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Expander graphs are useful in the design and analysis of communication networks. Mukhopadhyay et al. intro-
duced a method to generate a family of expander graphs based on nongroup two predecessor single attractor Cellular
Automata(CA). In this paper we propose a method to generate a family of expander graphs based on 60/102 Null
Boundary CA(NBCA) which is a group CA. The spectral gap generated by our method is maximal. Moreover, the
spectral gap is larger than that of Mukhopadhyay et al.
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1 Introduction
Expander graphs were first defined by Bassalygo and Pinsker and their existence first proved by Pinsker
in the early 1970s [10]. Also expander graphs have utility in computational settings such as in the theory
of error correcting codes and the theory of pseudorandomness as well as a tool for proving results in
number theory and computational complexity [6, 8, 11]. Expander graphs are useful in the design and
analysis of communication networks. Mukhopadhyay et al. introduced a method to generate a family
of expander graphs based on nongroup two predecessor single attractor Cellular Automata(CA). In this
paper we propose a method to generate a family of expander graphs based on 60/102 Null Boundary
CA(NBCA) which is a group CA. The merit of our method is that it use regular, modular and cascadable
structure of 60/102 NBCA [1, 3, 4] to generate regular graphs of good expansion property with less
storage. The spectral gap generated by our method is maximal. Moreover, the spectral gap is larger than
that of Mukhopadhyay et al. [9].

2 Preliminaries
CA consist of a number of interconnected cells arranged spatially in a regular manner, where the state
transition of each cell depends on the states of its neighbors. The CA structure investigated by Wolfram
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[12] can be viewed as a discrete lattice of sites (cells), where each cell can assume the value either 0
or 1. The next-state of a cell is assumed to depend on itself and on its two neighbors (3-neighborhood
dependency). If the next-state function of a cell is expressed in the form of a truth table, then the decimal
equivalent of the output is conventionally called the rule number for the cell.

Neighborhood state 111 110 101 100 011 010 001 000
Next state 0 0 1 1 1 1 0 0 rule 60
Next state 0 1 1 0 0 1 1 0 rule 102

The top row gives all eight possible states of the three neighboring cells (the left neighbor of the ith
cell, the ith cell itself, and its right neighbor) at the time of instant t. The second and third rows give the
corresponding states of the ith cell at the time of instant t+ 1 for two illustrative CA rules.

Informally, expander graph is a graph G = (V,E) in which every subset S of vertices expands quickly,
in the sense that it is connected to many vertices in the set S of complementary vertices.

Definition 2.1 ([8]). Suppose G = (V,E) has n vertices. For a subset S of V define the edge boundary
of S, ∂S, to be the set of edges connecting S to its complement S. That is, ∂S consists of all those edges
(v, w) such that v ∈ S and w /∈ S. The expansion parameter for G is defined by

h(G) ≡ min
S:|S|≤n/2

|∂S|
|S|

where |X| denotes the size of a set X .

Example 2.2. Suppose G is the complete graph with n vertices, i.e., the graph in which every vertex is
connected to every other vertex. Then for any vertex in S, each vertex in S is connected to all the vertices
in S, and thus |∂S| = |S| × |S| = |S|(n− |S|). It follows that the expansion parameter for G is given by

h(G) ≡ min
S:|S|≤n/2

(n− |S|) = dn
2
e

It is a marvellous fact that properties of the eigenvalue spectrum of the adjacency matrix A(G) can be
used to understand properties of the graph G. This occurs so frequently that we refer to the spectrum
of A(G) as the spectrum of the graph G. It is useful because the eigenvalue spectrum can be computed
quickly, and certain properties, such as the largest and smallest eigenvalue, the determinant and trace, can
be computed extremely quickly [8].

Let G = (V,E) be an undirected graph and A(G) be the adjacency matrix of the graph G. And let
λi(A(G))(1 ≤ i ≤ n) be eigenvalues of A(G). Then A(G) is a real symmetric matrix and thus diagonal-
ized. Without loss of generality we can assume that λ1(A(G)) ≥ λ2(A(G)) ≥ · · · ≥ λn(A(G)).

Lemma 2.3. [1] Let C be a CA where state transition matrix T and C′ be the complemented CA derived
from C where state transition operator T . And let T

p
denote p times application of the complemented CA

operator T . Then
T

p
f(x) = [I ⊕ T ⊕ T 2 ⊕ · · · ⊕ T p−1]F (x)⊕ T pf(x)
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where T is the characteristic matrix of the corresponding noncomplemented rule vector and F (x) is an
n-dimensional vector (n=number of cells) responsible for inversion after XNORing. F (x) has ’1’ entries
(i.e., nonzero entries) for CA cell positions where XNOR function is employed and f(x) is the current
state assignment of the cells.

3 Properties of the eigenvalue spectrum
In this section, we give properties of the eigenvalue spectrum of the adjacency matrix A(G) of an undi-
rected graph G. The following three theorems are well-known.

Theorem 3.1. LetG be an undirected d-regular graph whose adjacency matrix isA(G). Then λ1(A(G)) =
d.

Theorem 3.2. Let G be an undirected d-regular graph. Then G is connected if and only if λ1(A(G)) >
λ2(A(G)).

Theorem 3.3. Let G be an undirected d-regular graph. Then G is bipartite if and only if λi(A(G)) =
−λn+1−i(A(G)), i = 1, 2, · · · , n.

Now we define the gap for the d-regular graph G to be the difference ∆(G) ≡ d− λ2(A(G)).

Theorem 3.4. [2] LetG be a d-regular graph with spectrum λ1(A(G)) ≥ λ2(A(G)) ≥ · · · ≥ λn(A(G)).
Then

∆(G)

2
≤ h(G) ≤

√
2d∆(G)

Example 3.5. Let G be an undirected graph with the adjacency matrix A(G) as the following:

T =



0 1 0 0 0 0 0 1 2 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 1 0 0 0 0 0 0 2 0
0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0 0 0 0 2 0 0 0
0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0 0 0 2 0 0 0 0 0
1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0
0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 1
0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0
0 0 0 0 2 0 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0
0 0 2 0 0 0 0 0 0 0 0 1 0 1 0 0
0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0


Then λ1(A(G)) = 4, λ2(A(G)) = λ3(A(G)) = 2

√
2, λ4(A(G)) = λ5(A(G)) = 2, λ6(A(G)) = · · · =

λ11(A(G)) = 0, λ12(A(G)) = λ13(A(G)) = −2, λ14(A(G)) = λ15(A(G)) = −2
√

2, λ16(A(G)) =

−4. Moreover, ∆(G) = 4− 2
√

2. Thus 2−
√

2 ≤ h(G) ≤ 4
√

2−
√

2.

Since λ1(A(G)) > λ2(A(G)) and λi(A(G)) = −λ17−i(A(G))(i = 1, 2, · · · , 16), G is connected and
bipartite.
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4 60/102 NBCA based expander graphs
In this section we show a construction of a family of random d-regular graphs using 60/102 NBCA. Let
C be the n-cell 60/102 NBCA whose state transition matrix T is as the following:

T =


1 0 0 0 ··· 0 0 0
0 1 1 0 ··· 0 0 0
0 0 1 1 ··· 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 ··· 1 1 0
0 0 0 0 ··· 0 1 1
0 0 0 0 ··· 0 0 1


Hereafter we write T by T =< 60, 102, 102, · · · , 102 >.

Clearly the characteristic (resp. minimal) polynomial c(x) (resp. m(x)) of T is c(x) = (x+ 1)n (resp.
m(x) = (x + 1)n−1). Since m(x) = (x + 1)n−1, we can obtain the following result. The proof of
Theorem 4.1 is very similar to the proof of Theorem 3.4 in [3].

Theorem 4.1. Let C be the n-cell 60/102 NBCA with state transition matrix T =< 60, 102, 102, · · · , 102 >.
Let C′ be the complemented CA derived from C with complement vector (a1, · · · , an−1, 1)t(ai ∈ {0, 1}, i =
1, 2, · · · , n − 1 where xt is the transpose of the given vector x) and state transition operator T . If
ord(T ) = 2a, then the following hold:
(a) all the lengths of cycles in C′ are the same.

(b) ord(T ) =

{
2a, if 2a−1 < n− 1 < 2a,

2a+1, if n− 1 = 2a+1.

Remark A. By Theorem 4.1, the state transition diagram of C′ does not have any attractor.

Example 4.2. Let C be the 4-cell 60/102 NBCA whose state transition matrix is T =< 60, 102, 102, 102 >.
Then the structure and the state transition diagram of C are as in Figs. 1(a) and 1(b).

(a) The structure and the state transition diagram of C (b) The state transition diagram G1 (resp. G2) of the comple-
mented CA with F1 = (0, 0, 0, 1)t (resp. F2 = (1, 1, 1, 1)t)

Fig. 1:
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Fig. 2: The graph G

Let F1 = (0, 0, 0, 1)t. Then by Lemma 2.3 T0 = 1, T1 = 2, T2 = 7, T3 = 4, T4 = 5, · · · ,
T14 = 11 and T15 = 8. Thus we obtain the state transition diagram G1 of the state transition operator T
of the complemented CA C′1 with complement vector F1 = (0, 0, 0, 1)t of C. Also we see that ord(T ) =
ord(T ) = 4 and all lengths of cycles in C are all the same by Theorem 4.1.

Fig. 1(b) shows the state transition diagramG1 andG2 of the complemented CA with F1 = (0, 0, 0, 1)t

and F2 = (1, 1, 1, 1)t respectively whose two adjacency 8 × 8 matrices A(G1) and A(G2) respectively
using Example 4.2 are as the following.

A(G1) =



0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0


A(G2) =



0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0


Let G be the graph obtained by the union of the graphs G1 and G2. Then A(G) is as the following:

A(G) =



0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1
1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1
1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0
1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0


The characteristic polynomial of A(G) is x6(x − 4)(x + 4)(x − 2)4(x + 2)4. Hence the eigenvalues of
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A(G) are λ1 = 4, λ2 = · · · = λ5 = 2, λ6 = · · · = λ11 = 0, λ12 = · · · = λ15 = −2, λ16 = −4.
Therefore by Theorem 3.2 and Theorem 3.3 G is connected and bipartite. Fig. 2 shows the graph G with
the adjacency matrix A(G).

Theorem 4.3. Let C be the 60/102 NBCA whose state transition matrix is T . Let C′1 (resp. C′2) be
the complemented CA derived from C with the complement vector F1 = (0, ∗, · · · , ∗, 1)t (resp. F2 =
(1, ∗, · · · , ∗, 1)t). Also let T 1X = TX ⊕ F1 and T 2X = TX ⊕ F2. Let G1 (resp. G2) be the graph
obtained from C′1 (resp. C′2). And let G be the union of two graphs G1 and G2 whose adjacency matrix
is A(G1) and A(G2) respectively. Then G is a bipartite 4-regular graph.

Table 1 shows the eigenvalue spectrum of A(G) which is the union of G1 and G2. In Table 1 let
F1 = (0, 1, 1, 1)t and F2 = (1, 1, 0, 1)t. Then the eigenvalue spectrum of A(G) is λ1 = 4, λ2 = · · · =
λ5 = 2, λ6 = · · · = λ11 = 0, λ12 = · · · = λ15 = −2, λ16 = −4. Therefore in this case the graph G is a
bipartite 4-regular graph.

Table 2 shows the result of an experimentation performed with the 60/102 NBCA based regular graph.
It measures the value of the two largest eigenvalues for random 60/102 NBCA based graphs for degree
4, 8, 12 and 16. Our results show that the spectral gap and hence the expansion increases proportionately
with the number of union operations (t). Table 3 shows that the spectral gap by the our method is larger
than the spectral gap by Mukhopadhyay’s method [9].

Theorem 4.4. Let C be the n-cell 60/102 NBCA. Also let x = (x1, x2, · · · , xn)t be a state of the
state transition diagram of the state transition matrix T of C. Then the immediate predecessor y =
(y1, y2, · · · , yn)t of x satisfies the following:

y1 = x1, yn = xn, yk = xk ⊕ yk+1 (k = 2, · · · , n− 1)

Remark B. It is easy to see that the inverse matrix T−1 of T is of the following form.

T−1 =


1 0 0 ··· 0 0 0
0 1 1 ··· 1 1 1
0 0 1 ··· 1 1 1
...

...
...

. . .
...

...
...

0 0 0 ··· 1 1 1
0 0 0 ··· 0 1 1
0 0 0 ··· 0 0 1


So the required time to get the immediate predecessors is O(n). For the given n-cell 60/102 NBCA,

the construction of d-regular graphs which have the maximum spectral gaps depend on the relationship
between F1 and F2. For example, in Table 1 let F1 = (0, 0, 0, 1)t and F2 = (1, 1, 1, 1)t. Then the spectral
gap is 2 which is the maximum value in the 4-regular graph.

Now let
F11 = {(0, a2, a3, · · · , an−2, 0, 1)|ai ∈ {0, 1}, i = 2, · · · , n− 2}

F12 = {(0, a2, a3, · · · , an−2, 1, 1)|ai ∈ {0, 1}, i = 2, · · · , n− 2}

F21 = {(1, a2, a3, · · · , an−2, 1, 1)|ai ∈ {0, 1}, i = 2, · · · , n− 2}

F22 = {(1, a2, a3, · · · , an−2, 0, 1)|ai ∈ {0, 1}, i = 2, · · · , n− 2}

and let U = (F11 × F21) ∪ (F12 × F22).
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Tab. 1: The eigenvalue spectrum of A(G). The eight vectors on the first row(resp. column) are the complement
vectors F1(resp. F2)

0000 0010 0100 0110 0001 0011 0101 0111

1000 -4(2) -4(1) -4(2) -4(1)

1100 0(10) -2(4) 0(10) -2(4) -4(1) -4(1) -4(1) -4(1)

4(4) 0(4) 4(4) 0(4) -2.8284(2) -2.8284(2) -2.8284(2) -2.8284(2)

2(4) 2(4) -2(2) -2(2) -2(2) -2(2)

4(3) 4(3) 0(6) 0(6) 0(6) 0(6)

1010 -4(1) -4(2) -4(1) -4(2) 2(2) 2(2) 2(2) 2(2)

1110 -2(4) 0(10) -2(4) 0(10) 2.8284(2) 2.8284(2) 2.8284(2) 2.8284(2)

0(4) 4(4) 0(4) 4(4) 4(1) 4(1) 4(1) 4(1)

2(4) 2(4)

4(3) 4(3)

1001 -4(2) -4(1) -4(2) -4(1)

1101 0(12) -2(4) 0(12) -2(4)

-2.8284(2) -2.8284(2) -2.8284(2) -2.8284(2) 4(2) 0(6) 4(2) 0(6)

-2(2) -2(2) -2(2) -2(2) 2(4) 2(4)

0(6) 0(6) 0(6) 0(6) 4(1) 4(1)

1011 2(2) 2(2) 2(2) 2(2) -4(1) -4(2) -4(1) -4(2)

1111 2.8284(2) 2.8284(2) 2.8284(2) 2.8284(2) -2(4) 0(12) -2(4) 0(12)

4(2) 4(2) 4(2) 4(2) 0(6) 4(2) 0(6) 4(2)

2(4) 2(4)

4(1) 4(1)

Tab. 2: Spectrum of the 4-cell 60/102 NBCA based regular graph

No. of Complement Degree First Second Spectral g/t
Union (t) vector Eigenvalue Eigenvalue Gap (g)

1 1,15 4 4 2 2 2
3 1,3,9,15 8 8 4 4 1.33
5 1,3,5,9,11,15 12 12 2 10 2
7 1,3,5,7,9,11,13,15 16 16 0 16 2.2857

Tab. 3: Comparison of Mukhopadhyay’s spectral gaps with our spectral gaps

No. of Union (t) g/t(Mukhopadhyay’s method) g/t(Our method)
1 0.76 2
3 1.03 1.33
5 1.14 2
7 1.54 2.2857
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Choose the complement vectors F1, F2 such that (F1, F2) ∈ U . Let G1 (resp. G2) be the graph with
F1 (resp. F2). Then we can construct an expander graph where spectral gap is maximal.

The following algorithm shows computing the four neighbors of a vertex in G which is the union of G1

and G2.

Algorithm (Computing neighbors of a vertex in G).

Input: Complement vectors (F1, F2) ∈ K and a state x ∈ G.

Output: The four neighbors (S1, S2, P1, P2) of x.

Step 1: Find the next state S1 (resp. S2) of x using the operator T 1 (resp. T 2).

S1 = T 1x = Tx⊕ F1

S2 = T 2x = Tx⊕ F2

/* Find the immediate predecessor P1 (resp. P2) by using Theorem 4.4 in Step 2 and Step 3 */

Step 2: Compute W := x⊕ F1 and V := x⊕ F2.

Step 3: ForW = (w1, w2, · · · , wn), V = (v1, v2, · · · , vn) and k = 2, · · · , n−1 findP1 := (p11, p12, · · · , p1n)
and P2 := (p21, p22, · · · , p2n)

p11 = w1, p1n = wn, p1k = wk ⊕ p1k+1

p21 = v1, p2n = vn, p2k = vk ⊕ p2k+1

In general the description of an expander d-regular graph grows exponentially with the number of
vertices as the increase of the size of 60/102 NBCA. However as we require to store only two complement
vectors F1 and F2, this problem is solved by the above algorithm.

5 Conclusion
In this paper, we proposed a method to generate expander graphs with good expansion properties based
on group 60/102 NBCA. The expansion properties by our method is better than the expansion properties
proposed by Mukhopadhyay et al.
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