x(1 − y))(n−m−4)/2. Then,
denoting ` = (n−m− 4)/2, the proportion εn,m of permutations with shape σ in En,m is bounded by:

εn,m ≤
∫ 1

0

∫ 1

x

(1− x(1− y))`dydx.

Using the well known inequality 1− z ≤ e− z
2 for z ∈ [0, 1] (with z = x(1− y)) we obtain:

εn,m ≤
∫ 1

0

∫ 1

x

e−
x(1−y)`

2 dydx =
∫ 1

0

∫ 1−x

0

e−
xy`
2 dydx =

∫ 1

0

2
x`

(1− e−
x(1−x)

2 )dx.

We decompose [0, 1] in two intervals [0, 1
` ] and [ 1` , 1]. When x ≥ 1/` the function inside the integral can

be bounded by 2/(x`). When x < 1/` we use again 1− e− z
2 ≤ z for z ∈ [0, 1] (with z = x(1− x)) and

write:

εn,m ≤
∫ 1

`

0

2(1− x)
`

dx+
∫ 1

1
`

2
x`
dx ≤ 2 log `

`
+

2
`2

=
2 log `
`

(1 + o(1)).

Substituting ` = (n−m− 4)/2, the lemma follows. 2

4 Remarks
4.1 Numerical results
It is well-known that (sn,m) satisfies sn,p = 0 for p = 0 or p > n, s1,1 = 1, and:

sn,p = sn−1,p−1 + (n− 1)sn−1,p (7)
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The numbers cn,m of indecomposable permutations of Sn,m, can be computed by a formula similar to
that giving the number of those in Sn, (see for instance [Cor09], Proposition 2)

cn,k = sn,k −
n−1∑
p=1

min(k,p)∑
i=1

cp,isn−p,k−i (8)

Thus the exact value of cn,k

sn,k
can be computed exactly by using the above formulas inductively for small

n.
We have proved that the error term |pn,m − p(µ)| is bounded by O(log(n −m)/(n −m)). The error

is actually very small. For instance we find for n = 20 and n = 100:

m/n 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1

p20,m 1 0.968 0.883 0.774 0.644 0.5 0.35 0.207 0.090 0.02 0.005 0

p100,m 0.981 0.95 0.868 0.764 0.643 0.51 0.371 0.236 0.116 0.03 0.006 0

p∞(m/n) 0.978 0.946 0.865 0.762 0.642 0.511 0.374 0.241 0.122 0.035 0.009 0

4.2 Left-to-right maxima

A left-to-right maximum of a permutation α = a1 . . . an is an aj such that for any i < j one has aj > ai.
A classical result states that the number of permutations of Sn with m cycles is equal to the number of
those with m left-to-right maxima. Moreover the so called First Fundamental Transform (see [Lot83]
chap. 10) is a bijection between permutations of Sn which maps a permutation with m cycles to a per-
mutation with m left-to right maxima. It is not difficult to prove (see [Cor09] Proposition 1) that the
permutation is indecomposable if and only if its image under this transformation is. Hence the probabili-
ties obtained above are also those for a permutation with m left-to-right maxima to be indecomposable.

4.3 Comments

• The majority (51.1 . . . percent) of permutations of S2m with m cycles are indecomposable.

• Since there is a bijection between indecomposable permutations and hypermaps (see [dMR04])
our result shows that the probability for an ordered pair of permutations σ, α on Sn to generate a
transitive group when σ is supposed to have m cycles is about the same as the probability for a
permutation of Sn+1,m to be indecomposable. Hence this probability is about 0.511 when n = 2m.

• It would be interesting to know the structure of the group generated by two permutations when their
number of cycles is given. When these numbers are not fixed then Dixon (see [Dix05]) proved that
the probability that they generate the symmetric or alternating group is near to 1, his proof uses the
fact that they generate a transitive group with probability 1. But as we saw transitivity cannot be
assumed when the number of cycles is given and large.
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5 Fixed point free involutions.
We now consider involutions with no fixed points (which we will call fpf-involutions for short in the
sequel), that is, permutations of S2m with m cycles, all of length 2, hence belonging the subset of S2m for
which the probability of being indecomposable is close to 0.51. However assuming that the cycles are all
of length 2 implies that the probability increases to 1− 1

m . This can easely be proved using the recursion
formula giving the number cm of indecomposable fpf-involutions namely :

cm = (2m− 1)!!−
m−1∑
k=1

ck(2m− 2k − 1)!!

where (2k − 1)!! =
∏k
i=1(2i− 1) is the total number of fpf-involutions of S2k.

Ossona de Mendez and Rosenstiehl in [dMR05] gave a bijection between rooted maps on orientable
surfaces with m − 1 edges, and indecomposable fpf-involutions of S2m; in this bijection the number of
vertices of the map is equal to the number of left-to-right maxima of the corresponding involution. This
allows a new proof of the results in [AB00], see also: [BJ02], [Dra09].

Hence it is interesting to find the number am,k of fpf-involutions of length m having k left-to-right
maxima. No simple formula for these numbers are known unlike for Stirling numbers, which the statistics
of the same parameter for general permutations.

Let cm,k be the number of indecomposable fpf-involutions of S2m with k lef-to-right maxima; it is also
the number of rooted maps with m− 1 edges and k vertices.

In order to calculate the numbers an,k and cn,k we use a bijection between these involutions and labeled
Dyck words which will be recalled in Section 6. The values obtained allowed us to conjecture that the
probability for an fpf-involution to be indecomposable increases smoothly when the number of left-to-
right maxima decreases.

We are not able to prove this conjecture, but we obtain as a partial result a lower bound for the the
proportion of indecomposable fpf-involutions with a given number of left-to-right maxima:

Theorem 2 The numbers of decomposable fpf-involutions dm,k = am,k − cm,k of S2m, having k left-to-
right maxima satisfy:

dm,k ≤
4k
m
cm,k

Hence the probability that a random fpf-involution of S2m with λm left-to-right maxima is decomposable
is at most 4λ/(1 + 4λ).

In Section 6 we recall the bijection between fixed point free involutions and labeled Dyck words. In
Section 7 we give a sketch of the proof of Theorem 2.

6 Labeled Dyck words.
Dyck words.
We consider words over the two letters alphabet {a, b}. We denote the length of a word w by |w|, and
the number of occurrences of the letter x by |w|x. A Dyck word u is a word such that |u|a = |u|b and
|u′|a ≥ |u′|b for any of its prefixes u′ (i. e. u = u′u′′). The height of the occurrence of a letter x in
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w = w′xw” is defined as |w′x|a − |w′x|b. A Dyck word is decomposable if there exist two non-empty
Dyck words u′, u” such that u = u′u”. It is indecomposable otherwise.

Labeling
We consider the infinite alphabet {a, b0, b1, b2, . . . , bi, . . .}, and use the notation |w|b =

∑
i≥0 |w|bi

al-
lowing to define the heights of occurence of letters as above. A labeled Dyck word is a word f on this
alphabet such that

1. Replacing every bi for i ≥ 0 by b in f gives a Dyck word, and

2. Every occurrence of bi in f has height at least i.

A labeled Dyck word is decomposable if replacing every bi for i ≥ 0 by b gives a decomposable Dyck
word. Let Lm denote the set of labeled Dyck words of length 2m, and Lm,k denote the subset of those
having k occurrences of b0. Let am,k be the number of words of Lm,k and cm,k the number of indecom-
posable ones. We define the polynomials Am and Cm by :

Am(x) =
m∑
k=0

am,kx
k Cm(x) =

m∑
k=0

cm,kx
k (9)

Then we have, where A0 is set equal to 1 :

Proposition 1 For any m ≥ 1 the polynomials Am and Cm satisfy the following recursion equations:

Cm(x) = xAm−1(x+ 1) Am(x) =
m∑
k=1

Ck(x)Am−k(x) (10)

Proof: For the first equations note that an indecomposable Labeled Dyck word w is equal to avb0 where
v is obtained from a a labbeled Dyck word u by choosing a subset of occurrences of bi and replacing
them by bi+1. The seoncd one follows from the fact that any labeled Dyck word is the concatenation of
an indecomposable one and another labeled Dyck word (possibly empty). 2

Bijection.
The following algorithm describes a well-known bijection between fpf-involutions of Sm and labeled
Dyck words of length 2m, such that the labeled Dyck word is indecomposable if and only if the involution
is indecomposable. Less known is the fact that the number of left-to-right maxima of α is equal to the
number of occurrences of b0 in the corresponding word. It takes as input a fpf-involution α ∈ S2m and
outputs the labeled Dyck word f = f1f2 · · · f2m. It uses an ordered list Q.
for i = 1 to 2m do

if (α(i) > i)
then { add i at the end of Q, and set fi = a; }
else { let j be the position of α(i) in Q; set fi = bj−1, and remove α(i) from Q; }

For instance, for the involution α = (1, 4)(2, 7)(3, 10)(5, 9)(6, 8)(11, 14)(12, 13), we get

f = a a a b0 a a b0 b2 b1 b0 a a b1 b0
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Fig. 4: Labeled Dyck word corresponding to the involution
(1, 4)(2, 7)(3, 10)(5, 9)(6, 8)(11, 14)(12, 13)

6.0.1 Enumeration
A consequence of this bijection is that the number of fpf-involutions of S2m with k left-to-right maxima is
am,k and that of indecomposable ones is cm,k. These numbers can be computed thanks to Equation (10).
Moreover we have am,1 = cm,1 = (2m − 3)!! since any fpf-involution with one left-to-right maximum
is indecomposable and is equal to (1, 2m)β, where β is any fpf-involutions over 2, . . . 2m − 1 a. We
also have: am,m = Cm and cm,m = Cm−1 where Ck denotes the k-th Catalan number since the fpf-
involutions with of S2m with m left-to-right maxima correspond to labbelled Dyck words with all the bi
equal to b0 and the indecomposable ones to indecomposable Dyck words with the same property.

This gives some values for this numbers and allows to compare our result in Theorem 2 with values of
cm,k

am,k
for m = 100 showing an important gap except when k is close to 1 or close to m.

k/m 0.001 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1

m/(m+ 4k) 0.96 0.71 0.55 0.45 0.38 0.33 0.29 0.26 0.24 0.22 0.20

cm,k/am,k 1 0.98 0.95 0.90 0.86 0.80 0.74 0.67 0.58 0.46 0.25

7 Sketch of proof of Theorem 2
In order to explain this proof we consider a much simple result for Dyck words which we will try to
genralise for labeled Dyck words.

7.1 A simpler result
Proposition 2 The number of decomposable Dyck words of length 2m is less than 4 times the number of
indecomposable ones.

Proof: There is a very simple proof since we know that the number of decomposable Dyck words of
length 2m is Cm − Cm−1 and that of indecomposable ones is Cm−1. 2

Note that this simple proof shows also that we could have a better result replacing 4 by 3 in the Propo-
sition. But it is impossible to generalize this simple proof in ordrer to obtain a result for labeled Dyck
words with k occurrences of b0, since we do not know a nice formula for the number of such words of
length 2m. Hence we need another proof which do not uses any formula and which has a bijective flavour.
For that we define admissible factorisations of decomposable Dyck words and prooced in three steps.
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An admissible factorisation of a decomposable Dyck word w consists of a pair of words (u, v) such
that uv = w, u ends with an a and contains a prefix which is an indecomposable (hence non empty) Dyck
word. So that we can write u = u1u

′a where u1 is an indecomposable Dyck word.

Let dm and cm be the number of decomposable and indecomposable Dyck words of length 2m. Denote
Fm the set of all admissible factorisations of decomposable ones and fm the number of elements of Fm

Step 1: mdm ≤ 2fm

Proof: A decomposable Dyck word w writes w = u1u2 . . . uk where the ui are indecomposable Dycl
words. Let 2mi denote the length of ui for i = 1, k, the number of admissible factorisations of w is
m −m1. If this number is less than m/2 then the word w = uku1u2 . . . uk−1 has m −mk admissible
factorisations and the sum of these two numbers is greater or equal to m. Hence proving the result. 2

Step 2: factorisations of indecomposable Dyck words
Consider the set F ′m of pair of words (u, v) such that uv is an indecomposable Dyck word of length 2m
and u ends with an occurrence of a. Then the number f ′m of elements of F ′m is equal to mcm.

Step 3: fm < 2f ′m
We build a mapping Φ from the set Fm into F ′m such that each element of F ′m is the image of at most 2
elements of Fm. Let (u1w

′a, v) ∈ Fm be such that u1 is an indecomposable Dyck word and u1w
′av is a

decomposable one.

• If u1 = ab then we set Φ((u1w
′a, v)) = (aw′a, vb)

• If u1 6= ab then u1 = aaw1bw2b where w1, w2 are (not necessarily indecomposable) Dyck words.
In that case we set Φ((u1w

′a, v)) = (aw1aw
′a, vbw2b).

It is clear that for any factorisation (u′, v′) in F ′m there are only two candidates (u, v) to be such that
Φ(u, v) = (u′, v′).

Putting all together we obtain :

mdm ≤ 2fm < 4f ′m = 4mcm

Ingredients for the generalisation
In order to prove Theorem 2 we consider the set L2m,k of Dyck words of length 2m on the alphabet with
3 letters: {a, b0, b}, having k occurrences of b0 and such that no occurrence of b has height less than 1.
For each word w ∈ L2m,k denote λ(w) the number of labeled Dyck words that are obtained from w by
replacing the occurrences of b by a bi. Then the numbers cm,k and dm,k in Theorem 2 are the sums of the
λ(w) for indecomposable and decomposable words of L2m,k respectively. Then we modify the proof in
three steps above to make it work for words in L2m,k. The main difficulty is in Step 3, since the mapping
Φ has to be modified in such a way that Φ((u, v)) = (u′, v′) implies λ(uv) ≤ m

k λ(u′v′).
The detailed construction of such a mapping Φ will be given in the extended version of this paper.
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[AB00] D. Arques and J-F. Béraud. Rooted maps on orientable surfaces, Riccati’s equation and contin-

ued fractions. Discrete Math., 215:1—12, 2000.

[BJ02] D. Brown and D. Jackson. The quadrangulation conjecture for orientable surfaces. Journal of
Combinatorial Theory (B), 86:54–79, 2002.

[Com72] L. Comtet. Sur les coefficients de l’inverse de la série formelle
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