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We find an explicit expression for the generating function of the number of permutati§nawoiding a subgroup of
S generated by all but one simple transpositions. The generating function turns out to be rational, and its denominator
is a rook polynomial for a rectangular board.
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1 Introduction and Main Result

Let [p] = {1,...,p} denote a totally ordered alphabet prletters, and lett = (a41,...,0m) € [p1]™
B=(B1,...,Bm) € [p2]™ We say thatx is order-isomorphido B if forall 1 <i < j < mone hasy < q;
if and only if 3j < ;. For two permutationst € §, andt € S, anoccurrenceof T in Ttis a subsequence
1<ip<iz<...<ix<nsuch thafm,,...,m,) is order-isomorphic ta; in such a context is usually
called thepattern We say thatt avoidst, or is t-avoiding if there is no occurrence afin Tt Pattern
avoidance proved to be a useful language in a variety of seemingly unrelated problems, from stack sorting
[KA, Ch. 2.2.1] to singularities of Schubert varietiéS1LS]. A natural generalization of single pattern
avoidance isubset avoidangehat is, we say thatt € S, avoids a subsel C S if Ttavoids anyt € T.
The set of all permutations &, avoidingT C S is denoteds,(T). A complete study of subset avoidance
for the cas& = 3 is carried out in[[SS]. Fdt > 3 the situation becomes more complicated, as the number
of possible cases grows rapidly. Recently, several authors have considered the case ok gdrenal
has some nice algebraic properties. Paper [BDPP] treats the cas@viddre centralizer ok — 1 andk
under the natural action & on [K] (see also Sec. 3 for more detail). [NJAR]js a Kazhdan-Lusztig cell
of &, or, equivalently, the Knuth equivalence class (see [St, vol. 2, Ch. Al]). In this paper we consider
the case whefl is a maximal parabolic subgroup §f.

Let s denote the simple transposition interchangimmgdi + 1. Recall that a subgroup & is called
parabolicif it is generated bys,,...,s,. A parabolic subgroup d is calledmaximalif the number of
its generators equals— 2. We denote bR , the (maximal) parabolic subgroup &f,n generated by
S1,.-,9-1,941,-- -, S+m-1, and byf; m(n) the number of permutations & avoiding all the patterns in
R.m. In this note we find an explicit expression for the generating function of the seq{iénge)}.
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To be more precise, we prove the following more general result. Let us denotgs;...sc_1, that s,
o= (2,3,...,k,1) (written in one-line notation), and letbe an integer, & a < k—1 (here and in what
follows k=1 +m). We denote by (n) the number of permutations & avoiding the left coset®R m;

in particular, fl?m(n) coincides withfy m(n). LetF3, (x) denote the generating function pfZ (n)},

= ZO fl?m(n)xn

Recall that thd_aguerre polynomial £(x) is given by

d; (efxanrcx) )

and therook polynomiabf the rectangulasxt board is given by
Rst(X) = shLY S(—x 1)

for s<t and byRst(X) = R s(x) otherwise (se€[Ri, Ch. 7.4]).

Main Theorem. LetA = min{l,m}, p= max{l, m}, then

a _ :)\71r,r . (I)(r]n) A 'quflrl p—r—1
Fin(XRn(X) = 3 X1 3 (31250 (a0 > ("),

or, equivalently,
a IS ()
ﬁm(x)—r;xr! ML () rZo(kJrr)!x j:ZH( 1)

where k=14+m=A+ L

The proof of the Main Theorem is presented in the next section.
As a corollary we immediately get the following result (seel[Ma, Theorem 1]).

Corodllary 1 LetO<a< k-1, then

L300 = Tex®

2 (n) = (k=2)!(k—1)"2k  forn>k
L1V 7 nl forn<k.

Proof. SinceRy k1 = 1+ (k— 1)x, the Main Theorem implies

1-35 3xf+1( —r=2)! xk 2(

Fi 1(x) = k= D)x = '+Zoxr'

and the result follows. O

Another immediate corollary of the Main Theorem gives the asymptoticﬁ"ffﬁ(m) asn — oo,
Coroallary 1.2. flf‘m(n) ~ ¢y", where c is a constant depending on | and m, grslthe maximal root of
LY in particular,y < k— 2+ /1+4(1 — 1)(m—1).

Proof. Follows from standard results in the theory of rational generating functions (se€_e.g. [St, vol. 1,
Ch. 4]) and the fact that all the roots of Laguerre polynomials are simple(See [Sz, Ch. 3.3]). The upper
bound ony is obtained in(fiL]. |
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2 Proofs

First of all, we make the following simple, though useful observation.

Lemma 2 For any natural a, |, m, n such thdt<a <|+m-—1one has If‘m(n) = fr’;]fﬁ'*a(n).

Proof. Denote byp, andkp the involutionsS, — S, that take(iy,io, .. .,ik) to (i, ...,i2,i1) (reversa) to
(n+1—i1,n+1—ip...,n+1—1i,) (complement respectively. It is easy to see that for ahy S, the
involutionspy, andkp, provide natural bijections between the s&t6T ) andS,(pkT ), and betweeis,(T)
andS,(kkT), respectively. It remains to note thatko?RA m = 0'+m*aPmﬁ|. O

From now on we assume that> 0,1 > 1, m> 1 are fixed, and denote= n— m+a. It follows from
LemmgR that we may assume that m, and henc® < n. This means, in other words, that S belongs
to 0%R  if and only if (14,...,T)) is a permutation of the numbeast 1,...,a+1. In what follows we
usually omit the indices, |, mwhenever appropriate; for example, instead{f(n) we write justf (n).

For anyn > k and anyd such that 1< d < n, we denote bygy(i1,...,iq) = gﬁ;j_m(il, ...,iq) the number
of permutationst € $,(0%R i) such thaty =i for j =1,....d. Itis natural to extend), to the case
d = 0 by settinggn(0) = f(n).

The following properties of the numbegg(is, ..., iq) can be deduced easily from the definitions.

Lemma3

(i) Letn>kandl<i<n,then
gn(...7i,...7i,...):0.

(i) Letn>kandat+1<ij<bfor j=1,...,1,then
gn(il,...,i|):0.
(i) Letn>k,1<r<d<l,anda+1<ij<bforj=1,...,d, j#r,then

iy = f G- Loi - Lica-1oig-1) 1< <a
gn Leessld) = gnfl(ila---7ir715ir+l7-~~aid) |fb+1§|r§n

Proof. Property [i) is evident. Let us provg] (ii). By (i), we may assume that the numbers,i; are

distinct. Take an arbitrarte S, such thatr; =ij for j = 1,...,I. Evidently, for anyr < athere exists a
position j; > | such thatr;, =r; the same is true for any> b+ 1. Therefore, the restriction afto the
positions 12,....1,j1,]2,.-., ja, Jb+1, Jb+2; - - -, in (in the proper order) gives an occurrence & 62A n,

in . Hence ¢ S,(02A m), which means thadn (i1, ... ,ij) = 0.
To prove [iif), assume first that4 i, < a. Lettte § andm; =i for j =1,...,d. We definert € S§,_1
by

m—1 forl<j<r-1,
=19 TMs1—1 forj >randrg > ?r, Q)
Tjy1 for j > randmj 1 <ir.

We claim thatite $,(62R ) if and only if T € S,_1(0%RA m). Indeed, the only if part is trivial, since
any occurrence of € 0?R , in " immediately gives rise to an occurrencetoh 1. Conversely, any
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occurrence of in 1tthat does not include gives rise to an occurrence ofin 1. Assume that there
exists an occurrence afin 1t that includes,. Sincer < d < I, this occurrence of containsa entries
that are situated to the right gf and are strictly less than. However, the wholet contains onlya— 1
such entries, a contradiction. It now follows from (1) that propefiy (iii) holds fet il < a. The case
b+1<i; <nis treated similarly with the help of the transformatigne S,) — (T € S,_1) given by

T fori1<j<r-1,
n‘j’: My1—1 forj Zrandnj+1>?r,
Tjy1 for j > randmj 1 <ir.

d

Now we introduce the quantity that plays the crucial role in the proof of the Main Theorenm F&r

and 1< d < | we put
b

A(n,d) = Al (n,d) = z On(i1,..-,id)-
As before, this definition is extended to the cdse 0 by setting
A(n,0) = gn(0) = f(n).
Theorem 4 Letn>k+landl<d<|—1, then
A(n,d+1) = A(n,d) — (m—d)A(n—1,d) —dA(n—1,d—1). 2

Proof. First of all, we introduce two auxiliary sums:

b+1
Bnd) = Bln(nd)= Y gnlin,-.ia),
i1,..lg=a+1
b
C(nd) = Ciy(nd)= Z On(iz,...,iq),
11,...,lg=a

whereb = n—m+ a; once againB(n,0) = C(n,0) = f(n).
Let us prove three simple identities relating together the sequéic¢agd)}, {B(n,d)}, {C(n,d)}.

Lemma5 Letn>kandl <d <, then:
A(n,d)=A(n,d—1)— (m-aB(n-1,d-1)—-aC(n—1,d—1),
(m—a)A(n,d) = (m—a)B(n,d) — (m—a)dB(n—1,d — 1),
aA(n,d) =aC(n,d) —adC(n—1,d—1).
Proof. To prove the first identity, observe that by definitions and Lerfiria 3(iii) for thercasa, one has
b n

A(n,d—1)-A(nd) = _ Z l_zlgn(il,...,id)—A(n,d)
i1,.id_1=a+1lig=
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b a n
z Z gn(ilv"'7id)+ % gn(ila"'vid)
i1,..,lg_1=a+1 \ig=1 ig=b+1

b

(ath-1(i1—1,...,ig-1— 1)+ (M—a)gh-1(i1,..-,id-1))
i1, lg_1=a+1

= aC(n-1,d-1)+(m-a)B(n—-1,d-1),

and the result follows.
The second identity is trivial foa = m, so assume that€ a < m— 1 and observe that by definitions
and Lemmd]3{ii) andT]ii), one has

b d b
Bnd) = Y gn<i1,...,id)+z<, 'y gn<i17...,i,-1,b+1,i;+1...,id>>
11,..14 1j

b

d
A(n’d)+z On-1(i1, .-, 0j-1,0j41,---,id)
S gty Tgmart

= A(nd)+dB(n—1,d-1),

and the result follows.
Finally, the third identity is trivial fora = 0, so assume that<d a < mand observe that by definitions
and Lemmd]3{ii) andT]ii), one has

b d b
C(an) = z gn(il7..,7id)+z < z gn(ilv'~'aij17avij+1"'7id)>

i1,..,lg=a+1 =1 Tj,elg=a+1

d b
= A(n,d)+z ( gn_l(il—1,...,ij_1—1,ij+1—17...,id—1))
=1 \li1,..., fj,...,ld:a+l
= A(n,d)+dC(n—1,d-1),
and the result follows. O

Now we can complete the proof of Theor¢gm 4. Indeed, using twice the first identity of L§lnma 5, one
gets

A(nd+1) = A(nd)—(m-aB(n—1d)—aCn—1,d-1),

dA(n—1,d) = dA(n-1,d-1)—d(m—a)B(n—2,d—1)—-daC(n—2,d—1).

Next, the other two identities of Lemnjia 5 imply
A(n,d+1) —dA(n—1,d) = A(n,d) —dA(n—1,d - 1)

—((m—a)B(n—1,d) — (m—a)dB(n—2,d— 1)) — (aC(n— 1,d) —adC(n—2,d — 1))

=A(n,d)-dA(n—1,d—1)— (m—a)A(n—1,d) —aA(n—1,d),
and the result follows. O

The next result relates the sequerégn,d)} to the sequencgf(n)}.
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Theorem 6 Letn>k andl <d <, then

A(n,d) = ]i(l)ij!(r}‘) (T) f(n—j).

Proof. LetD(n,d) = D} ,(n,d) denote the right hand side of the above identity. We claim that fok+ 1
and 1<d <I|-1,D(n,d) satisfies the same relation (2)&&),d) does. Indeed,

D(n-1.d) = ﬁb ()()f(n 1-))
2 <jT1)(jil>f(n—j)+(—1)dd'<?;>f(n d-1),

Dn-1d-1) — §( 1] <T) <djl> fin—1—j)

and

Il
|
M2
T
=
—~
|
=
T
I3
|_\
~_
RN
— O
|
'_\
~_
—
>
|

and hence

D(n,d) — (m—d)D(n—1,d) — dD(N—1,d — 1) = f(n) + (m—d)(— 1)@ 1d! (r;) fn—d—1)
i“””“((?) )+ (T (L) 5T (22) -
% )i |( )(dTl>f(n—j)+(—1)d+1(d+1)!(dTl)f(n—d—l):D(n,d+1).

It follows thatD(n,d) (as well asA(n,d)) are defined uniquely far > k and 1< | < d by initial values
D(k,d), D(n,0), andD(n,1) (A(k,d), A(n,0), andA(n, 1), respectively). It is easy to see that for k
one hasA(n,O) D(n,0) = f(n). Next, the first identity of Lemmp 5 fat = 1 gives

A(n,1) = A(n,0) — (m—a)B(n—1,0) —aC(n—1,0) = f(n) —mf(n—1) forn>k.
On the other hand, by definition,
D(n,1) = f(n)—mf(n—1) forn>Kk,

and hencé\(n,1) = D(n,1). Finally, a simple combinatorial argument shows that

A(k,d) = d! (('j) (k—d)! —1'm for1<d<l.
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On the other hand,

D(k,d) = ji)(—l)jj! (T) (‘D (k= ])! —11m,

sincef(r) =rlfor1l <r <k-1andf(k) =kl —I'ml. To proveA(k,d) = D(k,d) it remains to check that

,i(_l)jj! (T) (T) (k=) =d! (('j) (k—d).

which follows from Lemmadl7 below.

Finally, we are ready to prove the Main Theorem stated in Sec. 1. First of all, by LErima&a{ii)) =
0 forn > k. Hence, by Theoreffj 6,

Zo(l)jj!cr) <IJ) f(n—j)=0 forn>k,

or, equivalently,

lZ)(—l)jj! (T) (Ij>xjf(n— j)IX""1=0 forn>k
=

As was already mentioned(r) =r!for 1 <r < k-1, therefore, summing over> k yields

' G (MY (N [ ea it
Recall that the rook polynomial of the rectanguart board,s < t, satisfies relation

o= 30() ()

(see [Ri, Ch. 7.4]). Hence, (3) is equivalent to

Let us divide the external sum in the above expression into three parts: the sum#fr@to A — 1, the
sum fromr = A to p— 1, and the sum from = pto k— 1. By Lemma[J7 below, the third sum vanishes,
while the second sum is equal to

p-1 MK —1 —1)!

Z (1) (r—)'(k r' '1).7

5, (L—r—=21)!r!
and the first expression of the Main Theorem follows. The second expression is obtained easily from (3)
and relation between rook polynomials and Laguerre polynomials given in Sec. 1. O

It remains to prove the following technical result, which is apparently known; however, we failed to
find a reference to its proof, and decided to present a short proof inspired by the brillianthoak [PWZ].
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Lemma?7 Letl<s<tandlet .
s (3 (
M(S,t) — (—l)l (I)n(l)
= (7)
Then: o
((ﬁ)) if n>s+t,
M(st)=¢ O ift<n<s+t—1,
Stt—n—-1
) ifs<n<t-1

Proof. Direct check reveals thd(s,t) is a hypergeometric series; to be more precise,
M(st) =2F1 [ 51].
Since—sis a nonpositive integer, the Gauss formula applies (See[PWZ, Ch. 3.5]), and we get

o T(z4t49T(-2)
MSY =M = —rs—2)

Recall that
T
(4)

" sintx’

rx)r(l—x)

If n>s+t, we apply (4) fox= —z+t+4s x=t—2z X=5—2 x=—z and get
M(st) = CT(n—t+1r(n—s+1) . sinmt—2sin(s—2) _ ("J)
o T(n—t—s+1)(n+1)z-n sintzsinmt+s—-2) ()

ft<n<s+t—1,weapply (4) fox=t—2z x=s—2z x=—z and get

Frn—t+1Lr(n—s+1)r(s+t—n) im sinTi(t — z) sinTi(s— 2) _0

M(st) = - rn+1) z-n sintz
Finally, if s<n<t—1, we apply (4) fox=s—z x= —z and get
. S+t—n-1
M(st) _M(stt=nr(n-s+1) 5|n1T(s—z) _ (_1)5( s )
rt—nfr(n+1) z-n sinmz ()

3 Concluding remarks

Observe first, that according to the Main Theoréf,(x) does not depend a in other words|Si(R m)| =
|Sh(0%R m)| for anya. We obtained this fact as a consequence of lengthy computations. A natural question

would be to find a bijection betweeh (R ) andS,(0?R m) that explains this phenomenon.
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Second, it is well known that rook polynomials (or the corresponding Laguerre polynomials) are related
to permutations with restricted positions, see [Ri, Ch.7,8]. Laguerre polynomials also arise in a natural
way in the study of generalized derangements (see [FZ] and references therein). It is tempting to find a
combinatorial relation between permutations with restricted positions and permutations avoiding maximal
parabolic subgroups, which could explain the occurrence of Laguerre polynomials in the latter context.

Finally, one can consider permutations avoiding nonmaximal parabolic subgro8psitfe first natu-
ral step would be to treat the case of subgroups generatkd-I3ysimple transpositions. It is convenient
to denote byR, |, 1, (with |1 + 12413 = k) the subgroup of, generated by all the simple transpositions
except fors, ands, 4i,; further on, we sef| |, 1,(N) = |Si(R, 1,15)|, @ndF, 1,15(X) = Snso fip o5 (N)X
It is easy to see thd, |, |,(X) = F,,,,(X), SO one can assume that< |3. This said, the main result of
[BOPR] can be formulated as follows: let> 3, then

k-3

Frik—2(x) = ;xrr! + % (1— (k—1)x— \/1— 2(k—1)x+ (k— 3)2x2> :

To the best of our knowledge, this is the only known instand&,qf i,(x). It is worth noting that even in
this, simplest case of nonmaximal parabolic subgroup, the generating function is no longer rational.
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