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Abstract. We give two combinatorial interpretations of the Matrix Ats of the PASEP in terms of lattice paths
and rook placements. This gives two (mostly) combinatgiabfs of a new enumeration formula for the partition
function of the PASEP. Besides other interpretations,ftrisiula gives the generating function for permutations of a
given size with respect to the number of ascents and ocaesaf the pattern 13-2, the generating function according
to weak exceedances and crossings, and.thmoment of certaig-Laguerre polynomials.

Résurre. Nous donnons deux interprétations combinatoires du Maimsatz du PASEP en termes de chemins et de
placements de tours. Cela donne deux preuves (presque)nadoites d’'une nouvelle formule pour la fonction de
partition du PASEP. Cette formule donne aussi par exemgtnlztion génératrice des permutations de taille donnée
par rapport au nombre de montées et d’occurrences du n®&f 1a fonction génératrice par rapport au nombre
d'éxcédences faibles et de croisements, eff8° moment de certains polyndmes gié aguerre.
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1 Introduction

In recent work of Postnikov [17], permutations were giveneavrdescription as pattern-avoiding fill-
ings of Young diagrams. More precisely, Postnikov made eespondence between positive Grassmann
cells, pattern-avoiding fillings called-diagrams, and decorated permutations (which are perionsat
where the fixed points are bi-coloured). In particular, tseal permutations are in bijection with per-
mutation tableaux, a subclass bfdiagrams. Permutation tableaux have subsequently badiedtby
Steingrimsson, Williams, Burstein, Corteel, Nadeau [48,720], and proved to be very useful for work-
ing on permutations.
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Corteel and Williams established a link between permutatileaux and the stationary distribution
of a classical process studied in statistical physics, grédfy Asymmetric Exclusion Process (PASEP).
This process is described in [8, 9]. Briefly, the stationamgb@bility of a given state in the process is
proportional to the sum of weights of permutation tableatia @iven shape. The factor behind this
proportionality is the partition function, which is the swhweights of permutation tableaux of a given
half-perimeter.

An alternative way of finding the stationary distributiontbé PASEP is given by the Matrix Ansatz
[9]. Suppose that we have operat@?sand £, a row vectof W | and a column vectdi’) such that:

DE—-qED=D+E, (WE=(W|  D|V)=1|V), and (W|V)=1. (1)

Then, coding any state of the process by a wordf lengthn in D and E, the probability of the state
is given by(W|w|V') normalised by the partition functiofV|(D + E)™|V).

We briefly describe how the Matrix Ansatz is related to pemtiah tableaux [8]. First, notice that there
are unique polynomials; ; € Z[g] such that

(D + E)" Z n; ;E'D’
1,70

This sum s called the normal form @D+ E)™. Itis useful since, for example, the sum of coefficients
gives an evaluation ofW|(D + E)™|V). Each coefficient; ; is a generating function for permutation
tableaux satisfying certain conditions, or equivalergligrnative tableaurs defined by Viennot [27].

We give here two combinatorial interpretations of the Ma&nsatz in terms in lattice paths and rook
placements, and get two semi-combinatorial proofs of tHeviing theorem:

Theorem 1 For anyn > 0, we have:

n n—k
WID+E)" V) = gt 308 | 0 ()G — (7 k) (Zz/ o ”)
k=0 j=0

The combinatorial interpretation of this polynomial, imrtes of permutations, is given in Proposition 1.
Fory = 1 this specialises to:

Corollary 1 For anyn > 0, we have:

n

(W|(D+E)" V) = {a jq)n Z(_l)k((n2_nk) — (- k , )(qu(k+1 i )

k=0

Besides the references mentioned earlier, we have to pofraroarticle of Williams [29], where we
find the following formula for the coefficient af*~! in (W|(yD + E)"|V):

m—1

g (= + (1) @

1:0

It was obtained by enumeratingdiagrams of a given shape and then computing the sum of sdlilple
shapes. Until now it was the only known polynomial formulatfre distribution of a permutation pattern
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of length greater than two (See Proposition 1). Althougttttiele [29] focuses od-diagrams, Williams
and her coauthors sketched in Section 4 of [16] how this cbale been done directly on permutation
tableaux. Recently, Williams’s formula has been obtained by Kasraoui, Stanton and Zeng in their
work on orthogonal polynomials [12]. We will show in the lastction how our formula can be applied to
prove and extend a conjecture presented in [29].

The polynomialy(W|(yD + E)"~!|V) was already heavily studied.

Proposition 1 For anyn > 1 the following polynomials are equal:
o y(WlyD + E)"~|V),

¢ the generating function for permutation tableaux of sizehe number of lines counted lyyand
the number of superfluous 1's countedd$, 28],

¢ the generating function for permutations of sizethe number of ascents counted pwynd the
number of 13-2 patterns counted bYy7, 20],

e the generating function for permutations of sizethe number of weak exceedances counted by
and the number of crossings countedgd$, 20],

¢ the generating function of PDSAWSs (partially directed-seibiding walks) in the asymmetric wedge
of lengthn where the number of descents is counteg byd the number of north steps is counted

by ¢ [23],
o then™ moment of the Al-Salam-Chihagal.aguerre polynomials [12, 23].

Remark. We can view the formula in Corollary 1 as an analog of the Taud¥Riordan formula [24] for
the number of matchings @h according to the number of crossings:

n

%m0 () - (L))

M matching of2n k=0

We remark that this formula also gives the" moment of the;-Hermite polynomials.

In [22], Penaud gave a combinatorial proof of this formulay d&neralising Penaud’s method we
conjectured Theorem 1 and were hoping for a completely coatbrial proof thereof. However, at the
time of writing the last step of this combinatorial proof t8lsnissing.

This article is organised as follows: we first show how the fiAadnsatz is naturally related to lattice
paths. Then we give two proofs of our main Theorem, one baséaltice paths and the other one based
on rook placements. We end with a discussion and some afiptisa

2 Afirst proof using lattice paths and functional equations
2.1 The Matrix Ansatz and lattice paths

We follow the ideas developed in [2, 3]. Looking for a solatiaf the system defined in Equation (1) we
find:
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Proposition 2 LetD = (D; ;); ;>0 andE = (E; ;); j>o such that

D.. — 1+...+4¢" ifiequalsj —1orj,
b 0 otherwise,
{1+...+qi if i equalsj or j + 1,
Eij = .
otherwise,
W] = (1,0,0,. ) and
V) = (1,0,0,.

Then these matrices and vectors satisfy the Ansatz of Equ(adi

We can interprey(W|(yD + E)"~|V) as the generating polynomial of paths of length- 1. The
weight of a path is the product of the weight of its steps ardahight of the starting and ending points.
If a path starts (resp. ends)(@t i) (resp.(n — 1,4)) the weight of the starting (resp. ending) poinii
(resp.V;). The weight of a step going frofix, i) to (z + 1, ) is D, ; + E; ;. We calli the starting height
of the step. See [2, 3] for details.

Proposition 2 implies that the paths we are dealing with heeei-coloured Motzkin paths, i.e., paths
that start and end at height zero and consist of north-eagh-®ast and two types of east steps. Using a
classical bijection we can transform these paths of lengthl into Motzkin paths of lengtth where east
steps of type 2 can not appear at height zero.

Proposition 3 y(W|(yD + E)"~!|V) is the generating polynomial of weighted bi-coloured Mitzk
paths of lengtm such that the weight of steps starting at heigist

e ytyq+...+y¢ =y= — " for north-east steps and east steps of type 1, and

1 1_gi
e l+g+...+q¢7 1= 1—7‘{} for south-east steps and east steps of type 2.

This can also be done combining results in [6, 8, 20].

2.2 The proof

The method used in this subsection is inspired by an artfidfepaud [22]. We extract a factor @f — ¢)"
from the generating polynomial of the weighted bi-coloukéatzkin paths from Proposition 3 and obtain
that

y<W|<yD+E>”*1|v>:(1_%)n S wp),
pEP(n)

where P(n) is the set of labelled bi-coloured Motzkin paths of lengtisuch that the weight of steps
starting at height is either

e yor —yq'T! for north-east steps or east steps of type 1,
o 1 0or —¢’ for south-east steps or east steps of type 2,

andw(p) is the total weight of the path.
Let M (n) be the subset of the pathsit(n) such that the weight of any east step and the weight of any
peak (a north-east step followed by a south-east step)tisanéinory. Let M,, ;. ; be the number of left
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factors of bi-coloured Motzkin paths of length final heightk, and withj south-east and east steps of
type 1.

Lemma 1 There is a bijection between pathsitin) and pairs of paths such that for sorhes {0, ..., n}
o the first path is a left factor of a bi-coloured Motzkin patherigthn and final height:,
¢ the second path is i/ (k).

In particular, we have

n n—=k

S wp) =D Muwgy D w(p).

pEP(n) k=0 j=0 peM (k)

Proof: Let p be a path inP(n). We decomposg into a sequencei; g1magz . . . mrqrme+1 such that

e them,; are maximal (but possibly empty) sub-pathspofith all steps having weight or y, and
returning to their starting height,

e theg; are single steps.

It follows thatgi g2 . . . ¢x is @ path inM (k). Replacing in the sequenee; g1 maqs . . . mrgrmy4+1 €ach
stepg; by a north-east step, and taking into account the numbeubifiseast steps and east steps of type 1,
we obtain a path ioM,, ;. ; of weighty’. O

It remains to comput@,, ;. ; and M}, = ZpeM(k) w(p).

Proposition 4 The numberM,, ;, ; of left factors of bi-coloured Motzkin paths of lengthfinal height

k, and with;j south-east steps and east steps of type @©)i§; ") — (;"1) (; 511)-

Proof: We note that the formula can be seen &a2 determinant. By the Lindstrom-Gessel-Viennot
lemma, this equals the number of pairs of non-intersectittick paths taking north and east steps from
(1,0)to (n — j,7) and(0,1) to (n — j — k, 5 + k) respectively.

We transform such a pair of paths step by step into a singlekitopath according to the following
translation table:

i" step of | lower path| upper path| Motzkin path

north north easttype 1
east east east type 2
north east north-east

east north south-east.

Itis easy to see that the condition that the two lattice pdthsot intersect corresponds to the condition
that the Motzkin path does not run below thexis. Furthermore, we see that the number of east and
south-east steps equglghe number of north steps of the lower path. O

Proposition 5 The generating polynomialf, equals,Zf:O ylgt =),

Proof: We add an extra parameter on the path/4itn), that marks the number of steps that have a
weight different froml andy. More precisely, the weight of steps starting at heighbt
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e y or —yzq'*t! for north-east steps or east steps of type 1, and

e 1 or —zq' for south-east steps or east steps of type 2.

Let M(z) = 3_,50t" > peni(n) w(p). We can obtain a functional equation fdf(z) by considering
the following decomposition: A path is either (a) empty, éiporth-east step of weight followed by
a path, followed by a south east step of weighyy =, followed by another path, (c) a north-east step of
weight—qz, followed by a path, followed by a south east step of weighy z, followed by another path,
(d) a north-east step of weightyz, followed by a path, followed by a south east step of weiglivllowed
by another path, (e) a north-east step of weighbllowed by anon-emptyath, followed by a south east
step of weighty, followed by another path, (f) an east step of type 1 follovegdanother path, or (g)
an east step of type 2 followed by a path. The correspondinghwes (a)1, (b) —M (qz)qyzM (2)t?,
(©) qzM(qz)qy=M (2)t*, (d) —qzM (qz)yM (2)t*, (€) (M(gz) — 1) yM(2)t, (f) —qyzM(2)t, or (9)
—zM (z)t, respectively. Thus, we have:

M(z) =1— (quat + 2t + yt>)M(2) + yt*(1 — q2)>?M(2)M (qz) .
Proceeding similar to [18], we use the linearising Ansatz
1 Hqgz)
1—z H(z)

M(z) =

to obtain
H(z) — (1 +yt*)H(qz) + yt*H(¢*z) = z (H(2) + (1 + qu)tH (qz) + qyt*H(q°2)) .

Solving recursively for the coefficients of H(z) = Y., ¢,2™, we obtain a solution in terms of a basic
hypergeometric series,

o0
(—t, —tqy; O)n
H(2) = 901 (—t, —tqy; t’qy; q,2) = Y  ~——5— 202"
; (t*qy, ¢; @)n

Note that we are dealing with a series of the type(a, b; ab; q, z) wherea = —t andb = —tqy. In order
to take the limitz — 1, we need to transform using Heine’s transformation

o¢1(a,b,ab;q, z) = %gqﬁ (a,z;az;q,b) .
We find that
M(z) = — 201(a, 423 4z; 4, b)
1—az 2¢1(a,z,az;q,b)
and therefore .
M(1) = 5 i —201(a,¢; 043 4,b) = nz;) T faqn -

Changing back ta = —t andb = —tqy,

k
My, = (71)k[tk]M(1> _ Z ynqn(erl) _ Zyiqi(kfzﬁrl).
m+n=k 1=0

Combining the previous results, we get a proof of Theorem 1.
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3 A second proof using the Matrix Ansatz and rook placements

For further details about material in this section, see.[Tie of the ideas at the origin of this proof is
the following. FromD and E of the Matrix Ansatz, we define new operat@?saand F as

. -1 1 A -1 1
q q q q
An immediate consequence is that
. L 1— . N
DE — qBD = qu, (WIE=(W|, and D|V)=[V). 3)

This commutation relation is somewhat simpler than the atisfeed byD and £, as it has no terms
linearinD or E. Moreover, we have(yD + E) + (1 — q)(yD + E) = 1 +y, for any parametey. Using
this identity, we obtain the following inversion formulaetiveen(yD + E)™ and(yD + E)™:

(1= D+ By =3 <Z> (149" 1 (wD + BYF,  and %)
k=0
b+ B =3 () a+ 0t - 0t + B )
k=0

In particular, the first formula means that in order to corepthie coefficients of the normal form of
(yD + E)™, it is sufficient to compute the ones 0fD + E)* for all 0 < k < n (as taking the normal
formis a linear operation).

Except for a factorg, the operatord and £ are also defined in [25] and [1]. In the first reference,
Uchiyama, Sasamoto and Wadati used the commutation nelagiveerD andZ to find explicit matrices
for these operators. They derive the eigenvalues and edgéors of D + E, and consequently the ones
of D + E, in terms of orthogonal polynomials. In the second refeeeilythe, Evans, Colaiori and
Essler also use these eigenvalues and obtain an integnafféor(1W|(D + E)"|V). They also provide
an exact integral-free formula of this quantity, somewtwahplicated since it contains three summations
and severaj-binomial coefficients, but more general since it contaivs dther parameters.

In this article, instead of working on representationgbénd £ and their eigenvalues, we study the
combinatorics of the rewriting in the normal form 6D + E)”, and more generallyyD + E)" for
some parametey. In the case ofD and E, the objects that appear are tlwok placements in Young
diagrams long-known by combinatorists since the results of KapgtginRiordan, Goldman, Foata and
Schitzenberger (see [19] and references therein). Thisatiés described in [26], and is the same that
the one leading to permutation tableaux or alternativestabt in the case db andE.

Definition 1 Let A be a Young diagram. A rook placement of shaps a partial filling of the cells of\
with rooks (denoted by a circle), such that there is at most one rook per row (resp. per cojumn

For convenience, we distinguish with a crogg éach cell of the Young diagram that is not below (in the
same column) or to the left (in the same row) of a rook (we airegutbhie French convention). The number
of crosses is an important statistic on rook placementg;iwias introduced in [10] as a generalisation of
the inversion number for permutations. Indeed\ i§ a square of side length a rook placemenk with
n rooks may be visualised as the graph of a permutatiens,,, and in this interpretation the number of
crosses irR is the inversion number of.
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Definition 2 The weight of a rook placemefRtwith r rooks,s crosses and columns isw(R) = p"¢*y?,
wherep = 1(];}

With the definition of rook placements and their weights we g&ve the combinatorial interpretation
of (W|(yD + E)"|V). This is similar to the;-Wick theorem given in [14], and our rook placements are

equivalent to the Feynman diagram of this reference.

Proposition 6 For anyn, (W|(yD + E)"|V) is equal to the sum of weights of all rook placements of
half-perimetem.

The enumeration of rook placements leads to an evaluatiiivefy D+£)"~1|V), hence of W|(y D+
E)"~1V) via the inversion formula (4).

3.1 Rook placements and involutions

Given a rook placemer of half-perimetem, we define an involution(R) by the following construc-
tion: label the north-east boundary Bfwith integers from 1 tox. This implies that each column or row
has a label between 1 and If a column, or row, is labelled byand does not contain a rook, it is a fixed
point of «(R). Also, if there is a rook at the intersection of colurhand rowj, thena(R) sendsi to j
(andj to ).

Given a rook placemerR of half-perimetern, we also define a Young diagrafiiR) by the following
construction: if we remove all rows and columngdtontaining a rook, the remaining cells form a Young
diagram, which we denote hiy(R). We also define(R) = («(R), 3(R)). See Figure 1 for an example.

[¥]
o

wHHE - (7. B

X

X[X]

XXX

Fig. 1: Example of a rook placement and its image by the map

Proposition 7 The mapp is a bijection between rooks placements in Young diagrarhal&perimetenm,
and ordered pairgI, \) wherel is an involution on{1, ..., n} and\ a Young diagram of half-perimeter
[Fix(I)|. If o(R) = (I, A), the number of crosses R is the sum of\| and some parameter(T).

Proof: This kind of bijection rather classical, see for instancel[d]. Note that the pairél, \) may

be seen as involutions ofl,...,n} with a weight 2 on each fixed point. For the second part of the
proposition, we just have to distinguish different kindsodsses in the rook placemeRt For example,
the crosses with no rook in the same line and column are erateteloy|A|. O

Corollary 2 LetT} ; , be the sum of weights of rook placements of half perimeterith & lines and;
lines without rooks. Then for any j,k,n, we have:
n—2k+2j

T',k,n = |:
’ J

] Y Tok—jn- (6)
q

Proof: The previous proposition means that the number of crosses églditive parameter with respect
to the decompositio® — (I, \). This naturally lead to a factorisation of the generatingction. O
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3.2 The recurrence

Proposition 8 We have the following recurrence relation:

Tokn = To k-1 +pyn +1—2k];To k—1,n-1- (7)

Proof: We have the relatiody », = Toxn-1 + pT1 kn—1. Indeed, we can distinguish two cases,
whether a rook placement enumeratedy. ,, has a rook in its first column or not. These two cases
give respectively the two terms of the previous identity.efal the proof we can apply identity (6) to the

second term. O

The recurrence (7) is solved by the following formula.

Proposition 9

k .
Topn = ok Qe i(i;rl) [n—ka—l—z] (( n ) B ( TL )) (8)
bkn =q Y (~1)'q ; k=i ki1

=0

It is worth noticing that we can get the Touchard-Riordamfola as a special case wheris even and
k = %. Actually there is also a bijective proof of (8), which gealezes Penaud’s bijective proof of the
Touchard-Riordan formula [22].

From this proposition, identity (6), andgabinomial identity, we derive a formula faf; j, ..

Proposition 10

k

k
ZT Z (n) ( n ) g 1= (n—k=3) _g(k=5)(n—k=j) 4 g(k=)(n+1=k=3) _o(k+1—5)(n+1-k—j)
Jkon — j j—1 (1—-q)q™ '
j=0 j

j=0

Summing this identity ovek gives the following result.

Proposition 11 o
WlyD + E)V) = (1+y)G(n) - G(n +1), 9)

L5]

n—2j5
where G(n) = <<7;> _ (j ﬁ 1)) Z yi+jflqi(n+172jfi)-
1=0

=0

This formula is a linear combination of the polynomi&ls = Zf:o y'qi*+1-9) the coefficients being
polynomials iny, just as in Theorem 1. With this result and the inversion fdan(4), we can prove
Theorem 1: the last step is an elementary binomial simpiifina

4  Applications

Among all the objects of the list in Proposition 1, the mosid&td are probably permutations and the
pattern 13-2, see for example [5, 7, 20, 21, 15]. In particing5, 21] we can find methods for obtaining,
as a function ofn for a givenk, the number of permutations of sizewith exactly & occurrences of
pattern 13-2. By taking the Taylor series of (1), we obtanectiand quick proofs for these results. As an
illustration we give the formulae for < 3 in the following proposition.
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Proposition 12 The order 3 Taylor series d¢#V |(D + E)"~1|V) is:

(W|(D+ E)" V) = Cy + (RQ”B)q ' (n2”4) 2+ e r? (n2”5) ¢*+0(¢"),

whereC,, is thenth Catalan number.

More generally, a computer algebra system can provide higiter terms, for example it takes no
more than a few seconds to obtain the following closed foanfor [¢'°](W|(D + E)"~1|V):

2n)!

I = (n13 + 70012 + 2093 't 4 32354 010 + 228543 n° — 318990 1°

—17493961 n" — 104051458 n® — 6828164 n° + 2022876520 n*
+6310831968 n® + 5832578304 n? + 14397419520 n + 5748019200),

which is quite an improvement compared to the methods of [21jddition to exact formula, we can give
asymptotic estimates, for example for the number of pertimntswith a given number of occurrences of
pattern 13-2.

Theorem 2 For any fixedm > 0,

3
4"n™MmT2

Vrm!

asn — oo.

[ [ (WI(D + E)"HV) ~

Proof: Whenn — oo, the numberg ") — (,, *",) are dominated by the Catalan numbgs; (*").

This implies that in(1 — ¢)"(W|(D + E)"~'|V), each higher order term grows at most as fast as the
constant ternC,,. On the other side, the coefficientg@f in (1 — ¢)~™ is asymptoticallyx™ /m!. O

Since any occurrence of the pattern 13-2 in a permutatiofsgsan occurrence of the pattern 1-3-2,
a permutation witht occurrences of the pattern 1-3-2 has at miestccurrences of the pattern 13-2.
So we get the following corollary. This could also be obtdiméth the methods of [15], which gives an
algorithm to obtain the generating functions of permutaiwith a given number of occurrences of 1-3-2.

Corollary 3 Lety(n) be the number of permutations &,, with at mostk occurrences of the pattern
1-3-2. For any constant’ > 1 andk > 0, we have

n k—%
Ve(n) < 4"n

s¢ /Tk!
whenn is sufficiently large.

So far we have only used Corollary 1. Now we illustrate what ba done with the refined formula
given in Theorem 1. For example, whgn= 0 then the coefficient of/™ is given by the expres-

sion > _o(—=1)* ((:L) (i) = Gr) (m;}c“)). This is equal to the Narayana numb®€(n, m) =
1

L(™)(,",) (see[29] for a combinatorial proof).
We can also get the coefficients for higher powerg.ofFor example it is conjectured in [29] that the

coefficient ofgy™ in (Wy(yD+ E)"~'|V) isequalto(,", ;) (,," ,)- Applying our results we can prove:
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Proposition 13 The coefficients afy™ and¢*y™ in (W|y(yD + E)"~1|V) are respectively:

n n and n+1 n+1\nm+m-—m?—4
m+1/\m—2 m—2/\m+2 2(n+1) '

Proof: A naive expansion of the Taylor seriesgigives a lengthy formula, which is simplified easily after
noticing that it is the product o(f];)2 and a rational fraction of andm. O
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