
Automata 2010 — 16th Intl. Workshop on CA and DCS DMTCS proc. AL, 2010, 1–18

Faster Methods for Identifying Nontrivial
Energy Conservation Functions for Cellular
Automata

Leemon Baird and Barry Fagin
Academy Center for Cyberspace Research, Department of Computer Science, US Air Force Academy, Colorado
Springs, Colorado USA 80840

The biggest obstacle to the efficient discovery of conserved energy functions for cellular auotmata is the elimination
of the trivial functions from the solution space. Once this is accomplished, the identification of nontrivial conserved
functions can be accomplished computationally through appropriate linear algebra.

As a means to this end, we introduce a general theory of trivial conserved functions. We consider the existence of
nontrivial additive conserved energy functions (”nontrivials”) for cellular automata in any number of dimensions, with
any size of neighborhood, and with any number of cell states. We give the first known basis set for all trivial conserved
functions in the general case, and use this to derive a number of optimizations for reducing time and memory for the
discovery of nontrivials.

We report that the Game of Life has no nontrivials with energy windows of size 13 or smaller. Other 2D automata,
however, do have nontrivials. We give the complete list of those functions for binary outer-totalistic automata with
energy windows of size 9 or smaller, and discuss patterns we have observed.

Keywords: nontrivial conserved energy function, trivial conserved energy function, 1D cellular autamata, 2D cellular
automata, Game of Life

1 Preliminaries: basic definitions
We consider cellular automata with k states in n dimensions. The neighborhood of a cellular automaton
is the region of surrounding cells used to determine the next state of a given cell. The window of an
energy function for a cellular automaton is the region of adjacent cells that contribute to the function.
Both neighborhoods and windows are n-dimensional tensors, with the size of each dimension specified as
a positive integer. Given the size of such a tensor, it is useful to define the following 3 sets of tensors.

Definition 1.1. Cellular automata are composed of cells, each of which is in one of k states (or colors)
at any given time. The set C is the set of such colors, and the set C∗ is that set augmented with another
color named *. (* denotes a special state with certain properties that simplify our proofs. It is explained
in more detail in the pages that follow.)

C = {0, 1, 2, . . . , k − 1} (1.1)

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/dmALind.html

2 Leemon Baird and Barry Fagin

C∗ = C ∪ {∗} (1.2)

It is sometimes useful to choose one color to be treated specially. In all such cases, the color 0 will be
chosen.

Definition 1.2. An n-dimensional cellular automaton rule is a function R that gives the color of a given
cell on the next time step as a function of a neighborhood of cells centered on that cell on the current
time step. The neighborhood is an n-dimensional tensor of size w1 × · · · × wn, where each wi is an odd,
positive integer.

R : Cw1×···×wn → C (1.3)

Definition 1.3. An n-dimensional cellular automaton is an n-dimensional tensor whose elements are in
C, and which is updated on each time step according to a cellular automaton rule R, applied to every cell
in parallel. The rule is a function applied to each cell and its neighbors, where neighbors wrap toroidally
(i.e. the top edge is considered adjacent to the bottom, the left edge is adjacent to the right, and so on for
each dimension).

Definition 1.4. The successor function advances a region within a cellular automaton one time step by
applying a rule R to a region M of size s1 × · · · × sn

T : (Cw1×···×wn → C)× Cs1×···×sn → C(s1−w1+1)×···×(sn−wn+1)

which is defined as:

T (R,M) = M ′ where M ′i1,...,in = R(M(i1...i1+w1−1),...,(in...in+wn−1)) (1.4)

Note that T (R,M) is defined for an M that is only a portion of the cells, and so it does not wrap around
toroidally. Instead, it returns a tensor that is smaller than M in each dimension. Also note that the ellipses
on the right side of the equation are used in two different ways. Each element of the result comes from
applying the R function to only a portion of the M tensor, which includes those elements of M whose first
coordinate is in the range [i1, i1 +w1 − 1], and whose second coordinate is in the range [i2, i2 +w2 − 1],
and so on up to the nth coordinate being in the range [in, in + wn − 1].

Definition 1.5. A linear additive energy function (or energy function) is a function f : Cs1×···×sn → R
that assigns a real number to a window of size s1 × · · · × sn within a cellular automaton.

Definition 1.6. The total energy etot : Cu1×···×un → R of a given state U of an entire cellular automaton
universe with u1 × · · · × un cells, with respect to a given energy function f , is

etot(U) =
∑
W

f(UW) (1.5)

where U is the universe state for a cellular automaton, W is the position of the energy window within that
universe, and UW is that window within the universe, which wraps toroidally at the edges of the universe.

Faster Methods for Identifying Nontrivial Energy Conservation Functions for Cellular Automata 3

Definition 1.7. A conserved linear additive energy function (or a conserved function) for a given cellular
automaton rule is an energy function that for a universe of any size, and for any given state of that universe,
will assign the same total energy to that universe for both that state and its successor.

Definition 1.8. A trivial conserved linear additive energy function (or a trivial) is an energy function
that for a universe of any size, will assign the same total energy to that universe regardless of its state. A
nontrivial conserved linear additive energy function (or a nontrivial) for a given cellular automaton rule
is a conserved energy function that is not trivial.

Definition 1.9. Given n positive integers s1, . . . , sn defining the size of an n-dimensional tensor, the
set B(s1, . . . , sn) is the set of all tensors over C of that size. This set is partitioned into two sets,
Z(s1, . . . , sn), the zero-sided tensors, which have at least one side that contains the origin element and is
filled entirely with zero elements, and Z̄(s1, . . . , sn), the non-zero-sided tensors, which do not have such
a side. The origin element is the element of the tensor at location (1, 1, . . . , 1).

B(s1, . . . , sn) = Cs1×···×sn (1.6)
Z(s1, . . . , sn) = {T ∈ B(s1, . . . , sn) | ∃i∀j∀sj Ts1,...,si−1,1,si+1,...,sn = 0} (1.7)
Z̄(s1, . . . , sn) = B(s1, . . . , sn) \ Z(s1, . . . , sn) (1.8)

So in 1 dimension, the zero-sided vectors are those whose with a 0 as the first element. In 2 dimensions,
the zero-sided matrices are those with a top row of all zeros, or a leftmost column of all zeros, or both.

It is useful to define a matching function H that can be used in the construction of various functions
over these tensors. The function returns 1 iff two tensors have elements that match, where the * symbol is
treated as matching any color.

Definition 1.10. Given n-dimensional tensors over C∗, the function
H : Cs1×···×sn∗ × Cs1×···×sn∗ → {0, 1} is defined as

H(A,B) =


1 if ∀i∀si As1,...,sn = Bs1,...,sn

∨As1,...,sn = ∗
∨Bs1,...,sn = ∗

0 otherwise

(1.9)

Given an n-dimensional tensor, it is useful to unwrap it into a 1D string of characters. This will be
done in row major order. For matrices, this means the elements will be read from left to right across the
top row, then left to right across the second row, and so on down to the bottom row. Tensors of other
dimensionalities are unwrapped similarly, with the last dimension changing most quickly, and the first
dimension changing most slowly. It is useful to have a function Vnum(T) that unwraps the elements of
tensor T , then converts the resulting string to an integer by treating it as a number in base c, with the first
element being the most significant digit, and the last being the least significant.

Definition 1.11. An n-dimensional tensor A with elements in C can be converted to an integer by the
function Vnum : Cs1×···×sn → Z, which treats the elements of the tensor as digits base k, where the
elements are taken in row major order, treating the first as the least significant digit, and the last as the

4 Leemon Baird and Barry Fagin

most significant.

Vnum(A) =

s1∑
i1=1

s2∑
i2=1

· · ·
sn∑

in=1

Ai1,i2,...,in

n∏
j=1

k(ij−1)
∏n

m=j+1 sm (1.10)

For this definition, the rightmost product is understood to be 1 for all cases where the lower bound exceeds
the upper.

Definition 1.12. An n-dimensional tensor with elements in C can be converted to a binary vector by the
function Vt : Cs1×···×sn → {0, 1}(ks1s2...sn), which is defined as

Vt(M) = v where vi =

{
1 if i = Vnum(M) + 1

0 otherwise
(1.11)

The vector Vt(M) has one element for each possible color pattern for a tensor of the same size as M .
That vector will be all zeros, except for a 1 in the position corresponding to the pattern M .

Definition 1.13. A function f : Cs1×···×sn → R can be converted to a real vector with ks1s2...sn elements
by the function V : (Cs1×···×sn → R)→ Rks1s2...sn , which is defined as

V (f) =
∑

M∈B(s1,...,sn)

f(M) · Vt(M) (1.12)

This vector is a convenient way to represent an energy function. It completely specifies the energy func-
tion, by listing the output of the function for every possible input. We will define various classes of energy
functions by simultaneous linear equations, treating the elements of this vector as the variables.

Note that the energy function window is independent of the CA neighborhood. Energy functions can be
defined over regions different from the scope of the transition rule of the CA. Our work with 1D CAs in
[1], for example, has identified conserved energy functions with windows of size 1× 5, 1× 6 and larger,
for CAs that have neighborhoods of size 1× 3.

Definition 1.14. Given tensor M of size m1 × · · · × mn, which is a region within an n-dimensional
universe, and given an energy window size of s = (s1, . . . , sn), a vector representing the total energy of
all energy windows that fit within M can be found with the function

e : Zn × Cm1×···×mn → Zks1s2...sn

which is defined as

e(s,M) =

m1−s1+1∑
i1=1

m2−s2+1∑
i2=1

· · ·
mn−sn+1∑

in=1

Vt(Mi1...i1+s1−1,...,in...in+sn−1) (1.13)

The e(s,M) function slides the energy window to all possible positions that fit entirely within the
matrix M , and finds the energy at each position. It then sums all the energies coming from identical
patterns, and constructs a vector with the total energy derived from each possible pattern. The sum of
the elements of this vector would simply be the total energy of M . But it is useful to maintain the vector
of separate values when generating sets of linear equations that define the trivials, the nontrivials, or the
conserved functions.

Faster Methods for Identifying Nontrivial Energy Conservation Functions for Cellular Automata 5

Definition 1.15. For a positive integer n, the function N : Zn → Z is defined as

N(s1, . . . , sn) =

2n−1∑
b=1

k
∏

i si−bi(−1)1+
∑

i bi (1.14)

where bi is the ith bit of integer b written in binary, with bit 1 being least significant and bit n being most.
In 1 and 2 dimensions this reduces to:

N(c) = kc−1 (1.15)

N(r, c) = k(r−1)c + kr(c−1) − k(r−1)(c−1) (1.16)

It will be proved below that this gives the cardinality of many of the sets that will be considered here.
It equals the number of zero-sided tensors of a given size, the number of trivials, and the number of unit
complements. And when subtracted from a simple power of 2, it yields the number of non-zero-sided
tensors, the number of equations defining the conserved functions, and the number of equations defining
the nontrivials. These terms are defined and the counts proved below.

Definition 1.16. In n dimensions, the seven transforms that operate on tensors of size s1 × · · · × sn

PC :Cs1×···×sn∗ → Cs1×···×sn∗ (1.17)

P∗ : Z×Cs1×···×sn∗ → Cs1×···×sn∗ (1.18)

Prot : Z×Cs1×···×sn∗ → Cs1×···×sn∗ (1.19)

PLD : Z×Cs1×···×sn∗ → Cs1×···×sn∗ (1.20)

PRD : Z×Cs1×···×sn∗ → Cs1×···×sn∗ (1.21)

PL :Cs1×···×sn∗ → Cs1×···×sn∗ (1.22)

PR :Cs1×···×sn∗ → Cs1×···×sn∗ (1.23)

are defined to be:

PC(M) = M ′ where M ′i1,...,in =

{
0 if ∀j ij = dsj/2e
Mi1,...,in otherwise

(1.24)

P∗(d,M) = M ′ where M ′i1,...,in =

{
∗ if id = 1

Mi1,...,in otherwise
(1.25)

Prot(d,M) = M ′ where M ′i1,...,in = Mi1,...,id−1, 1+(id mod sd) ,id+1,...,in (1.26)

PLD(d,M) =

{
P∗(d,M) if ∀j∀ij Mi1,...,id−1,1,id+1,...,in ∈ {0, ∗}
M otherwise

(1.27)

PRD(d,M) =

{
Prot(P∗(d,M)) if ∀j∀ij Mi1,...,id−1,1,id+1,...,in ∈ {0, ∗}
M otherwise

(1.28)

PL(M) = PLD(1, PLD(2, . . . PLD(n,M) . . .)) (1.29)
PR(M) = PRD(1, PRD(2, . . . PRD(n,M) . . .)) (1.30)

6 Leemon Baird and Barry Fagin

The function Prot(d,M) rotates the elements of tensor M along dimension d, so that one side that
included the origin moves to the opposite side. The function PC sets the central element to zero. The
function PL transforms a zero-sided tensor by replacing the 0 elements on each all-zero side with *
elements. And PR does the same, then rotates it so each modified side moves to the opposite side. The
functions P∗, PLD, and PRD are only used here to define the other functions, and won’t be used again.

The following gives three examples of PL and PR applied to zero-sided matrices of size 3× 5. In each
example, M is a zero-sided matrix, where the all-zero side is on the left, top, and both, respectively:

M =
0 1 1 1 1
0 0 1 0 1
0 0 1 0 0

PL(M) =
* 1 1 1 1
* 0 1 0 1
* 0 1 0 0

PR(M) =
1 1 1 1 *
0 1 0 1 *
0 1 0 0 *

(1.31)

M =
0 0 0 0 0
1 0 1 1 1
0 0 0 0 1

PL(M) =
* * * * *
1 0 1 1 1
0 0 0 0 1

PR(M) =
1 0 1 1 1
0 0 0 0 1
* * * * *

(1.32)

M =
0 0 0 0 0
0 1 0 0 0
0 1 0 1 0

PL(M) =
* * * * *
* 1 0 0 0
* 1 0 1 0

PR(M) =
1 0 0 0 *
1 0 1 0 *
* * * * *

(1.33)

Definition 1.17. The function PZ : Cs1×···×sn → C(2s1−1)×···×(2sn−1) takes a small n-dimensional
tensor and pads it with zero elements on many of its sides to create a large n-dimensional tensor. In each
dimension, if the small tensor was of size si in that dimension, then the large tensor will be of size 2si−1
in that dimension. The zero elements are added in such a way that the last nonzero element in the original
tensor becomes the center element in the new tensor.

For example,

PZ

 1 0 1 1 0
0 1 0 0 0
0 0 0 0 0

 =

0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(1.34)

In this 2D example, the small matrix M is of size 3×5, and PZ(M) is of size (2·3−1)×(2·5−1) = 5×9.
Note that this M happens to have 4 nonzero elements, arranged in a sort of V shape. If the elements of
M are read in row major order (i.e. left to right across the top row, then left to right on the second row,
etc.), then the last nonzero element to be read is the bottom of the V. The PZ function pads with zeros in
such a way as to yield a large matrix of the correct size, with that last nonzero element in the exact center
of the large matrix.
Definition 1.18. For a given tensor size s1 × · · · × sn, the set T is defined to be the following set of
functions

T (s1, . . . , sn) = {fM |M ∈ Z(s1 × · · · × sn)} (1.35)

Faster Methods for Identifying Nontrivial Energy Conservation Functions for Cellular Automata 7

where

fM (x) =

{
1 if M = 0

H(x, PL(M))−H(x, PR(M)) otherwise
(1.36)

2 Theoretical results
Proofs of the theorems below are provided in a separate appendix available from the authors.

Theorem 2.1. The cardinality of the set Z(s1, . . . , sn) is N(s1, . . . , sn).

Theorem 2.2. The cardinality of the set Z̄(s1, . . . , sn) is ks1s2...sn −N(s1, . . . , sn).

Theorem 2.3. The set of coefficient vectors for one minimal set of linear equations that define the trivial
conserved functions with energy windows of size s = (s1, . . . , sn) is {e(s, PZ(A))− e(s, PC(PZ(A))) |
A ∈ Z̄(s1, . . . , sn)}.
Theorem 2.4. The set of coefficient vectors for one set of linear equations that defines the conserved
functions with energy windows of size s = (s1, . . . , sn) for cellular automaton rule R with neighborhood
of size w = (w1, . . . , wn) is

{e(s, PZ(A))−e(s, PC(PZ(A))− e(s, T (R,PZ(A))) + e(s, T (R,PC(PZ(A))))

| A ∈ Z̄(s1 + w1 − 1, . . . , sn + wn − 1)}
Theorem 2.5. The set T (s1, . . . , sn) is a basis set for the space of all trivial additive conserved functions
with energy windows of size s1 × · · · × sn.

Theorem 2.6. A complement of the coefficient vectors for the equations defining the trivials for energy
windows of size s1×, . . . ,×sn is {Vt(M) |M ∈ Z}.

Note that by the definition of complements, this implies that when searching for conserved functions,
without loss of generality we can constrain the energy functions to assign an energy of 0 to any window
that is a zero-sided tensor. This corresponds to deleting certain columns in the matrix that defines the
conserved functions. After that deletion, there will be solutions to those equations if and only if nontrivials
exist. If such solutions do exist, then those solutions are guaranteed to be nontrivial conserved functions,
and the union of those solutions with the trivials will span the space of conserved functions. This allows
faster searches for nontrivials.

Figure 1 summarizes all the theorems of this paper, giving four examples of the M matrix for each
concept. Figure 2 applies the ideas of this paper to the results of [1] and [3], expressing the basis functions
as a linear sum of the matching H-functions of Definition 1.10.

8 Leemon Baird and Barry Fagin

Energy window matrix
Size: r × c
Count: krc

10010
00000
00100

01010
10101
01010

11111
11111
11111

00000
00000
00000

Zero-sided matrix
Size: r × c
Count:
N(r, c) =k

(r−1)c
+ k

r(c−1)

−k(r−1)(c−1)

01111
00101
00100

00000
10111
00001

00000
01000
01010

00000
00000
00000

Unit complement function
Size: r × c
f(x) = H(x,M)

01111
00101
00100

00000
10111
00001

00000
01000
01010

00000
00000
00000

Trivial conserved function
Size: r × c
f(x) = H(x,M)−H(x,M

′
)

M =
*1111
*0101
*0100

M
′
=

1111*
0101*
0100*

M =

10111
00001

M
′
=

10111
00001

M =

*1000
*1010

M
′
=

1000*
1010*

f(x) = 1

Non-zero-sided matrix
Size: r × c
Count: krc −N(r, c)

01000
10000
10001

10000
11000
00000

10111
00000
00000

10000
00000
00000

Equations defining the
trivial conserved functions
Size: (2r − 1)× (2c− 1)
0 = e(M)− e(M ′′)

010000000
100000000
100010000
000000000
000000000

000000000
000100000
000110000
000000000
000000000

000000000
000000000
101110000
000000000
000000000

000000000
000000000
000010000
000000000
000000000

Non-zero-sided matrix
Size: (r + 2)× (c + 2)
Count:
k(r+2)(c+2) −N(r + 2, c + 2)

0 0 0 0 1 0 1
0 0 0 0 0 1 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0

1 0 0 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 0 0

1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0

1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Equations defining
the conserved functions
Size: (2r + 3)× (2c + 3)
0 =e(M)− e(M

′
)

−e(s(M)) + e(s(M
′
))

0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 1: Summary of the main theoretical results of this paper, with four examples of each concept. The proofs are for
arbitrary dimensions, neighborhood sizes, and number of colors, but the figure shows only 2D examples, for a CA
with a 3× 3 neighborhood, and k = 2 colors. In each case, M ′ is M with the central bit set to 0. For the equations,
the large matrix is formed by padding the small matrix with zeros such that the last 1 bit ends up in the center of the
large matrix (where “last” is the last 1 found when traversing the elements in row major order). In each of the four
sections, the listed concepts all have the same count. For example, the number of zero-sided matrices of a given size
equals the number of unit complement functions, which equals the number of trivials.

Faster Methods for Identifying Nontrivial Energy Conservation Functions for Cellular Automata 9

CA Basis

170
184
204

f(x) =H(x, 1)

12
14
15
34
35
42
43
51
140
142

f(x) =H(x, 1 0)

200 f(x) =H(x, 1 1)

2
3
172

f(x) =H(x, 1 0 0)

4 f(x) =H(x, 0 1 0)

10 f(x) =H(x, 1 * 0)

56
76

f(x) = H(x, * 1 0)
+H(x, 1 1 0)

138 f(x) = H(x, 1 0 0)
+H(x, 1 1 *)

1 f(x) =H(x, 1 0 0 0)

11
27

f(x) = H(x, 1 0 0 *)
+H(x, 1 0 1 1)

29 f(x) = H(x, * 1 0 0)
+H(x, 1 1 0 0)
+H(x, 1 0 1 *)

38
46

f(x) = H(x, 1 0 0 *)
+H(x, 1 1 0 1)

72 f(x) =H(x, 0 1 1 0)

5 f1(x) = H(x, 0 1 0 * 1)
+2H(x, 1 0 * 0 *)
− H(x, 1 0 1 0 *)
+ H(x, 1 0 0 1 0)

f2(x) = H(x, 1 * 0 * 0)

19 f(x) = H(x, 1 0 1 0 0)
+H(x, 1 1 0 0 *)

CABasis

24 f(x) = H(x, 1 0 0 0 *)
+H(x, 1 0 0 1 0)
+H(x, 1 1 0 1 *)
+H(x, 1 1 1 0 0)

36 f(x) = H(x, 0 0 1 0 0)
+H(x, 1 1 0 1 1)

108f(x) = H(x, * 0 1 0 0)
+ H(x, 1 0 1 0 0)
+ H(x, 1 0 1 1 1)
+2H(x, 1 1 0 0 *)
+ H(x, 1 1 1 0 1)

132f(x) =H(x, 0 1 0 1 0)

23 f(x) = H(x, 0 0 1 1 0 0)
+H(x, 1 1 0 0 1 1)

50
178

f(x) = H(x, 0 1 1 0 0 1)
+H(x, 1 0 0 1 1 0)

77 f1(x) =H(x, 0 1 1 0 0 1)

f2(x) =H(x, 1 0 0 1 1 0)

232f1(x) = H(x, 0 1 1 0 0 0)
−H(x, 1 0 1 1 0 0)
+H(x, 1 1 0 0 1 0)
−H(x, 1 1 1 0 0 1)

f2(x) = H(x, 1 1 0 0 1 1)

44 f(x) = H(x, 1 0 0 0 * * * *)
+H(x, 1 0 1 0 0 1 * *)
+H(x, 1 0 1 0 1 1 0 1)
+H(x, 1 0 1 1 1 0 1 *)
+H(x, 1 1 0 0 1 * * *)
+H(x, 1 1 1 1 0 1 * *)

73 f(x) =H(x, 0 1 1 0 0 1 1 0)

7 f(x) = H(x, 0 0 0 1 1 0 0 0 *)
+H(x, 0 0 0 1 1 0 0 1 0)
+H(x, * 0 1 1 0 0 0 1 1)
+H(x, * 1 1 0 0 1 0 1 1)
+H(x, 1 1 1 0 0 0 1 1 *)

CABasis

33 f(x) = H(x, 0 0 0 1 0 0 0 1 0 0 * *)
− H(x, 0 0 0 1 0 0 0 1 0 0 1 *)
+2H(x, 0 0 0 1 0 0 0 1 1 * * *)
− H(x, 0 0 0 1 0 0 0 1 1 1 * *)
− H(x, 0 0 0 1 0 0 0 1 1 0 0 *)
− H(x, 0 0 0 1 0 0 0 1 1 0 1 0)
+ H(x, 0 0 0 1 0 1 1 0 0 0 1 1)
+ H(x, 0 0 0 1 0 1 1 1 0 1 1 1)
+ H(x, 0 0 0 1 1 0 1 0 0 1 * *)
+2H(x, * 0 0 1 1 0 1 1 0 0 0 0)
− H(x, 1 0 0 1 1 0 1 1 0 0 0 0)
+ H(x, 0 0 0 1 1 0 1 1 0 0 1 *)
+ H(x, 0 0 0 1 1 0 1 1 1 0 0 *)
+ H(x, 0 0 0 1 1 0 1 1 1 0 1 0)
+ H(x, 0 0 0 1 1 0 1 1 1 1 * *)
+ H(x, 0 0 1 0 0 0 1 1 0 1 0 0)
+ H(x, 0 * 1 0 1 1 0 0 0 1 0 0)
+ H(x, 0 * 1 0 1 1 1 0 1 0 0 1)
+ H(x, 0 * 1 0 1 1 1 0 1 1 0 0)
+3H(x, 0 0 1 1 0 1 1 0 0 0 1 *)
− H(x, 0 0 1 1 0 1 1 0 0 0 1 0)
+ H(x, 0 0 1 1 0 1 1 1 0 1 0 0)
+3H(x, 0 0 1 1 0 1 1 1 0 1 1 *)
− H(x, 0 0 1 1 0 1 1 1 0 1 1 0)
+ H(x, 1 0 0 1 0 0 0 1 0 0 0 *)
+ H(x, 1 0 0 1 0 0 0 1 1 0 1 1)
+2H(x, 1 0 0 1 0 1 1 0 0 0 * *)
− H(x, 1 0 0 1 0 1 1 0 0 0 0 *)
− H(x, 1 0 0 1 0 1 1 0 0 0 1 0)
+ H(x, 1 0 0 1 0 1 1 1 0 1 0 0)
+2H(x, 1 0 0 1 0 1 1 1 0 1 1 *)
− H(x, 1 0 0 1 0 1 1 1 0 1 1 0)
− H(x, 1 0 0 1 1 0 1 1 0 0 0 1)
− H(x, 1 0 0 1 1 0 1 1 1 0 1 1)
+ H(x, 1 0 1 1 0 1 1 0 0 0 1 1)
+ H(x, 1 0 1 1 0 1 1 1 0 1 1 1)
+ H(x, 1 1 0 0 0 1 0 0 0 * * *)
+ H(x, 1 1 0 0 0 1 1 0 1 0 0 *)
+ H(x, 1 1 0 0 0 1 1 0 1 1 * *)
+2H(x, 1 1 1 0 1 1 0 0 0 * * *)
− H(x, 1 1 1 0 1 1 0 0 0 0 * *)
− H(x, 1 1 1 0 1 1 0 0 0 1 0 1)
+2H(x, 1 1 1 0 1 1 1 0 1 0 0 *)
− H(x, 1 1 1 0 1 1 1 0 1 0 0 0)
+2H(x, 1 1 1 0 1 1 1 0 1 1 * *)
− H(x, 1 1 1 0 1 1 1 0 1 1 0 1)

164f(x) = H(x, 0 0 1 0 0 1 0 0 1 0 0 * *)
+H(x, 0 1 1 0 1 1 0 1 1 0 1 1 0)

94 f(x) = H(x, 0 1 1 1 0 0 1 0 1 1 1 1 0 1)
+H(x, 1 0 1 0 0 1 0 1 1 1 1 0 1 *)
+H(x, 1 0 1 1 1 1 0 1 0 0 1 0 1 *)
+H(x, 1 0 1 1 1 1 0 1 0 0 1 1 1 0)

104f1(x) = H(x, 0 0 1 0 1 0 1 1 0 1 0 1 0 0)
+H(x, 0 0 1 0 1 1 1 1 0 1 0 0 * *)
+H(x, 0 0 1 1 0 0 1 1 0 0 0 * * *)
+H(x, 0 0 1 1 0 0 1 1 0 0 1 0 * *)
+H(x, 0 0 1 1 0 0 1 1 0 0 1 1 0 1)
+H(x, 0 0 1 1 0 0 1 1 0 0 1 1 1 *)

f2(x) = H(x, 0 0 1 1 0 0 1 1 0 0 1 1 0 0)

Fig. 2: 1D Basis functions. For each CA, this lists the lowest-order nontrivial conserved functions. The
given functions, combined with the trivials, constitute a basis set for the space of all conserved func-
tions for that CA. The table contains all 88 of the non-isomorphic primitive CAs, except those that
are known to have no nontrivials (0,8,32,40,128,136,160,168,60,30,90,154), and those that have no known
nontrivials and have been proved to have none at least up to and including size 16 energy windows
(106,150,6,9,13,18,22,25,26,28,37,41,45,54,57,58,62,74,78,105,110, 122,126,130,134,146,152,156,162).

10 Leemon Baird and Barry Fagin

3 Computational results
The challenge in identifying cellular automata with a nontrivial additive energy conservation function
(hereafter referred to as a ”nontrivial”) is the enumeration of the trivial functions and their elimination
from the solution space. The actual calculation of the nontrivials can then be reduced to the calculation
of the null space of the system of corresponding state space equations. Thus the theorems and definitions
of the previous section may be used as the basis for computational identification of cellular automata with
nontrivials of various orders. Computationally, this proceeds as follows:

1) Choose a CA and energy window size (s1, s2).
2) For all possible matrices M given by Theorem 2.4, generate the corresponding state space equations.
3) To remove the trivials from the solution space, delete the columns associated with the zero-sided

tensors as determined by Theorem 2.6. This has the additional benefit of significantly reducing the size of
the energy vectors and, therefore, the state space matrix as a whole.

4) Determine the rank of the resulting matrix. If it is full rank, the system of equations has no solution,
and therefore no nontrivial exists for the given CA and window size. If the matrix is rank-deficient, a
nontrivial exists. It is completely characterized by the basis vectors that are the columns of the matrix’s
null space.

In [1], we gave a complete taxonomy of binary nontrivials for 1D cellular automata up for energy
windows up to size 16. Using the definitions and theorems previously presented, we now extended these
results to binary 2D automata, for energy windows up to size 9.

There are a total of kk
9

k-colored 2D cellular automata (ignoring isomorphic entries). This number
is so large that any investigation other than a random sampling is effectively impossible. Accordingly,
drawing substantive conclusions about unrestricted 2D cellular automata seems to the authors extraordi-
narily difficult. To reduce the scope of the problem and make a more complete investigation possible, we
consider only outer totalistic CAs: Those for which the next state of the cell is a function only of the total
number of colors of a given type in the region surrounding the cell and the cell itself. For binary CAs,
this means that only the total number of 1’s in a cell’s neighborhood (including its own value) must to be
calculated to determine the cell’s next state. Conway’s Game of Life is a cellular automaton of this type.

Restricting the search space to outer totalistic automata significantly reduces the size of the problem.
For a 2D CA, the neighborhood is of size 9, and therefore the total number of occupied cells in a cell’s
neighborhood ranges from 0 through 8. For binary automata, one of four outcomes are possible: (S)ame,
(B)irth, (D)eath, and (F)lip (Flip changes 0 to 1 and vice versa). Thus any outer totalistic CA can be
represented as a character string of the form S,B,D,F. Using this notation, if we count the neighbors from
0 to 8 from left to right, Conway’s Game of Life would be written as ”DDSBDDDDD”. We refer to this
description at the CA’s rule vector. Note that the use of symbols S and F permits the incorporation of the
central state into the transition rule.

It is known that renumbering the colors of a CA in reverse order and changing the outcomes corre-
spondingly produces an CA identical to the original, up to isomorphism. Using the proposed notation,
this corresponds to reversing the order of the letters, swapping S with F, and swapping B with D. The rule
vector of every CA can be manipulated in this way to produce a unique and distinct isomorph, so the total
number of unique totalistic binary CAs is 49/2 = 217. This is considerably smaller than the non-totalistic
case.

The definitions and theorems in this paper give the dimensions of the matrices to be analyzed as a
function of the energy window (independent of the CA being analyzed). We show the matrix sizes for

Faster Methods for Identifying Nontrivial Energy Conservation Functions for Cellular Automata 11

some 2D examples in Table 1.

Energy window Energy window
height (s1) width (s2) dlog2 rowse dlog2 colse

1 2 16 1
1 3 19 2
1 4 23 3
2 2 20 4
1 5 26 4
1 6 29 5
2 3 25 6
1 7 32 6
1 8 35 7
2 4 29 8
1 9 39 8
3 3 30 9

Tab. 1: State matrix sizes for various energy windows

Column three shows the ceiling of the log base 2 of the maximum number of energy vectors needed
to determine the existence of a nontrivial. Column four shows the number of entries in each vector. This
is given by the total number of possible energy function values (2s1s2) minus the number of zero-sided
tensors given by Definition 1.15.

Because these matrices have far more rows than columns, we expect almost all of them to be full rank,
and therefore few nontrivial conservation functions should exist over the range of cellular automata. Since
full rank can be determined very quickly while rank-deficiency cannot be known until all the possible state
space vectors given by Theorem 2.3 have been examined for linear independence, it would be inefficient
to build the full state space matrix for each CA and then calculate its rank. Instead, we sift the sands of
cellular automata through a three-stage computational sieve.

The first stage uses a ”quick and dirty” algorithm to discard automata with no nontrivials. This elim-
inates over 99% of the candidates. The second stage takes automata that have passed the first stage and
performs a little more work to try and drive the set of state space matrices to full rank. This eliminates
about another 90% of the candidates it analyzes. The third stage operates only on automata that have
passed the first two stages, performing exact arithmetic using all the optimizations of Theorem 2.3 to de-
termine whether or not a given CA has a nontrivial conservation function. If it does, its basis is calculated
and reported. Each stage is implemented in MATLAB.

In stage I, we compute the energy vector of Definition 1.14 for one tensor at a time, attempting to add
it to an existing energy vector set via Gaussian elimination to ensure that the rows in the state space ma-
trix at any time are always linearly independent. Before such addition, however, we delete the columns

12 Leemon Baird and Barry Fagin

corresponding to the zero-sided tensors for the indicated energy window. The total number of deleted
columns is given by Definition 1.15. None of the optimizations discussed in the proof of Theorem 2.3 are
performed at this stage. Instead, universe states are generated randomly, the energy vectors of their cor-
responding tensors are calculated, and Gaussian elimination is performed on each vector relative to those
energy vectors already admitted into the state space matrix. When the number of linearly independent
energy vectors is equal to the number of columns (the number of possible energy function values minus
the number of zero-sided tensors), full rank has been achieved, and the CA/energy window pair under test
is known not to correspond to a nontrivial conservation function.

Since states are generated randomly in this stage, as opposed to exhaustive enumeration of the appro-
priate tensors as given by Theorem 2.3, the number of states N to try before giving up on the possibility of
reaching full rank is a user-definable parameter. Empirically, we have found that setting N at 32x the max-
imum rank of the matrix gives a good tradeoff between quick computation on the one hand and admitting
too many false positives on the other.

During this stage, all arithmetic is performed modulo a small prime, to eliminate the possibility of
roundoff error or overflow. If full rank is reached, the matrix would be full rank in exact arithmetic as
well, so the answer is correct. If full rank is not reached within the indicated time window, the matrix may
or may not be rank-deficient, so the CA is marked as a candidate for stage II computation.

In stage II, candidate CA/window pairs that pass through the first stage are subject to repeated random
state generation with a larger value of N for multiple attempts. No other optimizations are performed
at this time. If no full rank matrix is produced (i.e. no linearly independent energy vector set of the
cardinality given by Definition 1.14 is found), the pair is marked for analysis by stage III.

Stage III computation employs on-the-fly Gaussian elimination for one-at-a-time energy vector gener-
ation, similar to the first two stages, but using double precision arithmetic and enumerating the state space
exactly as described in the proof of Theorem 2.3. To keep the computations from overflowing, vectors
are reduced modulo the GCD of all their nonzero entries during this process, which means this stage is
the most computationally intensive. If Gaussian elimination on the entire set of energy vectors does not
produce a linearly independent set of Definition 1.14 cardinality, then constructed state space matrix has a
null space. That null space is calculated, and reported as the basis for all nontrivial conservation functions
for that particular CA/window combination.

To guard against the possibility of numerical error, the largest value observed during stage III calcula-
tion is tracked and reported, to ensure that any possibility of overflow or loss of precision will be detected.
For all calculations reported here, this maximum value has always been well below that which could in-
duce error in double precision arithmetic. So we are confident our results are correct. Nonetheless, as an
added safety check, we have implemented code which accepts as input a CA, an energy window, and a
stage III basis set reported as characterizing a nontrivial. It tests each vector in the basis set over large
numbers of randomly selected states by evaluating the energy function through brute force dot product
calculation. In all cases, the resulting functions reported by stage III were conserved.

Table 2 shows the results of our computations for all outer totalistic binary 2D cellular automata up
to isomorphism, for all energy windows up to order 9. It extends [1] to give a complete taxonomy of
conservation functions for all automata of this type. Figures 3 and 4 are similar to Figure 2, extended to
two dimensions. Figure 5 summarizes our current knowledge of 1D conservation functions.

The first three columns of Table 2 are all different ways of identifying the same automaton. The first
column is the decimal integer represented by a CA’s rule vector, obtained by treating the symbols S,B,D,F
as the integers 0,1,2,3 respectively, and viewing the rule vector as a number in base 4 with the most

Faster Methods for Identifying Nontrivial Energy Conservation Functions for Cellular Automata 13

CA# Rule rule vec (num neighbors) min basis comments
NCF size

0 1 2 3 4 5 6 7 8
0 S0123456789 S S S S S S S S S 1x1 n/a identity, conserves all
2 S12345678 D S S S S S S S S 1x2 1 conserves [11] pairs
8 S02345678 S D S S S S S S S 2x2 5 conserves 2x2 patterns

with ≥ 3 1’s
10 S2345678 D D S S S S S S S 2x2 5 identical to 8
21 B012/S012345678 B B B S S S S S S 3x3 1
32 S01345678 S S D S S S S S S 2x2 1 conserves 2x2 pattern with

all 1’s
34 S1345678 D S D S S S S S S 2x2 1 identical to 32
40 S0345678 S D D S S S S S S 2x2 1 identical to 32
42 S345678 D D D S S S S S S 2x2 1 identical to 32

16386 B7/S12345678 D S S S S S S B S 2x2 4
16387 B07/S12345678 F S S S S S S B S 3x3 11
21845 B01234567/S8 B B B B B B B B S 3x3 1 conserves ring of 1’s

around a 0
65532 B1234567/S8 S F F F F F F F S 2x3 1
65533 B01234567/S08 B F F F F F F F S 2x3 1 identical to 65532
65534 B1234567/S8 D F F F F F F F S 2x3 1 identical to 65532
65535 B01234567/S8 F F F F F F F F S 2x3 1 identical to 65532
65537 B08/S012345678 B S S S S S S S B 2x3 7
65538 B8/S12345678 D S S S S S S S B 2x2 8
65539 B08/S12345678 F S S S S S S S B 2x3 7 identical to 65537
65541 B018/S012345678 B B S S S S S S B 3x3 1 conserves [001 011 010]
65545 B08/S234567 B D S S S S S S B 2x3 1 conserves the difference

between [101 111] and
[111 101]

65546 B8/S234567 D D S S S S S S B 2x2 4 conserves 2x2 patterns
with ≥ 3 1’s

65547 B08/S2345678 F D S S S S S S B 2x3 1 identical to 65545
65549 B018/S02345678 B F S S S S S S B 3x3 1 identical to 65541
81921 B078/S012345678 B S S S S S S B B 2x3 1
81923 B078/S12345678 F S S S S S S B B 2x3 1 identical to 81921

131069 B012345678/S08 B F F F F F F F B 2x3 1 identical to 65532
131070 B12345678/S8 D F F F F F F F B 2x3 1 identical to 65532
131071 B012345678/S8 F F F F F F F F B 2x3 1 identical to 65532
131073 B0/S01234567 B S S S S S S S D 2x3 2
131075 B0/S1234567 F S S S S S S S D 2x3 2 identical to 131073
131077 B01/S01234567 B B S S S S S S D 3x3 1 identical to 65541
131081 B0/S0234567 B D S S S S S S D 3x3 9
131083 B0/S234567 F D S S S S S S D 3x3 9 identical to 131081
131085 B01/S234567 B F S S S S S S D 3x3 1 identical to 65541
147459 B07/S1234567 F S S S S S S B D 3x3 9
163483 B0/S123456 F S S S S S S D D 3x3 1 conserves [011 100 101]
180227 B07/S123456 F S S S S S S F D 3x3 1 identical to 163843
196605 B01234567/S0 B F F F F F F F D 2x2 4
196607 B01234567 F F F F F F F F D 2x2 4 Identical to 196605
196611 B08/S1234567 F S S S S S S S F 2x3 2 Identical to 131073
196619 B08/S234567 F D S S S S S S F 3x3 9 Identical to 131081
262143 B012345678 F F F F F F F F F 1x2 1 Conserves [10] pairs

Tab. 2: Conservation functions of order ≤ 9 for 2D CA’s

14 Leemon Baird and Barry Fagin

CA Basis

174762 f(x) =H(x, 1)

87381 f(x) =H(x, 1 0)

174760 f(x) =H(x, 1 1)

174720
174722
174728
174730

f(x) =H(x, 1 1
1 1

)

21845
21847

f1(x) = H(x, 0 1
1 *

)

−H(x, 1 1
0 *

)

f2(x) = H(x, 0 1
1 *

)

−H(x, 1 0
1 *

)

f3(x) = H(x, 0 1
1 1

)

−H(x, 1 *
1 0

)

−H(x, 1 1
0 0

)

f4(x) = H(x, 0 1
1 0

)

+H(x, 1 0
0 1

)

191144 f1(x) = H(x, 0 0
0 1

)

− H(x, 0 1
0 0

)

f2(x) = H(x, 0 0
0 1

)

− H(x, 0 0
1 0

)

f3(x) = H(x, 0 1
1 1

)

− H(x, 1 1
1 0

)

f4(x) = H(x, 0 1
1 *

)

+ H(x, * 1
1 1

)

− H(x, 1 0
0 1

)

+2H(x, 1 0
1 0

)

+2H(x, 1 1
0 0

)

CA Basis

240288f1(x) = H(x, 0 1
1 1

)

− H(x, 1 1
1 0

)

f2(x) = H(x, 0 1
1 1

)

− H(x, 1 1
0 1

)

f3(x) = H(x, 0 1
1 1

)

− H(x, 1 0
1 1

)

f4(x) = H(x, * 1
1 1

)

+3H(x, 0 1
1 1

)

240296f1(x) = H(x, 0 1
1 1

)

− H(x, 1 1
1 0

)

f2(x) = H(x, 0 1
1 1

)

− H(x, 1 1
0 1

)

f3(x) = H(x, 0 1
1 1

)

− H(x, 1 0
1 1

)

f4(x) = H(x, 1 1
0 0

)

f5(x) = H(x, 1 0
1 0

)

f6(x) = H(x, 1 0
0 1

)

f7(x) = H(x, * 1
1 1

)

+3H(x, 0 1
1 1

)

f8(x) = H(x, 0 1
1 0

)

CA Basis

174752
174754

f1(x) =H(x, 1 1
1 1

)

f2(x) =H(x, 1 1
1 0

)

f3(x) =H(x, 1 1
0 1

)

f4(x) =H(x, 1 0
1 1

)

f5(x) =H(x, 0 1
1 1

)

218453
218452
218455
152917
152916
152919
152918

f(x) = H(x, 0 1 0
1 0 1

)

+H(x, 1 0 1
0 1 0

)

256681
256683
191145

f(x) = H(x, 0 0 *
1 0 1

)

+H(x, 1 0 0
1 0 1

)

−H(x, 1 0 1
0 0 *

)

−H(x, 1 0 1
1 0 0

)

240289
240291

f(x) = H(x, 1 0 1
1 1 1

)

−H(x, 1 1 1
1 0 1

)

109225
43689
43691

f1(x) =H(x, 1 0 1
0 1 0

)

f2(x) =H(x, 0 1 0
1 0 1

)

240297
240299

f1(x) = H(x, 1 0 1
1 1 1

)

−H(x, 1 1 1
1 0 1

)

f2(x) = H(x, 1 1 0
1 0 1

)

f3(x) = H(x, 1 0 1
1 1 0

)

f4(x) = H(x, 1 0 1
0 1 1

)

f5(x) = H(x, 1 0 1
0 1 0

)

f6(x) = H(x, 0 1 1
1 0 1

)

f7(x) = H(x, 0 1 0
1 0 1

)

Fig. 3: 2D Basis functions. For each CA, this lists the lowest-order nontrivial conserved functions. The given
functions, combined with the trivials, constitute a basis set for the space of all conserved functions for that CA. The
table contains all of the non-isomorphic, 2-color, 3 × 3 neighborhood, outer totalistic CAs that have nontrivials of
size 2× 3 or smaller (the 3× 3 nontrivials are shown in Figure 4).

Faster Methods for Identifying Nontrivial Energy Conservation Functions for Cellular Automata 15

CA Basis

109223
109231
43687
43695
240295
240303

f(x) =H(x, 0 1 0
1 0 1
0 1 0

)

196607 f(x) =H(x, 1 1 1
1 0 1
1 1 1

)

125609
125611
60075

f1(x) =H(x, 1 0 1
0 1 0
1 0 1

)

f2(x) =H(x, 1 0 1
0 1 0
1 0 0

)

f3(x) =H(x, 1 0 1
0 1 0
0 0 1

)

f4(x) =H(x, 1 0 1
0 1 0
0 0 0

)

f5(x) =H(x, 1 0 0
0 1 0
1 0 1

)

f6(x) =H(x, 1 0 0
0 1 0
1 0 0

)

f7(x) =H(x, 0 0 1
0 1 0
1 0 1

)

f8(x) =H(x, 0 0 1
0 1 0
0 0 1

)

f9(x) =H(x, 0 0 0
0 1 0
1 0 1

)

60073 f1(x) =H(x, * 0 *
0 1 0
1 0 1

)

f2(x) =H(x, * 0 1
0 1 0
* 0 1

)

f3(x) =H(x, 1 0 1
0 1 0
1 0 1

)

f4(x) =H(x, 1 0 1
0 1 0
1 0 0

)

f5(x) =H(x, 1 0 1
0 1 0
0 0 1

)

f6(x) =H(x, 1 0 1
0 1 0
0 0 0

)

f7(x) =H(x, 1 0 0
0 1 0
1 0 1

)

f8(x) =H(x, 1 0 0
0 1 0
1 0 0

)

f9(x) =H(x, 0 0 1
0 1 0
1 0 1

)

CA Basis

174783f(x) = H(x, 0 0 0
0 0 1
0 0 1

)+H(x, 0 0 0
0 0 1
0 1 0

)+ H(x, 0 0 0
* 0 1
1 1 1

)− H(x, 0 0 0
1 0 0
0 1 1

)

− H(x, 0 0 *
1 0 0
1 0 *

)−H(x, 0 0 0
1 0 0
1 1 0

)+ H(x, * 0 0
1 0 1
1 0 0

)− H(x, 0 0 1
0 0 0
1 0 1

)

− H(x, 0 0 1
0 0 *
1 1 0

)+H(x, 0 0 1
* 0 *
1 1 1

)− H(x, 0 0 1
0 0 1
0 * 0

) − 2H(x, 0 0 1
0 0 1
1 0 0

)

− H(x, 0 0 1
1 0 0
0 0 1

)−H(x, 0 0 1
1 0 *
* 1 0

)− H(x, 0 * 1
1 0 0
1 0 0

) − 2H(x, 0 0 1
1 0 1
0 0 0

)

+2H(x, 0 1 *
0 0 0
0 1 0

)−H(x, 0 1 1
0 0 0
0 * 0

)− H(x, 0 1 0
0 0 0
1 0 1

)− H(x, * 1 0
0 0 1
1 0 0

)

− H(x, * 1 *
* 0 1
1 1 0

)−H(x, 0 1 0
* 1 0
* 1 0

)− H(x, 0 1 0
0 1 1
* 1 *

)− H(x, 0 1 *
1 0 *
0 0 *

)

− H(x, 0 1 0
1 0 0
0 0 1

)−H(x, 0 1 *
1 0 0
0 1 1

)− H(x, 0 1 *
1 * 0
1 0 *

)− H(x, 0 1 0
1 0 0
1 0 *

)

− H(x, 0 1 *
1 0 0
1 0 0

)−H(x, 0 1 1
1 * 0
* 0 0

)− H(x, 0 1 0
1 0 1
0 0 0

)− H(x, 0 1 *
1 0 1
0 1 *

)

− H(x, * 1 *
1 0 1
1 0 1

)−H(x, 0 1 *
1 1 0
0 0 *

)− H(x, 0 1 1
0 * 0
1 0 0

)− H(x, 0 1 1
0 0 0
1 0 0

)

− H(x, 0 1 1
0 1 0
0 0 0

)−H(x, * 1 1
0 1 1
* 1 0

)− H(x, 0 1 1
1 0 0
0 0 0

)+ H(x, 0 1 1
1 0 1
1 0 0

)

+ H(x, 0 1 1
1 1 1
* 1 1

)−H(x, 1 0 0
0 0 0
0 1 1

) − 2H(x, 1 * *
0 0 *
1 0 *

)− H(x, 1 0 0
0 0 0
1 0 1

)

− H(x, 1 0 0
0 0 0
1 1 *

)−H(x, 1 0 *
* 0 *
1 1 0

)− H(x, 1 0 1
* 0 *
* 1 0

)− H(x, 1 0 *
0 0 1
1 0 0

)

− H(x, 1 0 1
0 0 1
* 0 0

)−H(x, 1 0 1
* 0 1
0 0 0

)+ H(x, 1 0 0
1 0 0
0 0 0

)− H(x, 1 * *
1 0 0
1 0 0

)

− H(x, 1 0 *
1 0 1
0 0 0

)−H(x, 1 0 1
0 0 0
0 0 1

)− H(x, 1 0 1
0 0 0
1 0 *

) − 2H(x, 1 0 1
1 0 0
* * *

)

− H(x, 1 0 1
1 0 0
* 0 *

)+H(x, 1 1 0
0 0 0
0 0 0

)− H(x, 1 1 *
0 0 0
0 1 1

)− H(x, 1 1 1
0 0 *
1 * *

)

− H(x, 1 1 0
0 0 0
1 0 *

)+H(x, 1 1 0
* 0 1
0 0 1

)− H(x, 1 1 *
0 0 1
0 1 *

)− H(x, 1 1 *
0 1 *
0 0 *

)

− H(x, 1 1 1
0 1 *
* 0 *

)+H(x, 1 1 0
0 1 0
* 1 1

)+ H(x, 1 1 0
1 0 0
0 1 0

) − 2H(x, 1 1 *
1 0 0
1 0 *

)

− H(x, 1 1 1
* * 0
* 0 0

)−H(x, 1 1 1
* 0 0
* 0 0

)− H(x, 1 1 1
1 0 1
1 0 1

)+ H(x, 1 1 0
1 1 0
0 1 1

)

− H(x, 1 1 0
1 1 0
1 1 0

)+H(x, 1 1 0
1 1 1
0 * *

)+ H(x, 1 1 0
1 1 1
1 0 *

)− H(x, 1 1 1
0 0 *
0 1 *

)

− H(x, 1 1 1
1 0 0
0 1 1

)−H(x, 1 1 1
1 0 *
1 1 *

)− H(x, 1 1 1
1 0 1
0 1 *

)− H(x, 1 1 1
1 1 0
0 0 *

)

− H(x, 1 1 1
1 1 0
1 * *

)+H(x, 1 1 1
1 1 1
0 1 1

)− H(x, 1 1 1
1 1 1
1 1 0

)

Fig. 4: 2D Basis functions (continued). These are the 3× 3 nontrivials, continued from figure 3.

16 Leemon Baird and Barry Fagin

Order CA(isomorphs) Rule 1
1
1

1
1
0

1
0
1

1
0
0

0
1
1

0
1
0

0
0
1

0
0
0

∞ 0(255) 0 0 0 0 0 0 0 0 0
∞ 8(64,239,253) Xyz 0 0 0 0 1 0 0 0
∞ 30(86,135,149) X+YZ 0 0 0 1 1 1 1 0
∞ 32(251) xYz 0 0 1 0 0 0 0 0
∞ 40(96,235,249) xz+yz 0 0 1 0 1 0 0 0
∞ 60(102,153,195) x+y 0 0 1 1 1 1 0 0
∞ 90(165) x+z 0 1 0 1 1 0 1 0
∞ 106(120,169,225) xy+z 0 1 1 0 1 0 1 0
∞ 128(254) xyz 1 0 0 0 0 0 0 0
∞ 136(192,238,252) yz 1 0 0 0 1 0 0 0
∞ 150 x+y+z 1 0 0 1 0 1 1 0
∞ 154(166,180,210) xY+z 1 0 0 1 1 0 1 0
∞ 160(250) xz 1 0 1 0 0 0 0 0
∞ 168(224,234,248) XYz+z 1 0 1 0 1 0 0 0
>16 6(20,159,215) Xy+Xz 0 0 0 0 0 1 1 0
>16 9(65,111,125) Xy+XZ 0 0 0 0 1 0 0 1
>16 13(69,79,93) X+XYz 0 0 0 0 1 1 0 1
>16 18(183) xY+Yz 0 0 0 1 0 0 1 0
>16 22(151) X+Xyz+YZ 0 0 0 1 0 1 1 0
>16 25(61,67,103) Xyz+YZ 0 0 0 1 1 0 0 1
>16 26(82,167,181) xYZ+Xz 0 0 0 1 1 0 1 0
>16 28(70,157,199) Xy+xYZ 0 0 0 1 1 1 0 0
>16 37(91) xYz+XZ 0 0 1 0 0 1 0 1
>16 41(97,107,121) X+XyZ+Yz 0 0 1 0 1 0 0 1
>16 45(75,89,101) X+Yz 0 0 1 0 1 1 0 1
>16 54(147) XZ+Y 0 0 1 1 0 1 1 0
>16 57(99) Xz+Y 0 0 1 1 1 0 0 1
>16 58(114,163,177) xY+Xz 0 0 1 1 1 0 1 0
>16 62(118,131,145) x+XYz+y 0 0 1 1 1 1 1 0
>16 74(88,173,229) xyZ+Xz 0 1 0 0 1 0 1 0
>16 78(92,141,197) Xz+yZ 0 1 0 0 1 1 1 0
>16 105 x+y+Z 0 1 1 0 1 0 0 1
>16 110(124,137,193) Xyz+y+z 0 1 1 0 1 1 1 0
>16 122(161) x+xYz+z 0 1 1 1 1 0 1 0
>16 126(129) xY+Xz+yZ 0 1 1 1 1 1 1 0
>16 130(144,190,246) xz+Yz 1 0 0 0 0 0 1 0
>16 134(148,158,214) X+XYZ+yz 1 0 0 0 0 1 1 0
>16 146(182) x+xyZ+Yz 1 0 0 1 0 0 1 0
>16 152(188,194,230) xYZ+yz 1 0 0 1 1 0 0 0
>16 156(198) xZ+y 1 0 0 1 1 1 0 0
>16 162(176,186,242) Xyz+z 1 0 1 0 0 0 1 0
1 170(240) z 1 0 1 0 1 0 1 0
1 184(226) xY+yz 1 0 1 1 1 0 0 0
1 204 y 1 1 0 0 1 1 0 0

Order CA(isomorphs) Rule 1
1
1

1
1
0

1
0
1

1
0
0

0
1
1

0
1
0

0
0
1

0
0
0

2 12(68,207,221) Xy 0 0 0 0 1 1 0 0
2 14(84,143,213) X+XYZ 0 0 0 0 1 1 1 0
2 15(85) X 0 0 0 0 1 1 1 1
2 34(48,187,243) Yz 0 0 1 0 0 0 1 0
2 35(49,59,115) xYZ+Y 0 0 1 0 0 0 1 1
2 42(112,171,241) xyz+z 0 0 1 0 1 0 1 0
2 43(113) xY+Xz+YZ 0 0 1 0 1 0 1 1
2 51 Y 0 0 1 1 0 0 1 1
2 140(196,206,220) xyZ+y 1 0 0 0 1 1 0 0
2 142(212) xy+Xz+yZ 1 0 0 0 1 1 1 0
2 200(236) XyZ+y 1 1 0 0 1 0 0 0
3 2(16,191,247) XYz 0 0 0 0 0 0 1 0
3 3(17,63,119) XY 0 0 0 0 0 0 1 1
3 4(223) XyZ 0 0 0 0 0 1 0 0
3 10(80,175,245) Xz 0 0 0 0 1 0 1 0
3 56(98,185,227) xY+Xyz 0 0 1 1 1 0 0 0
3 76(205) xyz+y 0 1 0 0 1 1 0 0
3 138(174,208,244) xYz+z 1 0 0 0 1 0 1 0
3 172(202,216,228) Xy+xz 1 0 1 0 1 1 0 0
4 1(127) XYZ 0 0 0 0 0 0 0 1
4 11(47,81,117) X+XyZ 0 0 0 0 1 0 1 1
4 27(39,53,83) Xz+YZ 0 0 0 1 1 0 1 1
4 29(71) Xy+YZ 0 0 0 1 1 1 0 1
4 38(52,155,211) XyZ+Yz 0 0 1 0 0 1 1 0
4 46(116,139,209) Xy+Yz 0 0 1 0 1 1 1 0
4 72(237) xy+yz 0 1 0 0 1 0 0 0
5 5(95) XZ 0 0 0 0 0 1 0 1
5 19(55) xYz+Y 0 0 0 1 0 0 1 1
5 24(66,189,231) xYZ+Xyz 0 0 0 1 1 0 0 0
5 36(219) xYz+XyZ 0 0 1 0 0 1 0 0
5 108(201) xz+y 0 1 1 0 1 1 0 0
5 132(222) xy+yZ 1 0 0 0 0 1 0 0
6 23 xY+XZ+Yz 0 0 0 1 0 1 1 1
6 50(179) XYZ+Y 0 0 1 1 0 0 1 0
6 77 xy+XZ+yz 0 1 0 0 1 1 0 1
6 178 xy+xZ+Yz 1 0 1 1 0 0 1 0
6 232 xy+xz+yz 1 1 1 0 1 0 0 0
8 44(100,203,217) Xy+xYz 0 0 1 0 1 1 0 0
8 73(109) X+XYz+yZ 0 1 0 0 1 0 0 1
9 7(21,31,87) X+Xyz 0 0 0 0 0 1 1 1
12 33(123) xY+YZ 0 0 1 0 0 0 0 1
13 164(218) XyZ+xz 1 0 1 0 0 1 0 0
14 94(133) x+XyZ+z 0 1 0 1 1 1 1 0
14 104(233) x+xYZ+yz 0 1 1 0 1 0 0 0

Fig. 5: Summary of results for the primitive CAs (1D, 2-color, neighborhood of 3 cells). In each half of the table,
the first column gives the energy window size for the smallest nontrivial. A value of ∞ indicates that it is known
no nontrivial can exist. A value of > 16 indicates that no nontrivial exists with energy window of size 16 or below.
The next column has the CA name, and the names of the isomorphic CAs. The next is the formula for the successor
function, where cells have state 0 or 1, three consecutive cells are called x, y, z (with capitalized inverses, so X=1-x
etc.), and the formula modulo 2 gives the new state for y. Finally, the successor function is shown graphically, giving
the new state as a function of the state in that cell and its immediate neighbors (shown at the top of the column).

significant digit on the right. The second column shows the CA rule using the notation in [8]. Column
three is the CA’s rule vector.

Columns four through six describe the nontrivial conservation function found. Column four shows the
dimensions of the energy window at which the first nontrivial was discovered. Column five shows the
number of basis vectors in the null space of the CA’s state matrix for an energy window of the indicated
size. Column six contains, where appropriate, comments describing the conservation function. A blank
entry in this column means that either no simple description exists or that describing the pattern would be
too complex to fit within the indicated space.

Symmetry arguments will show that analogous conservation functions for any m× n window can also
be found for one that is n×m. Thus the only energy windows examined were those that were at least as
wide as they were tall.

4 Analysis
Some patterns are clearly visible in Table 2, Figure 3, Figure 4 and Figure 5. For all CA’s for which non-
trivial conservation functions exist, there is a great deal of homogeneity in the middle range of neighbor

Faster Methods for Identifying Nontrivial Energy Conservation Functions for Cellular Automata 17

counts. For example, any given CA in the table has the same transition rules for neighbor counts 3-6,
and most have identical transition rules for neighbor counts 2-7. We conjecture this is combinatorically
driven. That is, for the middle range of neighbor counts, there are so many different ways to distribute
a fixed number of neighbors among eight cells that a low-order conservation function cannot incorporate
them all. By contrast, there is only one way to arrange zero or eight neighbors around a cell, eight ways
to arrange one or seven, and so forth. Near the minimum and maximum of the neighbor count range,
the number of possible configurations is sufficiently small that a low-order conservation function is more
likely to emerge.

We also note that all CA’s with rule vectors of the form xFFFFFFFx, xSSSSSSSB, and xDSSSSSSB
have nontrivial conservation functions. All CA’s of the form xSSSSSSSx have a nontrivial as well, unless
exactly one of the x’s is ’S’.

Finally, our results show that all known nontrivials correspond to energy windows for which the width
and the height differ by no more than one. Whether this holds true for all nontrivials remains an open
question.

5 The Game of Life
Because of the special significance of Conway’s Game of Life (CA #174666, rule B3/S23, rule vector
DDSBDDDDD), we have examined it for nontrivial energy conservation functions up to order 13. None
have been found.

6 Conclusions and Future Work
Table 2 and Figures 3 through 5 represent a complete taxonomy of all known nontrivial conservation
functions for 1- and 2-dimensional binary cellular automata up to isomorphism. We have discussed some
of the patterns we have observed.

[1] introduced the notion of core nontrivials, recognizing that cellular automata could exhibit different
nontrivials of higher orders that are not simple extensions of lower ones. We have yet to apply this
idea to the automata shown here. Thus the functions we report are only the first core nontrivials found.
The existence of multiple cores for 2D binary cellular automata remains an open question. Detecting
such cores requires only well-understood modifications to our existing code, and is on our list of future
enhancements.

Number-conserving 1D cellular automata [2] are automata with transition rules that conserve the sum of
the number of states in a neighborhood. A number-conserving function is one kind of energy conservation
function defined in Definition 1.8, where the function is simply the sum of all terms in the window. Our
work therefore includes number-conservation as a special case. The theory described here applies to all
cellular automata with finite states and arbitrary dimensionality. The results for 2D automata are all new.

Continuing improvements in computing power and further refinements of our codes should enable us to
identify nontrivials at increasingly higher orders. The existence of nontrivialss for m×n energy windows
with |m− n| > 1 remains an open question. Higher dimensional CAs, non-totalistic CAs, and k-colored
CAs could also be explored.

As yet, an elegant, unifying description of cellular automata relating their decision rules and a given
energy window to a nontrivial conservation function remains elusive. While the general problem is un-
decidable, we have mapped out the space for lower orders and binary outer totalistic CAs well enough to

18 Leemon Baird and Barry Fagin

suggest some ideas for a more elegant classification scheme than the present ad hoc one we are currently
forced to adopt. Such a scheme may in fact exist, or it may remain forever elusive, an fundamentally com-
plex property inherent in the nature of computational automata. We hope further work may yet resolve
this question.

7 Errata and Acknowledgments
Readers unfamiliar with automata conservation functions may wish to review [1]. In the course of prepar-
ing this paper, we noticed errors in the first three tables of our previous results. For the sake of complete-
ness, we present the necessary corrections to [1] here:

TABLE 1: Replace 98 with 94, replace 40 with 46
TABLE 2: Replace 136 with 200
TABLE 3: Replace 136 with 200, replace 248 with 232

The authors are grateful for the support of the Air Force Academy Center for Cyberspace Research,
and to the reviewers for their helpful comments.

References
[1] L. Baird and B. Fagin, Conservation functions for 1-d automata: Efficient algorithms, new results,

and a partial taxonomy, Journal of Cellular Automata 3 (2008), no. 4, 271–288.

[2] Nino Boccara and Henryk Fuks, Number-conserving cellular automaton rules, Fundam. Inform. 52
(2002), no. 1-3, 1–13.

[3] B. Fagin and L. Baird, New higher-order conservation functions for 1-d cellular automata, Proceed-
ings of the IEEE Symposium on Artificial Life, April 1-5 2007.

[4] H. Fuks, Remarks on the critical behavior of second order additive invariants in elementary cellular
automata, Fundamenta Informaticae 78 (2007), 329–341.

[5] T. Hattori and S Takesue, Additive conserved quantities in discrete-time lattice dynamical systems,
Physica D 49 (1991), 295–322.

[6] L. Kotze and W.H. Steeb, Finite dimensional integrable nonlinear dynamical systems, pp. 333–346,
World Scientific Publishing, New Jersey, 1998.

[7] M. Pivato, Conservation laws in cellular automata, Nonlinearity 15 (2002), 1781–1793.

[8] Wikipedia, Life-like cellular automaton, http://en.wikipedia.org/wiki/Life-like_
cellular_automaton, March 2010.

[9] S. Wolfram, A new kind of science, Wolfram Media Inc., 2002.

http://en.wikipedia.org/wiki/Life-like_cellular_automaton
http://en.wikipedia.org/wiki/Life-like_cellular_automaton

	Preliminaries: basic definitions
	Theoretical results
	Computational results
	Analysis
	The Game of Life
	Conclusions and Future Work
	Errata and Acknowledgments

